Главная » Просмотр файлов » Методические указания к выполнению РГР по математичскому анализу

Методические указания к выполнению РГР по математичскому анализу (1013264)

Файл №1013264 Методические указания к выполнению РГР по математичскому анализу (Методические указания к выполнению РГР по математичскому анализу)Методические указания к выполнению РГР по математичскому анализу (1013264)2017-06-17СтудИзба
Просмтор этого файла доступен только зарегистрированным пользователям. Но у нас супер быстрая регистрация: достаточно только электронной почты!

Текст из файла

ФЕДЕРАЛЬНОЕ АГЕНТСТВО ПО ОБРАЗОВАНИЮ МОСКОВСКИЙ АВИАЦИОННЫЙ ИНСТИТУТ (государственный технический университет) ЭЛЕМЕНТЫ ТЕОРИИ ФУНКЦИЙ КОМПЛЕКСНОГО ПЕРЕМЕННОГО И ОПЕРАЦИОННОЕ ИСЧИСЛЕНИЕ Методические указания к выволнениго расчетной работы по математическому анапизу Утвер:квемо на заседании редсовета 15 мая 2000 г. Москва Издательство МАИ 2006 Автор-составитель Р.Н. Мололоиннкова Элементы теории функций комплексного переменного и операционное исчислеыие: Методические указания к выполнению расчетной работы по математическому анализу / Авт.-сост. Р.Н. Молодожникова. — М.: Изд-во МАИ, 200б.

— 80 с.: ил. Рекомендации составлены в соответствии с ныне действуюшей программой по курсу "Математический анализ"' и включают указаиия к решению вариантов расчетной работы по разделу "Элементы ТФКП и операционное исчисление". Предназначены для студентов 1 факультета групп 01-201-21б. Могут быть полезны преподавателям математики МАИ, а также студентам вечерних факультетов.

Рецензенты: А.А Грешилов, А.А. Басистов ПЕрсцИфрОВКа: . т-~ото~~огко 06.08.12 ЕЗ Московский авиационный институт (государственный технический университет), 2006 ПРЕДИСЛОВИЕ Методические рекомендации входят в серию работ по созданию методического обеспечения цикла лекций, практических занятий и видов контроля по математике для студентов младших курсов МАИ. Одной из форм активизации учебного процесса по математике служит система расчетных работ (РР). Применение системы РР рекомендовано действующей программой по высшей математике для всех инженерно-технических специальностей факультета № 1.

Основой системы РР является индивидуализация заданий. Задачи — расчетные задания, входящие в предложенные варианты, различны. Каждый студент учебной группы получает индивидуальное задание. Расчетные задания выполняются частями по мере продвижения в изучении курса. Решение каждой задачи приводится на отдельных листах, неверно решенные примеры возвращаются на доработку с указанием характера ошибки. Защита РР осуществляется в форме собеседования, срок защиты устанавливается учебным графиком. Повторная защита проводится вне сетки расписания в письменной форме или путем собеседования (в каждом случае по усмотрению преподавателя).

Промежуток времени до повторной защиты не должен превышать одной недели. РР обеспечивает семестровый курс. Если соответствующий раздел излагается в меньшем объеме, РР подлежит сокращению. Настоящие методические рекомендации обеспечивают учебным пособием самостоятельное выполнение заданий РР студентами второго курса первого факультета под контролем преподавателя. Это первая попытка в создании методического обеспечения специальных разделов курса высшей математики в соответствии с новыми учебными планами. Пособие содержит варианты РР по теории функций комплексного переменного (ТФКП) и операционному исчислению. Задачи представлены 20 вариантами (см.

