rpd000003374 (1009417), страница 3

Файл №1009417 rpd000003374 (211000 (11.03.03).Б6 Информационные технологии проектирования радиоэлектронных устройств) 3 страницаrpd000003374 (1009417) страница 32017-06-17СтудИзба
Просмтор этого файла доступен только зарегистрированным пользователям. Но у нас супер быстрая регистрация: достаточно только электронной почты!

Текст из файла (страница 3)

Программой дисциплины предусмотрены следующие виды контроля: промежуточная аттестация в форме зачёт (модуль 1) ,экзамен (2 модуль).

Общая трудоемкость освоения дисциплины составляет 7 зачетных единиц, 252 часов. Программой дисциплины предусмотрены лекционные (68 часов), практические (48 часов), лабораторные (0 часов) занятия и (109 часов) самостоятельной работы студента.

Преподавание дисциплины предусматривает следующие формы организации учебного процесса:

1.лекции,

2.практические занятия,

3.самостоятельная работа студента,

4.консультации.

Программой дисциплины предусмотрены следующие виды контроля:

5.промежуточный контроль в форме зачета в 1 семестре и в форме экзамена во 2 семестре.

Программой дисциплины предусмотрены следующие виды самостоятельной работы:

1.выполнение курсовой работы во 2 семестре

Приложение 2
к рабочей программе дисциплины
«
Математический анализ »

Cодержание учебных занятий

  1. Лекции

1.1.1. Множества и действия над ними.Понятие функции как отображения. Основные элементарные функции (АЗ: 2, СРС: 2)

Тип лекции: Информационная лекция

Форма организации: Лекция, мастер-класс

Описание: Действительные и комплексные числа и действия над ними. Алгебраическая, тригонометрическая и показательная форма комплексного числа. Возведение в степень и извлечение корня. Множества и действия над ними. Грани множеств. Числовые множества. Счетные и несчетные множества. Общее определение функции. График функции. Способы задания функций. Обратные функции, сложные функции. Элементарные функции.



1.1.2. Пределы функции.Основные теоремы о пределах функций. Числовые последовательности как функции целочисленного аргумента(АЗ: 4, СРС: 2)

Тип лекции: Информационная лекция

Форма организации: Лекция, мастер-класс

Описание: Пределы функции (конечные и бесконечные). Бесконечно малые и бесконечно большие функции и их свойства. Основные теоремы о пределах функций (арифметические действия над пределами, предельные переходы в неравенствах, предел сложной функции). Пределы основных элементарных функций. Односторонние пределы. Числовые последовательности как функции целочисленного аргумента.



1.1.3. Замечательные пределы. Таблица эквивалентных функций. Раскрытие неопределенностей.(АЗ: 2, СРС: 2)

Тип лекции: Информационная лекция

Форма организации: Лекция, мастер-класс

Описание: Некоторые замечательные пределы (без вывода). Число е. Сравнение функций. О- и о- символика. Эквивалентные функции и их свойства. Таблица эквивалентных функций. Раскрытие неопределенностей. Теорема о "двух милиционерах"



1.1.4. Непрерывность функции одного переменного в точке и на промежутке(АЗ: 2, СРС: 2)

Тип лекции: Информационная лекция

Форма организации: Лекция, мастер-класс

Описание: Непрерывность функции одного переменного в точке и на промежутке. Точки разрыва функции. Свойства функций, непрерывных в точке. Непрерывность элементарных функций. Свойства функций, непрерывных на отрезке (теоермы Больцано-Коши и Вейерштрассе).



1.2.1. Производная функции. Понятие дифференцируемости функции. Общие правила дифференцирования.(АЗ: 2, СРС: 2)

Тип лекции: Информационная лекция

Форма организации: Лекция, мастер-класс

Описание: Производная, односторонние производные. Необходимое условие существования конечной производной. Геометрический, механический и экономический смысл производной. Касательная и нормаль к графику функции, заданной явно. Дифференцируемость функции одной переменной. Необходимые условия дифференцируемости. Общие правила дифференцирования. Дифференцирование сложной и обратной функции. Логарифмическое дифференцирование. Таблица производных.



