rpd000000388 (1007390), страница 7
Текст из файла (страница 7)
9.4. На координатной плоскости изобразить параболы
Для каждой параболы найти ее параметр, координаты вершины и фокуса, составить уравнение директрисы.
9.5. Привести уравнение линии второго порядка к каноническому виду (определить название линии, составить каноническое уравнение, найти каноническую систему координат и построить линию в исходной системе координат):
9.6. Определить названия линий второго порядка, получающихся в сечениях поверхности плоскостями: а)
; б)
; в)
.
Ответ: а) гипербола; б) пара пересекающихся прямых; в) гипербола.
9.7. Привести уравнение поверхности второго порядка к каноническому виду (определить название поверхности, составить каноническое уравнение, найти каноническую систему координат, указать формулы преобразования координат и построить поверхность в исходной системе координат):
Ответ: а) однополостный гиперболоид (вращения) ;
,
,
; б) конус (круговой)
;
,
; в) параболический цилиндр
;
,
,
; г) эллипсоид
;
,
,
; д) конус
;
,
,
; е) двуполостный гиперболоид
;
,
,
; ж) гиперболический параболоид
;
,
,
. Формулы преобразования координат определяются неоднозначно.
9.8. Привести уравнение поверхности второго порядка к каноническому виду (определить название поверхности, составить каноническое уравнение, найти каноническую систему координат и построить поверхность в исходной системе координат):
Версия: AAAAAARxoWE Код: 000000388