Аналитическая геометрия и мат. анализ(определения, формулы и понятия) (1017806), страница 3
Текст из файла (страница 3)
45. Производные показательных и логарифмических функций.
Основные формулы:
Если z=z(x) – дифференцируемая функция от x, то формулы имеют вид:
46. Логарифмическое дифференцирование. Вывод производной степенной ф-ции.
y=ax - показательная ф-ция, y=xn - степенная, y=xx - показательно-степенная.
y=[f(x)](x) - показательно-степенная ф-ция.
lny=xlnx - найдем производную от левой и правой части, считая у ф-цией х.
(1/y)*y`=(lny)
(x*lnx)`=x`lnx+x*(lnx)`=lnx+1
y`=y*(lnx+1)=xx(lnx+1)
Операция, которая заключается в последовательном применении к ф-ции y=f(x) сначала логарифмирование, а затем дифференцирование.
Степенная ф-ция:
1.y=xn, nlnx, y`/y=n/x=n*(x)-1
y`=y*n*(x-1)=n*xn*x-1=n*xn-1
2.y=eU, где U=sinx
U`=cosx, y`=(eU)`=eU*U`=esinx*cosx.
47. Производная высших порядков ф-ции 1й переменной.
y=f(x)
y``=(y`)`=lim((f`(x+x)-f`(x))/x)
x0
y```=(y``)`= lim((f``(x+x)-f``(x))/x)
f(n)(x)=[f(n-1)(x)]`
48. Производные 1,2-го порядка неявных ф-ций.
Неявной называется такая ф-ция у аргумента х, если она задана уравнением F(x,y)=0, не разрешенным относительно независимой переменной.
y=f(x), y=x2-1 - явные
F(x,y)=0, a2=x2+y2 - неявные ф-ции.
1)a2=x2+y2 - найдем производную, продифференцируем, считая у - сложной ф-цией х.
y`=2x+2y=0, т.к. а- постоянная
y*y`=-x, y`=-x/y
2) x3-3xy+y3=0
3x3-3(xy)`+3y2*y`=0 //:3
x2-(x`y+y`x)+y2*y`=0
y`y2-xy`=y-x2
y`=(y-x2)/(y2-x)
49. Дифференциал ф-ции и его геометрический смысл. Св-ва дифференциала.
limy=A, y=A+
limy/x=y`, y/x=y`+, y=y`x+x
x0
y=y`x+, где -б.м.в., величина более высокого порядка малости,, чем x(), и ее можно отбросить.
dy=y`x
Дифференциалом ф-ции наз. величина, пропорциональная б.м. приращению аргумента х и отличающаяся от соответствующего приращения ф-ции на б.м.в. более высокого порядка малости, чем х.
Если y=x, то dy=dx=x`x=x, dx=x
Если yx, то dy=y`dx, y`=dy,dx
Геометрический смысл: дифференциал - изменение ординаты касательной, проведенной к графику ф-ции в точке (x0,f(x0)) при изменении x0 на величину x
Св-ва:
1. (UV)`=U`V`, то (UV)`dx=U`dxV`dx, d(UV)=d(UV)
2. (UV)`=U`V+V`U, то (UV)`dx=V`dU+U`dV
3.d(c)=c`dx=0*dx=0
4. d(U/V)`=(V`dU-U`dV)/V2.
50.Теорема Ролля.
Е сли функция f(x) непрерывна на заданном промеж/ [a,b] деффер. на интервале (a,b) f(a)=f(b) то существует т. с из интерв. (a,b), такая, что f’(c)=0.
51. Теорема Лагранжа.
Если функция f(x) непрерывна на [a,b] и дефференцирована на (a,b), то сущест.
т. с(a,b), такая, что: f(b)-f(a)=f’(c)(b-a).
Доказательство: применим т.Коши, взяв только g(x)=x, тогда g’(x)=10.
52. Теорема Коши.
