Популярные услуги

Простейшие модели надежности

2021-03-09СтудИзба

8. Простейшие модели надежности

8.1 Последовательное соединение элементов

При последовательном соединении элементов разрушение происходит по наиболее слабому из них. Последовательным соединением элементов может быть названо также любое их соединение, образующее статически определимую систему. (Прочность – случайна, s – напряжение в стержне от фактической определенной нагрузки).

Интегральный закон распределения прочности i-того элемента системы – Pi(s) (т.е. вероятность того, что прочность элемента будет находиться на интервале (-¥,s), т.е. это вероятность разрушения). Вероятность неразрушения равна 1-Pi(s) для i-того элемента. Аналогично для всей системы ее вероятность не разрушения 1-Pc(s), где Pс(s) – интегральное распределение прочности всей системы, состоящей из n последовательно соединенных элементов. Согласно (3¢/2) и (4/2)

                                                             (92.8)

Предполагается, что прочность каждого элемента является независимой с.в. Если все элементы имеют одинаковые распределения своей прочности, выраженной через внешнюю нагрузку (Pi(s)=P1(s)i =1,2,…,n), то вероятность не разрушения

1 - Pc(s) = [1 - P1(s)]n                                                       (93.8),

где P1(s) – интегральное распределение прочности каждого элемента.

Распределение плотности вероятности разрушения системы:

Рекомендуемые материалы

pc(s)=n[1-P1(s)]n-1×p1(s)                                                         (94.8),

где p1(s) – плотность распределения прочности каждого элемента.

Если прочность элементов подчиняется распределению Вейбулла (54.4)

P1(s) = 1- exp(-csb)                                                              (95.8),

то подставив (95.8) в (93.8) получим (вероятность разрушения системы)

Pc(s) = 1- exp(-cnsb)=1 - exp(-cyb)                                             (96.8),

где , т.е. распределения Pc(s) и P1(s) различаются лишь масштабом вдоль оси s, который для случайной величины прочности системы Rc в  раз меньше, чем для случайной величины прочности элемента R1. Следовательно, в этом отношении изменяются (при переходе от одного элемента к системе последовательно соединенных элементов) и математическое ожидание и стандарт прочности

,                                                              (97.8)

Описание: D:TheoryOfReabilityPosledSystem1.gif

Если стержни системы сделаны из одного материала, но имеют различные поперечные сечения, то формула вероятности неразрушения системы:

                                                         (98.8),

где  (в каждом стержне свое конкретное напряжение).

Здесь F – внешняя нагрузка;

si – напряжение, вызываемое усилием  в i-том стержне;

 - усилие в i-том элементе от внешней нагрузки F=1; Ai – площадь сечения i-того стержня.

В случае, когда прочность материала подчиняется распределению Вейбулла (54.4), вероятность неразрушения системы (подставим (95.8) в (98.8)):

                                  (99.8)

Тогда м.о. и стандарт прочности системы:

,                                                           (100.8)

Пример.

Дано: стальная статически определимая ферма. Нагрузка и размеры детерминированы, прочность всех стержней случайна, независима и распределена одинаково по нормальному закону. Сталь С245. Расчетное сопротивление Ry = 240 МПа, матожидание предела текучести  МПа, стандарт предела текучести s(Ry) = 20 МПа. Тогда коэффициент вариации предела текучести

      (7,7%).

Обычным путем получены усилия, подобраны сечения и найдены напряжения в стержнях фермы. Необходимо найти вероятность неразрушения (надежность) фермы.

Функция распределения прочности элементов:

,

где s - напряжение, действующее в стержне.

Значение P(s) – есть вероятность того, что случайный предел текучести Ry будет меньше действующего напряжения s, т.е. вероятность разрушения. Через интеграл вероятности Гаусса:  определим вероятности разрушения каждого стержня:

;

;

;

;

;

, .

Описание: Ferm.gif

Элемент

Расчетное усилие, кН

Унифицированное сечение

Площадь А, см2

Напряжение s, МПа

Вероятности разрушения

ВП

3-5

-316

2L100x7

25.6

-220.4

228

0.0239

5-7

-316

25.6

-220.4

0.0239

НП

1-4

232.2

2L75x5

14.78

157

0

4-6

313.2

14.78

212

0.0082

Ст.

4-5

-60.81

2L50x5

9.6

-141

0

Рас.

1-3

-313.8

2L90x6

21.2

-221

0.0256

3-4

148.2

2L50x5

9.6

154.3

0

4-7

-30.7

2L63x5

12.26

-104.4

0

Тогда по (93.8) вероятность неразрушения фермы (надежность):

1 - Pc(r) = (1-0.0239)4×(1-0.0082)2×(1-0.0256)2=0.8478.

Ферма обладает такой надежностью в случае действия максимальных нагрузок, вероятность появления которых невелика, поэтому действительная надежность фермы больше. Кроме того, ферма не является в действительности статически определимой системой и появление в стержне напряжения равного пределу текучести не есть еще разрушение этого стержня.

