Правило Лопиталя (1017909)
Текст из файла
Правило Лопиталя (раскрытие неопределённостей):
Будем говорить, что отношение f(x)/g(x) представляет собой неопределенность вида 0/0 при xа, если limxаf(x)= limxаg(x)=0. Раскрыть эту неопредел-сть – это значит найти limxаf(x)/g(x), если он существует.
Теорема №1: Пусть f(x) и g(x) определены и дифференцируемы в окрестности точки х=а, за исключением, быть может, самой точки a, limxаf(x)= limxаg(x)=0, g(x) и g'(x)0 в этой окрестности. Тогда, если существует limxаf'(x)/g'(x), то существует limxаf(x)/g(x) и имеет место равенство limxаf(x)/g(x)=limxаf'(x)/g'(x) {1}. Доказательство: Будем считать, что а – конечное число. (В случае а= см. ниже замечание 3.) Доопределим функции f и g в точке х=а, полагая f(a)=g(a)=0. Тогда эти функции будут непрерывны в точке а. Рассмотрим отрезок [а,х], где х>а или х<а. На [а,х] функции f и g непрерывны, а на (а,x) дифференцируемы, поэтому по теореме Коши существует точка S такая, что (f(x)–f(a))/(g(x)–g(a))=f'()/g'() (при (а,x)) или f(x)/g(x)=f'()/g'().
Когда хa и, то и a, поэтому в силу условия теоремы имеем limxаf(x)/g(x)=limаf'()/g'() =limxаf'(x)/g'(x) {2}при условии, что предел в правой части равенства существует. Этим теорема доказана. Замечания: [1] Если предел справа в {1}не существует, то предел слева может существовать.
[2] Если выражение f'(x)/g'(x) представляет неопределенность вида 0/0 г и функции f'(x), g'(х) удовлетворяют условию теоремы №1, то limxаf(x)/g(x)=limxаf'(x)/g'(x)= limxаf''(x)/g''(x)
П
ри этом эти равенства надо понимать в том смысле, что если существует третий предел, то существует и второй и первый. Теорема №2 (/): Пусть f и g определены и дифференцируемы в окрестности точки х=a, limxaf(х)= limxag(х)=, g(x) и g'(x)0 в этой окрестности, тогда, если limxаf'(x)/g'(x), то limxаf(x)/g(x). [3] Если а=, то замена х=1/t сводит дело к а=0:
Выражаемые теоремами №1, 2 правила, в силу которых вычисление предела отношения функций может быть сведено к вычислению предела отношения их производных, наз. правилом Лопиталя по имени математика, который сформулировал это правило, правда, для весьма простых случаев. Впрочем, это правило было известно И. Бернулли до Лопиталя.
Характеристики
Тип файла документ
Документы такого типа открываются такими программами, как Microsoft Office Word на компьютерах Windows, Apple Pages на компьютерах Mac, Open Office - бесплатная альтернатива на различных платформах, в том числе Linux. Наиболее простым и современным решением будут Google документы, так как открываются онлайн без скачивания прямо в браузере на любой платформе. Существуют российские качественные аналоги, например от Яндекса.
Будьте внимательны на мобильных устройствах, так как там используются упрощённый функционал даже в официальном приложении от Microsoft, поэтому для просмотра скачивайте PDF-версию. А если нужно редактировать файл, то используйте оригинальный файл.
Файлы такого типа обычно разбиты на страницы, а текст может быть форматированным (жирный, курсив, выбор шрифта, таблицы и т.п.), а также в него можно добавлять изображения. Формат идеально подходит для рефератов, докладов и РПЗ курсовых проектов, которые необходимо распечатать. Кстати перед печатью также сохраняйте файл в PDF, так как принтер может начудить со шрифтами.