приложение), отражают не все разделы курса в равной мере. Поэтому важно, чтобы РР и текущие домашние задания дополняли друг друга. Пособие содержит также теоретические вопросы, упражнения и справочный материал в соответствии с содержанием РР. Теоретические вопросы прорабатываются по лекционному материалу и обсуждаются на аудиторных занятиях. РЕШЕНИЕ ТИПИЧНЫХ ЗАДАЧ ВАРИАНТОВ РР 1. Комплексные числа. Действия над комплексными числами Множеством С = (г) комплексных чисел называется множество упорядоченных пар действительных чисел, на котором определены понятия равенства, операции сложения и умножения следующим обрааом: 1) (а, Ь) =(с, с~) <=>а=с и Ь =д; 2) (а, Ь)е(с, З)=(а+с, Ь+д); 3) (а, Ь) . (с, З) = (ас — Ьс(, ас( + Ьс), где а,Ь,с,оеВ. В частности (а, 0)+ (Ь, 0) = (а еЬ, 0) и (а, 0) - (Ь, 0) = (аЬ, 0), поэтому комплексное число вида (а, 0) обычно отождествляют с действительным числом о.

Действительное число (а, 0) принадлежит множеству С и поэтому В ~ С. Нулем множества С служит пара (0,0), а роль действительной единицы играет пара (1, 0). Комплексное число (О, 1) называют мнимой единицей и обозначают ( = (О, 1). Мнимая единица удовлетворяет соотношению ( = — 1. Для любого комплексного числа (а, Ь) справедливо .3 равенство (а, Ь) = (а, 0) + (О, Ь) = (а, 0) + (Ь, 0) (О, 1), поэтому комплексное число г обычно записывают как з = а+ Ь( (алгебраическая форма записи).

Число а е Л называется действительной частью комплексного числа з = а + Ь( и обозначается а = Ве г. Число Ь е Л называется мнимой частью комплексного числа и обозначается Ь = 1т г. Если а = О, Ь а О, то числа з = Ь( называют мнимыми. 2) !г ш! = !г! )ш); 3) (г+ ш! < (г! + (ш(, причем )г + ш! = !г! + !ш! <=> !г=О '! ш = Ьг, где Ь > О. Аргументом ненулевого комплексного числа г = а+ Ь) называется определенный с точностью до слагаемого, кратного 2х, угол, обозначаемый у = ага г и удовлетворяющий соотношениям а .

Ь соз д = —; зш р = —, где г = !г!, Агя г = агя г + 2хп, и = О, 1, 2, .... Значение угла ш е (- х, х), определенное однозначно, называется главным значением аргумента и обозначается агя г. Комплексное число г = а — Ь1 называется сопряженным комплексному числу г = а + Ьй Для любого числа г е С справедливы равенства: (г) = г Нег=Нег, 1шг= — 1шг, Число ге Н<=>г=г и г=Ь)<=>г=— г е С, ш е С справедливы равенства: г. Для любых чисел Гг! = !г~, г+ ш = г+ ш, Действия над комплексными числами подчиняются тем же законам, что и действия над действительными числами: коммутативному и ассоциативному — для сложения и умножения, дистрибутивному — для умножения относительно сложения.

Комплексные числа можно изображать точками на плоскости, принимая действительную часть за абсциссу, а мнимую — за ординату. Модулем комплексного числа г = а + Ь1 называется число )г! = ~Га2+ Ь~. Если Ь = О, то г = а е В и !г~ = ~Го~ =(а', т. е. для действительного числа понятия модуля и абсолютной величины совпадают. Позтому в множестве С для модуля числа принято то же обозначение, что и для абсолютной величины числа в множестве В. На множестве С комплексных чисел модуль числа обладает всеми признаками абсолютной величины действительного числа. Для любых чисел г, ш е С справедливы соотношения: 1) )г! > О, причем )г! = О <=> г = О; — 2 г ' г = ~4, гв = г ш. Вычитание и деление комплексных чисел определяются как действия, обратные соответственно сложению и умножению.

Если г а О, 18 е С, то уравнение гх = ю имеет на шг множестве С единственное решение х = —, называемое част- Ц' ным чисел 18 и г. Если г = а+ Ь1 и ш = с+ И, то ас + Ьс( ас( — Ьс х = + 1. а +Ь а +Ь Любое ненулевое число г а С можно представить в тригонометрической форме г = г (соз 1р+ 181п 1р), где г = ф, 1р = агя г. Умножение и деление комплексных чисел, заданных в тригонометрической форме, производится по следующим формулам: (1'1 (СОЗ ф1 + 181П 1Р1)) (Г2 (Сов Ц)2 Е 181П 1~>2)) = = Г1 Г2 (СОЗ (1Р1 + 122) + 1 81П (121 + 122)) т.

