matan3 (1017801), страница 3
Текст из файла (страница 3)
Потребуем F(a)=f(b)
F(b)=f(b)-g(b)
---
F(a)=f(a)-g(a)
___________________
0=f(b)-f(a)-(g(b)-g(a)) =[f(b)-f(a)]/[g(b)-g(a)]. Получим, что F(x) удовлетворяет условию теоремы Ролля4
с(a,b):F’(c)=0, то есть F’(c)=f’(c)-g’(c) =f’(c)/g’(c)=[f(b)-f(a)]/[g(b)-g(a)], что и требовалось доказать.
Правила Лопиталя.
Это правило в случае дифференцируемости функции позволяет избавляться от неопределённостей типа 0/0 или / при вычисление пределов.
Теорема: Пусть функции f(x) и g(x) дифференцируемы в О(х0), g’(x0)0 в О(х0), f(x0)=g(x0)=0 и
lim f’(x)/g’(x)=k (конечный или бесконечный предел), тогда lim f(x)/g(x)=lim f’(x)/g’(x)=k
xx xx xx
Доказательство: lim f(x)/g(x)=lim [f(x)-f(x0)]/g(x)-g(x0)=lim f’(c(x))/g’(c(x))= c=c(x) лежащая между х их0 если
xx xx xx
хх0 то сх0=lim f’(x)/g’(x)=k
xx
Замечание(1): f(x0)=g(x0)=0 требование можно заменить требованием lim f(x)=0, lim g(x)=0, то есть в т х0 f(x) и
xx xx
g(x) могут иметь устранимый разрыв, действительно достаточно переопределить или доопределить f(x) и g(x) по непрерывности, так чтобы f(x0)=g(x0)=0
Замечание(2): Если f’(x0) и g’(x0), g’(x0)0, то утверждение теоремы будет:
lim f(x)/g(x)=lim f’(x)/g’(x)=lim [(x-x0)(f’(x0)+(x-x0))]/ [(x-x0)(g’(x0)+ (x-x0))]=f’(x0)/g’(x0)
xx xx xx
Теорема: (/) Пусть функции f(x) и g(x) непрерывны в О(х0), g'(x)0 и О(х0), дифференцируемы в О(х0) и
lim f(x)=lim g(x)=; lim f’(x)/g’(x)=k. Тогда lim f(x)/g(x)=lim f’(x)/g’(x)=k
xx xx xx xx xx
Без доказательства!
Замечание: Если функции f’(x) и g’(x) сами удовлетворяют условия теоремы то правило Лопиталя можно применить повторно:
f(x)=ex g(x)=xn x
lim ex/xn= lim ex/1!= nN lim ex/xn= lim ex/nxn-1= lim ex/[n(n-1)xn-2]=lim ex/n!=+
x + x+ x+ x+ x+ x+
f(x)=lnx
x+
g(x)=xn
lim lnx/xn= lim (1/x)/nxn-1= lim 1/nxn=0
x+ x+ x+
Формулы Тейлора.
Определение: (многочлена Тейлора) Пусть функция y=f(x) – n – раз дифференцируема в точке х0 многочлен (полином) вида
Tn(х)=f(x0)+[f’(x0)(x-x0)]/1!+ [f’’(x0)(x-x0)2]/2!+ [fn(x0)(x-x0)]/n! называется многочлен Тейлора с центром в точке х0 или многочленом по степеням (х-х0)
Свойства многочлена Тейлора.
Теорема: (основное свойство многочлена Тейлора) Пусть функция y=f(x) – n – раз дифференцируема в точке х0 f(x)=Tn(x0); f’(x0)=Tn’(x0),…,f(n)(x0)=Tn(n)(x0)
Доказательство; (подстановкой) Tn(х)=f(x0)+[f’(x0)(x-x0)]/1!+ [f’’(x0)(x-x0)2]/2!+ [fn(x0)(x-x0)]/n! , подставим х0 получим Tn(x0)=f(x0). Продифференцируем многочлен Тейлора
Tn’(x)=f’(x0)/1!+[f’’(x0)2(x-x0)]/2!+ [f’’’(x0)3(x-x0)2]/3!+ [fn(x0)n(x-x0)n-1]/n!, подставим вместо х х0
Tn(x0)=f(x0)
Tn’’(x)=f’’(x0)/1!+[f’’’(x0)32(x-x0)]/3!+…+ [f(n)(x0)n(n-1)(x-x0)n-2]/n!
Tn’’(x)=f’’(x0)
Формула Тейлора с остаточным членом пеано.
Теорема: Пусть функция y=f(x) – n – раз дифференцируема в точке х0, тогда в О(х0) f(x)=Tn(x)+o((x-x0)n), xx0
f(x)= f(x0)+[f’(x0)(x-x0)]/1!+ [f’’(x0)(x-x0)2]/2!+ [fn(x0)(x-x0)n]/n!+0((x-x0)n)(x-x0)1
lim[f(x)-Tn(x)]/(x-x0)n=(0/0)=lim [f’(x)-Tn’(x)]/n(x-x0)n-1=(0/0)=….=lim [f(n)(x)-Tn(n)(x)]/n!=0 функция
xx xx xx
[f(x)-Tn(x)]/(x-x0)n=(х-х0)ii f(x)-Tn(x)=(x-x0)n(x-x0)=0((x-x0)n) при хх0 что и требовалось доказать.
Замечание: в случае если х0=0 формула Тейлора называется Маклорена f(x)=f(0)+[f’(0)x]/1!+ [f’’(0)x2]/2!+ [fn(0)xn]/n!+0xn при х0
1 На концах отрезка [a,b] и на концах принимает значение разных знаков
2 (x-x0)-бесконечно малое при хх0
1 x0
1 (∆x) – бесконечно малое при ∆х0, а (∆x)∆х – есть о∆х
1 Y – ордината касательной
a – x-x0 =∆x
1 ∆-погрешность вычисления.
Теорема –Если f(x) непрерывна на [a,b] дифференцируема на отрезке (а,b), то с(a,b): f(b)-f(a)=f(c)(b-a)
1 (x-x0)=∆x
1 Теорема – Если f(x) непрерывна на [a,b] дифференцируема на отрезке (а,b), то с(a,b): f(b)-f(a)=f(c)(b-a)
II – g’(c1)=0 по условия теоремы
III – (b-a)=0
4 - Теорема (Ролля): Пусть функция y=f(x) непрерывна на отрезке [a,b] и дифференцируема на (a,b). Кроме того на концах интервала она принемает равные значения f(a)=f(b), тогда с(a,b): f(c)=0
1 0((x-x0)n)(x-x0) – остаточный член в форме пеано
ii (х-х0) – бесконечно малое при хх0