1.2.2. Дифференциал, его свойства, геометрический смысл. Основные теоремы дифференциального исчисления(АЗ: 2, СРС: 2)

Тип лекции: Информационная лекция

Форма организации: Лекция, мастер-класс

Описание: Дифференциал, его свойства, геометрический смысл. Приближенное вычисление значений функции с помощью дифференциала. Производные и дифференциалы высших порядков. Дифференцирование функций, заданных параметрически.

Основные теоремы дифференциального исчисления (Ферма, Ролля, Коши, Лагранжа).





1.2.3. Правила Лопиталя. Формула Тейлора(АЗ: 2, СРС: 2)

Тип лекции: Информационная лекция

Форма организации: Лекция, мастер-класс

Описание: Правила Лопиталя. Формула Тейлора. Формулы Маклорена для функций ex, sinx, cosx, 1/(1+x), ln(1+x), (1+x). Приложения формул Маклорена.



1.2.4. Применение дифференциального исчисления к исследованию функций. Построение графика функции(АЗ: 4, СРС: 2)

Тип лекции: Информационная лекция

Форма организации: Лекция, мастер-класс

Описание: Применение дифференциального исчисления к исследованию функций на убывание и возрастание, экстремумы, выпуклость вверх и вниз, поиск точек перегиба. Асимптоты графика функции. Общая схема исследования функции и построения функции. Наибольшее и наименьшее значения непрерывной функции на отрезке. Теоерма Вейерштрасса.



1.3.1. Первообразная и неопределенный интеграл, свойства(АЗ: 2, СРС: 2)

Тип лекции: Информационная лекция

Форма организации: Лекция, мастер-класс

Описание: Неопределенный интеграл, его свойства. Методы отыскания первообразных. Замена переменной и интегрирование по частям в неопределенном интеграле.



1.3.2. Интегрирование рациональных функций.(АЗ: 2, СРС: 2)

Тип лекции: Информационная лекция

Форма организации: Лекция, мастер-класс

Описание: Интегрирование элементарных дробей. Некоторые сведения из алгебры многочленов. Схема разложения правильной рациональной дроби на элементарные. Интегрирование рациональных функций.



1.3.3. Интегрирование тригонометрических и иррациональных функций(АЗ: 2, СРС: 2)

Тип лекции: Информационная лекция

Форма организации: Лекция, мастер-класс

Описание: Рационализирующие подстановки для интегралов от тригонометрических и иррациональных выражений. Примеры интегралов, не выражающихся через элементарные функции.



1.3.4. Определенный интеграл(АЗ: 4, СРС: 2)

Тип лекции: Информационная лекция

Форма организации: Лекция, мастер-класс

Описание: Определенный интеграл как предел интегральных сумм. Свойства и условия существования определенных интегралов. Теорема о среднем. Определенный интеграл с переменным верхним пределом и его свойства. Основная теорема интегрального исчисления. Формула Ньютона-Лейбница. Замена переменной и интегрирование по частям в определенном интеграле.



1.3.5. Геометрические приложения определенного интеграла. Понятие несобственного интеграла(АЗ: 4, СРС: 2)

Тип лекции: Информационная лекция

Форма организации: Лекция, мастер-класс

Описание: Площадь плоской фигуры, длина дуги плоской кривой в декартовых координатах, в случае параметрического задания кривой. Площадь поверхности вращения. Несобственные интегралы Исследование на сходимость несобственных интегралов от неотрицательных функций. Исследование на сходимость несобственных интегралов от знакоперменных функций. Абсолютная и условная сходимость.



2.1.1. Определение функции нескольких переменных (ф.н.п) .Предел и непрерывность ф.н.п.Дифференцируемость ф.н.п.(АЗ: 4, СРС: 1)

Тип лекции: Информационная лекция

Форма организации: Лекция, мастер-класс

Описание: Определение функции нескольких переменных (ф.н.п.). Предел и непрерывность ф.н.п. Свойства непрерывных ф.н.п. Определения ф.н.п., дифференцируемой в точке, и дифференциала. Формулировки условий дифференцируемости ф.н.п. в точке. Касательная плоскость и нормаль к поверхности, заданной явно. Геометрический смысл частных производных первого порядка и дифференциала функции двух переменных.