Если f(x), g(x) удовл. трем условиям:
1). f(x), g(x) непрерыв. на промеж [a,b]
2). f(x), g(x) деффер. на интервале (a,b)
3). g’(x)0 на интер. (a,b), то сущ. т. с
g(b)g(a) (неравны по теореме Ролля).
1). F(x) – непрерывна на [a,b]
2). F(x) – деффиренцирована на (a,b)
3). F(a)=0 ; F(b)=0
по теореме Ролля сущ. с(a,b); F’(с)=0
53. Необходимые и достаточные признаки монотонности ф-ции:
Если x2>x1, f(x2)>f(x1), то ф-ция монотонно возрастает
Если x2>x1, f(x2)<f(x1), то ф-ция монотонно убывает
Монотонность - постоянство
Необходимые признаки:1)если ф-ция f(x) всюду в интервале возрастает, то ее производная в этом интервале неотрицательна (f`(x)>=0)
2)если ф-ция f(x) всюду в интервале убывает, то ее производная в этом интервале неположительная (f`(x)<=0)
3)если ф-ция f(x) всюду в интервале постоянна, то ее производная в этом интервале =0 (f`(x)=0)
Достаточные признаки монотонности: 1)если f`(x) в интервале положительна, то ф-ция f(x) возрастает в этом интервале.
2)если f`(x)<0, то ф-ция f(x) возрастает в этом интервале.
3)если f`(x)=0, то ф-ция f(x)=const на интервале.
x1<a<x2, x2-x1>0, x2>x1
1. если f`(a)>0, то f(x2)>f(x1)
2. если f`(a)<0, то f(x2)<f(x1)
3. если f`(a)=0, то f(x2)=f(x1)
54. Экстремумы ф-ций. Признаки существования экстремума. Наибольшее и наименьшее значение ф-ции 1й переменной.
Точка х называется точкой max ф-ции, если значение ф-ции в этой точке - наименьшее в некоторой ее окрестности.
1- локальный max
2- локальный min
3- глобальный max
4- глобальный min
если tg>0, то f`(x)>0
если tg<0, то f`(x)<0
Необходимый признак экстремума: ф-ия f(x) может иметь max и min только в тех точках, в которых f`(x)=0 или не существует.
(В них можно построить касательных).
Достаточный признак: точка х0 является точкой экстремума, если ее производная в этой точке меняет знак:
- если с “+” на “-”, то х0- т. max
- если с “-” на “+”, то х0- т. min
55. Выпуклость и вогнутость линий точки перегиба.
Линия называется выпуклой, если она пересекается с любой своей секущей не более чем в 2х точках.
Линия наз-ся вогнутой, если она целиком лежит по 1 сторону от касательной, проведенной в любой ее точке.
Точка перегиба - точка, отделяющая выпуклый участок дуги от вогнутого.
Необходимый признак выпуклости и вогнутости: если линия на интервале выпуклая, то ее 2я производная <=0; если линия на интервале вогнутая, то ее f``(x)>=0
Достаточный признак: если f``(x) всюду в интервале “-”, то линия в интервале выпуклая; если f``(x)>0, то линия вогнутая
Признаки точки перегиба: чтобы X0 была т. перегиба, <=> чтобы у`` в этой точке = 0 и меняла знак при переходе х через х0.
56. Асимптота графика ф-ции.
Асимптота - прямая, к которой график ф-ции стремится, но никогда ее не пересекает.
1) прямая х=х0 назыв-ся вертикальной асимптотой графика ф-ции f(x)=y, если при хх0 |f(x)|+ (вида x=b)
2) y=kx+b, ,y=f(x) - общее ур-е наклонной асимптоты
lim[f(x)-(kx+b)]=0, f(x)=kx+b+(б.м.в.) по св-ву x пределов.
разделим левую и правую части на х. Возьмем предел при х
f(x)/x=k+b/x+/x, lim(f(x)/x)=limk+lim(b/x)+lim(/x)
x
, то
k=lim(f(x)/x)
b=lim[f(x)-kx]
Если эти пределы существуют, то существует и наклонная ассимптота вида kx+b=y
3)k=lim(f(x)/x)=0, y=b - горизонтальная асимптота.
