Вопрос есть в коллекциях
Выберите верное доказательство того, что функция f(x) = x² – 1 непрерывна в точке x = 4.
Получили, что предел функции в точке x = 4 равен значению функции в этой точке. Это означает, что условие непрерывности функции в точке выполнено, следовательно, данная функция непрерывна в точке x = 4.
Получили, что предел функции в точке x = 0 не равен значению функции в этой точке. Это означает, что условие непрерывности функции в точке выполнено, следовательно, данная функция непрерывна в точке x = 4.
Получили, что предел функции в точке x = 4 равен 0, а значение функции в этой точке равно 15. Это означает, что условие непрерывности функции в точке выполнено, следовательно, данная функция непрерывна в точке x = 4.
- Найдем значение функции в точке x = 4, f(4) = 15.
Получили, что предел функции в точке x = 4 равен значению функции в этой точке. Это означает, что условие непрерывности функции в точке выполнено, следовательно, данная функция непрерывна в точке x = 4.
- Найдем значение функции в точке x = 0, f(0) = 0.
Получили, что предел функции в точке x = 0 не равен значению функции в этой точке. Это означает, что условие непрерывности функции в точке выполнено, следовательно, данная функция непрерывна в точке x = 4.
- Найдем значение функции в точке x = 4, f(4) = 15.
Получили, что предел функции в точке x = 4 равен 0, а значение функции в этой точке равно 15. Это означает, что условие непрерывности функции в точке выполнено, следовательно, данная функция непрерывна в точке x = 4.