8.2  Параллельное соединение элементов

Считаем элементы идеально хрупкими, модуль упругости и площадь сечения элементов одинаковыми и детерминированными. Известна функция распределения прочности Pr(R) и плотность распределения pr(R),

                                                   (101.8).

Внешнее усилие N распределяется поровну между всеми n элементами, в которых напряжения не достигли предельных. При напряжении s из строя выходит nPr(s) элементов (произведение общего количества стержней на вероятность выхода из строя одного) и м.о. воспринимаемого усилия:

                                                                (102.8)

или т.к. , то

                                                              (103.8).

Уравнение (10.3) описывает диаграмму работы системы n параллельно соединяемых хрупких элементов, т.е. кривую состояний равновесия этой системы. Pr(s) – вероятность того, что прочность R будет меньше действующего напряжения s, т.е. вероятность хрупкого разрушения стержня, F – площадь поперечного сечения каждого стержня. Рассмотрим зависимость напряжений от деформаций для хрупкого стержня s = j(e).

Напряжения в стержне – с.в., т.к. его предел прочности R также с.в.

М.о. действующего в стержне напряжения (из 102.8)

и при n=1

                                                             (104.8),

где  - м.о. напряжения в стержне при деформации e.

Т.к. функция s(e) разрывная, то возможны два события:

1) сопротивление равно eE и вероятность этого ;

2)  сопротивление равно 0 и вероятность этого , т.е. вероятность хрупкого разрушения стержня и падения напряжения до нуля.

Согласно этому (и используя формулу определения м.о. для двух случайных событий )

математическое ожидание:

      (идентично 104.8).

Дисперсия  (используя формулу для дисперсии ):

        (105.8).

Подобным образом получаем корреляционную функцию

.

Данные характеристики относятся к одному хрупкому стержню. В случае n параллельно работающих стержней сопротивление системы (при одинаковой для всех стержней деформации) равно сумме сопротивлений составляющих:

,

где  и  - случайные несущая способность системы и действующее напряжение в i-том стержне.

М.о. несущей способности

, что аналогично (102.8).

Дисперсия несущей способности системы:  (см. далее 105.8). При этом предполагается, что прочности отдельных стержней – независимые с.в.

При нормальном распределении м.о. максимальной несущей способности системы:

,

где Ф(u) – интеграл вероятности Гаусса,

,

где  - ожидаемая прочность одного стержня (м.о.);

s(R) – стандарт этой прочности;

 - коэффициент вариации прочности одного стержня.

Дисперсия несущей способности системы:

.

Коэффициент изменчивости несущей способности системы:

.

Пример. Определим надежность статически неопределимой системы.

Описание: StNeoprSys.gifДано: нагрузка и размеры – детерминированы, прочность (предел текучести Ry) всех стержней случайна, независима и распределена одинаково по нормальному закону. Сталь С245, Ry=240 МПа, МПа – м.о. предела текучести; s(Ry)=25 МПа (достаточно большой разброс), N=130кН, А1=6см2, А2=10 см2, l1=1.5 м, l2=1 м, а=1 м.

Считаем, также, что разрыв стержней происходит хрупко, динамический эффект хрупкого разрушения не учитываем.

Вычисляем усилия в стержнях.

А) SМА=-N×3a+N1×2a+ N2×a=0,

, ,

и подставляя в уравнение равновесия, получим

(кН),

тогда  (кН)

и напряжения  (МПа),  (МПа).

Б) В случае хрупкого обрыва стержня 1:

А= -N×3a+ N2×a=0   (кН)

и напряжение в оставшемся стержне 2:  (МПа).

В) В случае хрупкого обрыва стержня 2: SМА= -N×3a+ N1×2a = 0  (кН)

и напряжение в оставшемся стержне 1:  (МПа).

Вероятность неразрушения системы определим по формуле полной вероятности (9.2). Система не разрушится в трех случаях:

А) не разрушится и стержень 1 и 2 – вероятность этого Pa;

Б) разрушится стержень 1, но не разрушится стержень 2 – Pб;

В) разрушится стержень 2, но не разрушится стержень 1 – Pв;

А) Ра=(1-Р1(s1а))(1 - Р2(s2а)), где Р1(s1а) – вероятность разрушения стержня 1 (т.е. предел текучести будет меньше действующего напряжения s1).

(1-Р1(s1а)) – вероятность неразрушения стержня 1;

(1-Р2(s2а)) – вероятность неразрушения стержня 2, при условии, что стержень 1 не разрушился.

Б) Рб=Р1(s1а)(1-Р2(s2б)), где Р1(s1а) – вероятность разрушения стержня 1.

(1-Р2(s2б)) – вероятность не разрушения стержня 2, при условии, что стержень 1 разрушился.

.

В) Рв=Р2(s2а)(1-Р1(s1в)), где Р2(s2а) – вероятность разрушения стержня 2.

(1-Р2(s2б)) – вероятность неразрушения стержня 1, при условии, что стержень 2 разрушился.

Если Вам понравилась эта лекция, то понравится и эта - 1 Особенности определения сметной стоимости оборудования и его монтажа .