57. Предел и непрерывность ф-ции нескольких переменных.
Величина U наз-ся ф-цией переменных (x1,x2...xn), если каждой, рассматриваемой в совокупности этих величин соотв-ет 1 определенное значение величины U.
Пусть f(M)=M0(x10, x20,... xn0), M(x1, x2,... xn)
Ф-ция f(M)=f(x1, x2,... xn) имеет предел А при М0М, если каждому значению как угодно малого числа (дельта) соотв-ет, как угодно малое заданное число >0, если |M0M|=, то |f(M)-A|<
Ф-ция f(M) наз-ся непрерывной в точке М0, если б.м. приращению любого аргумента соответствует б.м. приращение ф-ции.
limf(x10, x20,... xn0)=limf(x1, x2,... xn)
x10 x1
x20 x2
xn0 xn
58. а) Частная производная ф-ции нескольких переменных. б) Частный и полный дифференциалы.
а) рассмотрим на примере ф-ции 2х переменных
x=f(x,y), точка A(x0,y0)
z=f(x0+x, y0+y)-f(x0,y0) - полное приращение.
Частное приращение по х (по у):
xZ=f(x0+x, y)-f(x0, y0)
yZ=f(y0+y, x)-f(x0, y0)
Частная производная ф-ция:
б) dxZ=Zx`*x=Z/x*dx; dxZ=Zy`*y=Z/y*dy
Полный дифференциал dZ=dxZ+dyZ=Z`xdx +Z`ydy
dZ=Z/x*dx+=Z/y*dy
Чтобы найти полный дифференциал ф-ции надо найти частные производные от этой ф-ции по всем независимым переменным, умножить их на дифференциал этих переменных, рез-ты сложить.
59. Производная 2го порядка ф-ции нескольких переменных. Дифференцирование сложной ф-ции 2х переменных.
Частное производной 2го порядка от ф-ции Z явл. частная производная от 1й производной:
Z``XX=(Z`x)`x ; Z``yy=(Z`y)`y
Z``Xy=(Z`x)`y=(Z`y)`x
60. Экстремумы ф-ции нескольких переменных. Необходимые и достаточные признаки экстремума ф-ции 2х переменных.
Z=f(x,y), M0(x0,y0), M(x,y)
Max ф-ции Z называется такое ее значение f(x0,y0), которое является наибольшим среди всех значений, принимаемых в некоторой окрестности точки M0
Min ф-ции Z называется такое ее значение f(x0,y0), которое является наименьшим среди всех значений, принимаемых в некоторой окрестности точки M0
Экстремум сущ. в тех точках, в которых частная производная ф-ции Z=0 или не существует:
Если Z=f(x1,x2,...xn), то Z/xi=0, i=1,2,...n - необходимое условие.
Достаточный признак:
где A= Z``XX(x0,y0), C= Z``yy(x0,y0), B= Z``yx (x0,y0),
1) если >0, то М0 - точка экстремума;
если А<0 или С<0, то М0 - точка max;
если А>0 или С>0, то М0 - точка min.
2) если <0, то экстремума нет
3) если =0, то вопрос о существовании экстремума остается открытым.
61. Общая схема исследования ф-ции необходима для построения графика.
Найти:
-обл. определения ф-ции
-точки разрыва и интервалы, где ф-ция явл-ся непрерывной
-поведение ф-ции в окрестностях точки разрыва, вертикальной асимптоты
-т. пересечения графика с осями координат
-симметрия графика (чет./нечет):
f(-x)=x симметрична относительно осей
f(-x)=-x симметрична относительно О(0,0)
-периодичность
-интервалы монотонности
-точки экстремума
-наибольшее и наименьшее значение
-выпуклость, вогнутость
-точки перегиба
-поведение ф-ции в безконечности, наклонная и горизонтальные асимптоты
-нанесение на график.