2.1.2. Скалярное поле. Производная скалярного поля по направлению .Градиент скалярного поля. Полная производная.(АЗ: 2, СРС: 1)

Тип лекции: Информационная лекция

Форма организации: Лекция, мастер-класс

Описание: Скалярное поле. Линии и поверхности уровня. Функция Кобба-Дугласа. Изокванты. Производная скалярного поля по направлению (определение и вычисление). Градиент скалярного поля и его свойства. Производная сложной ф.н.п. Полная производная.



2.1.3. Частные производные и дифференциалы высших порядков ф.н.п.Формула Тейлора ф.н.п.Касательная плоскость и нормаль к поверхности.(АЗ: 2, СРС: 1)

Тип лекции: Информационная лекция

Форма организации: Лекция, мастер-класс

Описание: Частные производные и дифференциалы высших порядков ф.н.п. Формулировка теоремы о смешанной производной. Формула Тейлора (без вывода) для ф.н.п. Формулировка теоремы о существовании, непрерывности и дифференцируемости неявной функции. Касательная плоскость и нормаль к поверхности, заданной неявно. Ортогональное свойство градиента.





2.1.4. Экстремум функций многих переменных. (АЗ: 2, СРС: 1)

Тип лекции: Информационная лекция

Форма организации: Лекция, мастер-класс

Описание: Локальный экстремум ф.н.п. Необходимые условия экстремума. Достаточные условия экстремума ф.н.п. с использованием второго дифференциала и критерия Сильвестра.



2.2.1. Двойной интеграл. Его геометрический смысл и свойства.(АЗ: 2, СРС: 1)

Тип лекции: Информационная лекция

Форма организации:

Описание: Двойной интеграл. Его геометрический смысл и свойства. Вычисление в декартовых координатах. Замена переменных в двойных интегралах. Двойной интеграл в полярных координатах. Интеграл Пуассона. Приложения двойного интеграла.



2.2.2. Тройной интеграл. Приложения тройного интеграла.(АЗ: 2, СРС: 1)

Тип лекции: Информационная лекция

Форма организации: Лекция, мастер-класс

Описание: Понятие тройного интеграла. Его геометрический смысл и свойства. Переход к повторному в декартовой системе координат. Замена переменных в тройном интеграле. Вычисление тройного интеграла в цилиндрической и сферической системах координат. Приложения тройного интеграл: вычисление объема тела, массы тела, статических моментов и моментов инерции.



2.2.3. Криволинейный и поверхностный интеграл 1 рода(АЗ: 2, СРС: 1)

Тип лекции: Информационная лекция

Форма организации: Лекция, мастер-класс

Описание: Понятие криволинейного интеграла 1 рода. Свойства. Соотношения для вычисления криволинейного интеграла 1 рода. Приложения криволинейного интеграла 1 рода: вычисление длины дуги, массы дуги, статических моментов и моментов инерции.



2.2.4. Теория поля(АЗ: 2, СРС: 1)

Тип лекции: Информационная лекция

Форма организации: Лекция, мастер-класс



2.2.5. Криволиненый и поверхностный интегралы 2 рода(АЗ: 4, СРС: 1)

Тип лекции: Информационная лекция

Форма организации: Лекция, мастер-класс



2.3.1. Основные определения, свойства числовых рядов. Знакопеременные ряды.(АЗ: 4, СРС: 1)

Тип лекции: Информационная лекция

Форма организации: Лекция, мастер-класс

Описание: Основные определения, свойства числовых рядов. Формулировка критерия Коши, Необходимые признаки сходимости. Ряды с неотрицательными членами. Необходимое и достаточное условие сходимости. Признаки сравнения. Предельные признаки Даламбера и Коши, Знакопеременные ряды Абсолютная и условная сходимости. Свойства абсолютно и условно сходящихся рядов. Признаки Даламбера и Коши для знакопеременных рядов. Признак Лейбница для знакочередующихся рядов. Оценка остатка знакочередующегося, любого знакопеременного и знакоположительного ряда.



2.3.2. Функциональные последовательности и ряды. Свойства равномерно сходящихся функциональных последовательностей и рядов.(АЗ: 2, СРС: 1)

Тип лекции: Информационная лекция

Форма организации: Лекция, мастер-класс

Описание: Функциональные последовательности и ряды с действительными членами. Область сходимости. Равномерная сходимость. Критерий Коши, признак Вейерштрасса равномерной сходимости функционального ряда. Теорема о непрерывности суммы ряда. Почленное интегрирование и дифференцирование функциональных рядов.

