LECT12 (1017900)

Файл №1017900 LECT12 (Комплект шпор по теории и формулам)LECT12 (1017900)2017-07-08СтудИзба
Просмтор этого файла доступен только зарегистрированным пользователям. Но у нас супер быстрая регистрация: достаточно только электронной почты!

Текст из файла

Чернова Н.М.

Лекция 12. Производная функции

§ 1. Понятие производной

О пределение. Если отно­ше­ние имеет предел при этот предел называ­ют производной функции при заданном значении и за­пи­сывают

. (1)

Замечание. Если при не­ко­то­ром значении , су­щест­ву­ет производная функции при этом значении, то в этой точке функция непрерывна.

Заметим, что отношение из рис. 1 численно равно .

Определение. Производная функции в точке численно равна тан­генсу угла, который составляет касательная к графику этой функции по­строенной в точке с положительным направлением с осью .

И з последнего определения ста­но­вится ясно, почему в случае убы­ва­ю­щей функции (рис. 2) про­из­вод­ная от­ри­цательна. Это объясняется тем, что , если будет отрицатель­ным.

На этом свойстве производной осно­ва­но исследование поведения функции на возрастание (убывание) на заданном отрезке.



§ 2. Производные простейших функций



Используя определение производной и правил вычисления пределов, най­дем производные простейших функций.

1. , где – некоторая постоянная. По определению производной из (1) получаем удобную формулу

, (2)

тогда из (2) имеем , т.е. . Про­из­вод­ная постоянной величины равна 0.

2. , где – любое число. Из формулы (2) имеем

Т.е. .

3. .

Т.е. .

Остальные производные простейших функций (табл.1) приведем без вывода

Таблица 1

Производные простейших функций

Функция

Производная

Функция

Производная

С

0

,

,



§ 3. Основные правила дифференцирования

Пусть заданы две функции и , которые имеют про­из­вод­ные в точке .

1. Производная алгебраической суммы равна алгебраической сумме производных. .

Покажем это. Пусть некоторая функция у, равная имеет приращение . Тогда функции и тоже должны получить приращения и , соответственно. Новое значение будет , а для , следовательно,

Найдем по определению (2) производной

.



2. Производная произведения равна . Покажем спра­вед­ли­вость этого равенства.

Если, как в первом случае, дать приращение , то функции u и v также получат приращение, следовательно, и функция тоже изменится. Найдем .

.

По определению производной

Если необходимо вычислить производную нескольких сомножителей, например, , если все три функции имеют производные в точке , используя правило вычисления производной для двух сомножителей, получим

3. Производная частного. Рассмотрим функцию , причем, кроме су­щес­твования производных в точке для функций и необходимо по­ло­жить, что в точке отлична от нуля.

Найдем .

и тогда из определения производной имеем

.

Пример. Показать, что .

Решение. Используя производную частного

4. Производная сложной функции. Пусть дана , где . Тогда имеет место теорема, которую приведем здесь без доказательства.

Теорема. Если функция имеет в точке производную и функция имеет в точке производную , тогда сложная функция имеет в точке производную, равную

(3)

Пример. Найти производную функции .

Решение. .



Пример. Найти производную функции .

Решение.

Пример. Найти производную сложной функции .

Решение.

5. Логарифмическое дифференцирование. Пусть дана функция . При этом предполагается, что функция не обращается в нуль в точке . Покажем один из способов нахождения производной функции , если очень сложная функция и по обычным правилам диф­фе­рен­цирования найти производную затруднительно.

Так как по первоначальному предположению не равна нулю в точке, где ищется ее производная, то найдем новую функцию и вычислим ее производную

. (4)

Отношение называется логарифмической производной функции . Из формулы (4) получаем

. (5)

Формула (5) дает простой способ нахождения производной функции .

Пример. Найти производную сложной функции

Решение. Для нахождения используем формулу (5). Предварительно прологарифмируем функцию

и найдем производную полученной функции

.

Теперь по формуле (5) получаем

.

Пример. Найти производную сложной функции .

Решение. В связи с тем, что указанная функция сложная, воспользуемся логарифмическим дифференцированием, для чего предварительно прологарифмируем нашу функцию

.

Найдем производную полученной функции по формуле (5).

.

6. Производная обратной функции.

Теорема. Если имеет в точке производную, отличную от нуля, тогда в этой точке обратная функция также имеет производную и имеет место соотношение

. (6)

Пользуясь этой теоремой, найдем производные обратных три­го­но­мет­ри­чес­ких функций.

1. на интервале . , тогда , от­ку­да сле­до­ва­тель­но, .

2. . . , откуда

3. . ; , откуда

4. ; ;

5. , где и являются функциями от . Для нахождения применим формулу (5). Для этого предварительно найдем функцию

и ее производную

.

По формуле (5) получаем .

Эту же формулу можно получить иначе. Представим в виде

и найдем производную этой функции

.

В заключение этой лекции приведем таблицу основных формул дифференцирования (табл.2).

Таблица 2.

Основные формулы дифференцирования

№ п/п

Функция

Производная

№ п/п

Функция

Производная

1.

C – const

11.

2.

12.

3.

13.

4.

14.

5.

15.

6.

16.