е. при умножении комплексных чисел, записанных в тригонометрической форме, их модули перемножаются, а аргументы складываются; Г (сов <р1+ 181П 1р ) Г (СОЗ (121 122) + 1 81П (021 Ц)2))' Гг (СОЗ 122 ~ 181П Я)2) Гг т. е. при делении двух комплексных чисел, записанных в тригонометрической форме, модуль делимого делится на модуль делителя, а аргументы вычитаются. Возведение комплексного числа в и-ю степень (и я Ф) производится в соответствии с соотношением: (сову+ 181П 12)" = сов и1р+181П и1Р, и = О, 1, + 2, (формула Муавра).

Для любого ненулевого числа г а С и любого значения П и е Ф уравнение х = г на множестве комплексных чисел имеет ровно и различных решений, называемых корнями и-й степени из числа г. г 4 О числа являются ни числа из л ( 1р4 2кй, 1р+ 2кй1 х =чг сов + 1 81П и и г=)г~, 1р=агаг. й=0,1,...,(и — 1), где д+ 2кй, . 1р+ 2к)4 сов +18!и - =1, поэтому все п и п Заметим, что л,— значений Мг имеют один и тот же модуль: и,— Ц = Ц = Ц = ... = )8„1( = ')г (корень арифметический).

Аргу- мент го равен —, аргументы чисел г, и е (О, 1...,„п — 1) полу- Ю и' Зки Я чают по формуле агд гв = агк го + —, где агк го = — . л Формула для нахождения значений га корня '(г имеет проСтОй ГЕОМЕтРИЧЕСКИй СМЫСЛ: ЧИСЛа г, г, ..., гл 1 ИЗОбРажаЮт- ся векторами, концы которых находятся в вершинах правильл ного и-угольника, вписанного в окружность радиуса (г, 2+1 1 — 1 плоскости числа: — , 3 — 1 1+1 1. Показать на комплексной .131 .4л .4л 1 1 .4л .4л 4 3 ,1 ,1 ,1 Решение. 2+1 = х + 1у <=> 2 + 1 = (х + 1у) (3 — 1) «=> 3 — 1 2+1= Зх+у+1(Зу — х) <=> (2 = Зх + у 1 <=> х = у = —.

~1= — х+Зу 2 1 — 4 (1 — () 1 — 21+ ) 2 2 1 4 1 (1 + 1) 2 Корнями и-й степени из единицы являются числа ЗкУ Зк)4 х = сов — +! 81п —, )8 = О, 1,, (и — 1). Корнями и-й степе- и и .4л ( 2)2л ( 1)2л 1. 4л л 1 .131 ( 4)33 .3 ...4л .4л 4 3 2. Извлечь корень чЗ вЂ” 41. Понятие арифметического корня вводится только на В ~ С, поэтому находим значения алгебраического корня по определе- нию: 3 — 41 =(х+ 1у), ГдЕ г = Х+ (у = 42 — 41. 3 ( .3 3 3 ~ х = — 2, ~ х =2, ' <=>1 или 2ху = — 4 ~ у1 = + 1 у2 т.

Характеристики

Тип файла
PDF-файл
Размер
1,89 Mb
Тип материала
Высшее учебное заведение

Тип файла PDF

PDF-формат наиболее широко используется для просмотра любого типа файлов на любом устройстве. В него можно сохранить документ, таблицы, презентацию, текст, чертежи, вычисления, графики и всё остальное, что можно показать на экране любого устройства. Именно его лучше всего использовать для печати.

Например, если Вам нужно распечатать чертёж из автокада, Вы сохраните чертёж на флешку, но будет ли автокад в пункте печати? А если будет, то нужная версия с нужными библиотеками? Именно для этого и нужен формат PDF - в нём точно будет показано верно вне зависимости от того, в какой программе создали PDF-файл и есть ли нужная программа для его просмотра.