Характеристики

Список файлов учебной работы

Свежие статьи
Популярно сейчас
А знаете ли Вы, что из года в год задания практически не меняются? Математика, преподаваемая в учебных заведениях, никак не менялась минимум 30 лет. Найдите нужный учебный материал на СтудИзбе!
Ответы на популярные вопросы
Да! Наши авторы собирают и выкладывают те работы, которые сдаются в Вашем учебном заведении ежегодно и уже проверены преподавателями.
Да! У нас любой человек может выложить любую учебную работу и зарабатывать на её продажах! Но каждый учебный материал публикуется только после тщательной проверки администрацией.
Вернём деньги! А если быть более точными, то автору даётся немного времени на исправление, а если не исправит или выйдет время, то вернём деньги в полном объёме!
Да! На равне с готовыми студенческими работами у нас продаются услуги. Цены на услуги видны сразу, то есть Вам нужно только указать параметры и сразу можно оплачивать.
Отзывы студентов
Ставлю 10/10
Все нравится, очень удобный сайт, помогает в учебе. Кроме этого, можно заработать самому, выставляя готовые учебные материалы на продажу здесь. Рейтинги и отзывы на преподавателей очень помогают сориентироваться в начале нового семестра. Спасибо за такую функцию. Ставлю максимальную оценку.
Лучшая платформа для успешной сдачи сессии
Познакомился со СтудИзбой благодаря своему другу, очень нравится интерфейс, количество доступных файлов, цена, в общем, все прекрасно. Даже сам продаю какие-то свои работы.
Студизба ван лав ❤
Очень офигенный сайт для студентов. Много полезных учебных материалов. Пользуюсь студизбой с октября 2021 года. Серьёзных нареканий нет. Хотелось бы, что бы ввели подписочную модель и сделали материалы дешевле 300 рублей в рамках подписки бесплатными.
Отличный сайт
Лично меня всё устраивает - и покупка, и продажа; и цены, и возможность предпросмотра куска файла, и обилие бесплатных файлов (в подборках по авторам, читай, ВУЗам и факультетам). Есть определённые баги, но всё решаемо, да и администраторы реагируют в течение суток.
Маленький отзыв о большом помощнике!
Студизба спасает в те моменты, когда сроки горят, а работ накопилось достаточно. Довольно удобный сайт с простой навигацией и огромным количеством материалов.
Студ. Изба как крупнейший сборник работ для студентов
Тут дофига бывает всего полезного. Печально, что бывают предметы по которым даже одного бесплатного решения нет, но это скорее вопрос к студентам. В остальном всё здорово.
Спасательный островок
Если уже не успеваешь разобраться или застрял на каком-то задание поможет тебе быстро и недорого решить твою проблему.
Всё и так отлично
Всё очень удобно. Особенно круто, что есть система бонусов и можно выводить остатки денег. Очень много качественных бесплатных файлов.
Отзыв о системе "Студизба"
Отличная платформа для распространения работ, востребованных студентами. Хорошо налаженная и качественная работа сайта, огромная база заданий и аудитория.
Отличный помощник
Отличный сайт с кучей полезных файлов, позволяющий найти много методичек / учебников / отзывов о вузах и преподователях.
Отлично помогает студентам в любой момент для решения трудных и незамедлительных задач
Хотелось бы больше конкретной информации о преподавателях. А так в принципе хороший сайт, всегда им пользуюсь и ни разу не было желания прекратить. Хороший сайт для помощи студентам, удобный и приятный интерфейс. Из недостатков можно выделить только отсутствия небольшого количества файлов.
Спасибо за шикарный сайт
Великолепный сайт на котором студент за не большие деньги может найти помощь с дз, проектами курсовыми, лабораторными, а также узнать отзывы на преподавателей и бесплатно скачать пособия.
Популярные преподаватели
Добавляйте материалы
и зарабатывайте!
Продажи идут автоматически
6390
Авторов
на СтудИзбе
307
Средний доход
с одного платного файла
Обучение Подробнее