7.

17.

8.

18.

9.

19.

10





Характеристики

Тип файла
Документ
Размер
1,94 Mb
Высшее учебное заведение

Тип файла документ

Документы такого типа открываются такими программами, как Microsoft Office Word на компьютерах Windows, Apple Pages на компьютерах Mac, Open Office - бесплатная альтернатива на различных платформах, в том числе Linux. Наиболее простым и современным решением будут Google документы, так как открываются онлайн без скачивания прямо в браузере на любой платформе. Существуют российские качественные аналоги, например от Яндекса.

Будьте внимательны на мобильных устройствах, так как там используются упрощённый функционал даже в официальном приложении от Microsoft, поэтому для просмотра скачивайте PDF-версию. А если нужно редактировать файл, то используйте оригинальный файл.

Файлы такого типа обычно разбиты на страницы, а текст может быть форматированным (жирный, курсив, выбор шрифта, таблицы и т.п.), а также в него можно добавлять изображения. Формат идеально подходит для рефератов, докладов и РПЗ курсовых проектов, которые необходимо распечатать. Кстати перед печатью также сохраняйте файл в PDF, так как принтер может начудить со шрифтами.

Список файлов ответов (шпаргалок)

Свежие статьи
Популярно сейчас
Почему делать на заказ в разы дороже, чем купить готовую учебную работу на СтудИзбе? Наши учебные работы продаются каждый год, тогда как большинство заказов выполняются с нуля. Найдите подходящий учебный материал на СтудИзбе!
Ответы на популярные вопросы
Да! Наши авторы собирают и выкладывают те работы, которые сдаются в Вашем учебном заведении ежегодно и уже проверены преподавателями.
Да! У нас любой человек может выложить любую учебную работу и зарабатывать на её продажах! Но каждый учебный материал публикуется только после тщательной проверки администрацией.
Вернём деньги! А если быть более точными, то автору даётся немного времени на исправление, а если не исправит или выйдет время, то вернём деньги в полном объёме!
Да! На равне с готовыми студенческими работами у нас продаются услуги. Цены на услуги видны сразу, то есть Вам нужно только указать параметры и сразу можно оплачивать.
Отзывы студентов
Ставлю 10/10
Все нравится, очень удобный сайт, помогает в учебе. Кроме этого, можно заработать самому, выставляя готовые учебные материалы на продажу здесь. Рейтинги и отзывы на преподавателей очень помогают сориентироваться в начале нового семестра. Спасибо за такую функцию. Ставлю максимальную оценку.
Лучшая платформа для успешной сдачи сессии
Познакомился со СтудИзбой благодаря своему другу, очень нравится интерфейс, количество доступных файлов, цена, в общем, все прекрасно. Даже сам продаю какие-то свои работы.
Студизба ван лав ❤
Очень офигенный сайт для студентов. Много полезных учебных материалов. Пользуюсь студизбой с октября 2021 года. Серьёзных нареканий нет. Хотелось бы, что бы ввели подписочную модель и сделали материалы дешевле 300 рублей в рамках подписки бесплатными.
Отличный сайт
Лично меня всё устраивает - и покупка, и продажа; и цены, и возможность предпросмотра куска файла, и обилие бесплатных файлов (в подборках по авторам, читай, ВУЗам и факультетам). Есть определённые баги, но всё решаемо, да и администраторы реагируют в течение суток.
Маленький отзыв о большом помощнике!
Студизба спасает в те моменты, когда сроки горят, а работ накопилось достаточно. Довольно удобный сайт с простой навигацией и огромным количеством материалов.
Студ. Изба как крупнейший сборник работ для студентов
Тут дофига бывает всего полезного. Печально, что бывают предметы по которым даже одного бесплатного решения нет, но это скорее вопрос к студентам. В остальном всё здорово.
Спасательный островок
Если уже не успеваешь разобраться или застрял на каком-то задание поможет тебе быстро и недорого решить твою проблему.
Всё и так отлично
Всё очень удобно. Особенно круто, что есть система бонусов и можно выводить остатки денег. Очень много качественных бесплатных файлов.
Отзыв о системе "Студизба"
Отличная платформа для распространения работ, востребованных студентами. Хорошо налаженная и качественная работа сайта, огромная база заданий и аудитория.
Отличный помощник
Отличный сайт с кучей полезных файлов, позволяющий найти много методичек / учебников / отзывов о вузах и преподователях.
Отлично помогает студентам в любой момент для решения трудных и незамедлительных задач
Хотелось бы больше конкретной информации о преподавателях. А так в принципе хороший сайт, всегда им пользуюсь и ни разу не было желания прекратить. Хороший сайт для помощи студентам, удобный и приятный интерфейс. Из недостатков можно выделить только отсутствия небольшого количества файлов.
Спасибо за шикарный сайт
Великолепный сайт на котором студент за не большие деньги может найти помощь с дз, проектами курсовыми, лабораторными, а также узнать отзывы на преподавателей и бесплатно скачать пособия.
Популярные преподаватели
Добавляйте материалы
и зарабатывайте!
Продажи идут автоматически
6367
Авторов
на СтудИзбе
309
Средний доход
с одного платного файла
Обучение Подробнее