Список файлов книги

Свежие статьи
Популярно сейчас
Почему делать на заказ в разы дороже, чем купить готовую учебную работу на СтудИзбе? Наши учебные работы продаются каждый год, тогда как большинство заказов выполняются с нуля. Найдите подходящий учебный материал на СтудИзбе!
Ответы на популярные вопросы
Да! Наши авторы собирают и выкладывают те работы, которые сдаются в Вашем учебном заведении ежегодно и уже проверены преподавателями.
Да! У нас любой человек может выложить любую учебную работу и зарабатывать на её продажах! Но каждый учебный материал публикуется только после тщательной проверки администрацией.
Вернём деньги! А если быть более точными, то автору даётся немного времени на исправление, а если не исправит или выйдет время, то вернём деньги в полном объёме!
Да! На равне с готовыми студенческими работами у нас продаются услуги. Цены на услуги видны сразу, то есть Вам нужно только указать параметры и сразу можно оплачивать.
Отзывы студентов
Ставлю 10/10
Все нравится, очень удобный сайт, помогает в учебе. Кроме этого, можно заработать самому, выставляя готовые учебные материалы на продажу здесь. Рейтинги и отзывы на преподавателей очень помогают сориентироваться в начале нового семестра. Спасибо за такую функцию. Ставлю максимальную оценку.
Лучшая платформа для успешной сдачи сессии
Познакомился со СтудИзбой благодаря своему другу, очень нравится интерфейс, количество доступных файлов, цена, в общем, все прекрасно. Даже сам продаю какие-то свои работы.
Студизба ван лав ❤
Очень офигенный сайт для студентов. Много полезных учебных материалов. Пользуюсь студизбой с октября 2021 года. Серьёзных нареканий нет. Хотелось бы, что бы ввели подписочную модель и сделали материалы дешевле 300 рублей в рамках подписки бесплатными.
Отличный сайт
Лично меня всё устраивает - и покупка, и продажа; и цены, и возможность предпросмотра куска файла, и обилие бесплатных файлов (в подборках по авторам, читай, ВУЗам и факультетам). Есть определённые баги, но всё решаемо, да и администраторы реагируют в течение суток.
Маленький отзыв о большом помощнике!
Студизба спасает в те моменты, когда сроки горят, а работ накопилось достаточно. Довольно удобный сайт с простой навигацией и огромным количеством материалов.
Студ. Изба как крупнейший сборник работ для студентов
Тут дофига бывает всего полезного. Печально, что бывают предметы по которым даже одного бесплатного решения нет, но это скорее вопрос к студентам. В остальном всё здорово.
Спасательный островок
Если уже не успеваешь разобраться или застрял на каком-то задание поможет тебе быстро и недорого решить твою проблему.
Всё и так отлично
Всё очень удобно. Особенно круто, что есть система бонусов и можно выводить остатки денег. Очень много качественных бесплатных файлов.
Отзыв о системе "Студизба"
Отличная платформа для распространения работ, востребованных студентами. Хорошо налаженная и качественная работа сайта, огромная база заданий и аудитория.
Отличный помощник
Отличный сайт с кучей полезных файлов, позволяющий найти много методичек / учебников / отзывов о вузах и преподователях.
Отлично помогает студентам в любой момент для решения трудных и незамедлительных задач
Хотелось бы больше конкретной информации о преподавателях. А так в принципе хороший сайт, всегда им пользуюсь и ни разу не было желания прекратить. Хороший сайт для помощи студентам, удобный и приятный интерфейс. Из недостатков можно выделить только отсутствия небольшого количества файлов.
Спасибо за шикарный сайт
Великолепный сайт на котором студент за не большие деньги может найти помощь с дз, проектами курсовыми, лабораторными, а также узнать отзывы на преподавателей и бесплатно скачать пособия.
Популярные преподаватели
Добавляйте материалы
и зарабатывайте!
Продажи идут автоматически
6458
Авторов
на СтудИзбе
305
Средний доход
с одного платного файла
Обучение Подробнее