Ответ на вопрос по теории вероятностей и математической статистике №248010: Требуется найти вероятность того, что наугад выбранный человек — дальтоник, если выбор производится из группы, содержащей равное число мужчин и женщин, причем известно, что 5% мужчин и 0.25% женщин — дальтоники. Что следует предпринять, чтобы решить данную задачу? Рассмотрим два события М = {выбран мужчина}, W = {выбрана женщина}. Так как в группе одинаковое число мужчин и женщин, то P {M} = P {W}Требуется найти - Ответ на вопрос по теории вероятностей и математической статистике №248010Требуется найти - Ответ на вопрос по теории вероятностей и математической статистике №248010
2025-01-212025-01-21СтудИзба
Требуется найти - Ответ на вопрос по теории вероятностей и математической статистике №248010
Вопрос
Требуется найти вероятность того, что наугад выбранный человек — дальтоник, если выбор производится из группы, содержащей равное число мужчин и женщин, причем известно, что 5% мужчин и 0.25% женщин — дальтоники. Что следует предпринять, чтобы решить данную задачу?- Рассмотрим два события М = {выбран мужчина}, W = {выбрана женщина}. Так как в группе одинаковое число мужчин и женщин, то P {M} = P {W} = 1/2. Поэтому события M, W образуют полную группу. Среди мужчин 5% — дальтоники, то есть для события D = {выбранный человек дальтоник}, условная вероятность P {D | M} = 0.05. Аналогично Р {D | W} = 0.0025. Отсюда полная вероятность P {D} = 0.05 · 1 2 + 0.0025 · 1 2 = 0.02625.
- Рассмотрим два события М = {выбран мужчина}, W = {выбрана женщина}. Так как в группе одинаковое число мужчин и женщин, то P {M} =1/3 P {W} = 1/2. Поэтому события M, W образуют полную группу. Среди мужчин 5% — дальтоники, то есть для события D = {выбранный человек дальтоник}, условная вероятность P {D | M} = 0.05. Аналогично Р {D | W} = 0.0025. Отсюда полная вероятность P {D} = 0.05 · 1/3 + 0.0025 · 1/2 = 0.01825.
- Рассмотрим два события М = {выбран мужчина}, W = {выбрана женщина}. Так как в группе одинаковое число мужчин и женщин, то P {M} =1 P {W} = 1. Поэтому события M, W образуют полную группу. Среди мужчин 5% — дальтоники, то есть для события D = {выбранный человек дальтоник}, условная вероятность P {D | M} = 0.05. Аналогично Р {D | W} = 0.0025. Отсюда полная вероятность P {D} = 0.05 · 1 + 0.0025 · 1 = 0.0525.
Ответ
Этот вопрос в коллекциях
-18%

Каждая купленная работа – это шаг к вашей успешной сдаче и мой стимул делать ещё лучше. Вместе мы создаём круговорот добра в учебе 🥰