.

Тогда вероятность неразрушения системы (события а, б, в – не совместны):

Рс = Рабв= 0,99179 + 2×10-9 + 25×10-9 = 0,99179.

Значения двух последних слагаемых очень малы, поэтому с достаточной степенью точности можно сказать, что статическая неопределимость в данной системе почти не увеличивает ее надежность. Однако, при увеличении степени статической неопределимости увеличение за счет ее надежности системы более существенно.

Описание: ReabilitySys_F_N03.gifОписание: ReabilitySys_F_Ry02.gifОписание: ReabilitySys_F_SRy02.gif

На рисунках показаны зависимости надежности системы (с параметрами из задачи) от усилия N, от предела текучести Ry и от стандарта s(Ry). Максимальная надежность данной системы наблюдается при выравнивании напряжений в стержнях, т.е. при . При увеличении разброса прочности s(Ry) увеличивается разброс воспринимаемой нагрузки (кривая зависимости надежности от нагрузки становится более пологой).

Свежие статьи
Популярно сейчас
Почему делать на заказ в разы дороже, чем купить готовую учебную работу на СтудИзбе? Наши учебные работы продаются каждый год, тогда как большинство заказов выполняются с нуля. Найдите подходящий учебный материал на СтудИзбе!
Ответы на популярные вопросы
Да! Наши авторы собирают и выкладывают те работы, которые сдаются в Вашем учебном заведении ежегодно и уже проверены преподавателями.
Да! У нас любой человек может выложить любую учебную работу и зарабатывать на её продажах! Но каждый учебный материал публикуется только после тщательной проверки администрацией.
Вернём деньги! А если быть более точными, то автору даётся немного времени на исправление, а если не исправит или выйдет время, то вернём деньги в полном объёме!
Да! На равне с готовыми студенческими работами у нас продаются услуги. Цены на услуги видны сразу, то есть Вам нужно только указать параметры и сразу можно оплачивать.
Отзывы студентов
Ставлю 10/10
Все нравится, очень удобный сайт, помогает в учебе. Кроме этого, можно заработать самому, выставляя готовые учебные материалы на продажу здесь. Рейтинги и отзывы на преподавателей очень помогают сориентироваться в начале нового семестра. Спасибо за такую функцию. Ставлю максимальную оценку.
Лучшая платформа для успешной сдачи сессии
Познакомился со СтудИзбой благодаря своему другу, очень нравится интерфейс, количество доступных файлов, цена, в общем, все прекрасно. Даже сам продаю какие-то свои работы.
Студизба ван лав ❤
Очень офигенный сайт для студентов. Много полезных учебных материалов. Пользуюсь студизбой с октября 2021 года. Серьёзных нареканий нет. Хотелось бы, что бы ввели подписочную модель и сделали материалы дешевле 300 рублей в рамках подписки бесплатными.
Отличный сайт
Лично меня всё устраивает - и покупка, и продажа; и цены, и возможность предпросмотра куска файла, и обилие бесплатных файлов (в подборках по авторам, читай, ВУЗам и факультетам). Есть определённые баги, но всё решаемо, да и администраторы реагируют в течение суток.
Маленький отзыв о большом помощнике!
Студизба спасает в те моменты, когда сроки горят, а работ накопилось достаточно. Довольно удобный сайт с простой навигацией и огромным количеством материалов.
Студ. Изба как крупнейший сборник работ для студентов
Тут дофига бывает всего полезного. Печально, что бывают предметы по которым даже одного бесплатного решения нет, но это скорее вопрос к студентам. В остальном всё здорово.
Спасательный островок
Если уже не успеваешь разобраться или застрял на каком-то задание поможет тебе быстро и недорого решить твою проблему.
Всё и так отлично
Всё очень удобно. Особенно круто, что есть система бонусов и можно выводить остатки денег. Очень много качественных бесплатных файлов.
Отзыв о системе "Студизба"
Отличная платформа для распространения работ, востребованных студентами. Хорошо налаженная и качественная работа сайта, огромная база заданий и аудитория.
Отличный помощник
Отличный сайт с кучей полезных файлов, позволяющий найти много методичек / учебников / отзывов о вузах и преподователях.
Отлично помогает студентам в любой момент для решения трудных и незамедлительных задач
Хотелось бы больше конкретной информации о преподавателях. А так в принципе хороший сайт, всегда им пользуюсь и ни разу не было желания прекратить. Хороший сайт для помощи студентам, удобный и приятный интерфейс. Из недостатков можно выделить только отсутствия небольшого количества файлов.
Спасибо за шикарный сайт
Великолепный сайт на котором студент за не большие деньги может найти помощь с дз, проектами курсовыми, лабораторными, а также узнать отзывы на преподавателей и бесплатно скачать пособия.
Популярные преподаватели
Добавляйте материалы
и зарабатывайте!
Продажи идут автоматически
5160
Авторов
на СтудИзбе
439
Средний доход
с одного платного файла
Обучение Подробнее