Популярные услуги

Главная » Лекции » Строительство » Лекции по металлоконструкциям » Методика расчета металлических конструкций по предельным состояниям

Методика расчета металлических конструкций по предельным состояниям

2021-03-09СтудИзба

1.3. Методика расчета металлических конструкций по предельным состояниям

1.3.1. Общая характеристика предельных состояний

Строительные конструкции рассчитывают на силовые и другие воздействия, определяющие их напряженное состояние и деформации, по методу предельных состояний. Основные положения его должны быть направлены на обеспечение безотказной работы конструкций с учетом изменчивости свойств материалов, нагрузок и воздействий, геометрических характеристик конструкций, условий их работы, а также степени ответственности (народнохозяйственной значимости) проектируемых объектов, определяемой материальным и социальным ущербом при нарушении их работоспособности.

Предельными являются такие состояния, при которых конструкция перестает удовлетворять заданным эксплуатационным требованиям или требованиям при производстве работ (возведении).

Под нормальной эксплуатацией понимается эксплуатация, осуществляемая (без ограничений) в соответствии с предусмотренными в нормах или заданиях на проектирование технологическими или бытовыми условиями.

Нормами проектирования в соответствии с характером предъявляемых к конструкции требований установлены две группы предельных состояний.

Первая группа включает в себя состояния, которые ведут к полной непригодности к эксплуатации конструкций (зданий и сооружений в целом) или к полной (частичной) потере несущей способности зданий и сооружений в целом вследствие разрушения любого характера (вязкого, хрупкого, усталостного), потери устойчивости формы, потери устойчивости положения, перехода конструкции или здания (сооружения) в геометрически изменяемую систему (механизм), качественного изменения конфигурации в результате чрезмерного развития пластических деформаций, сдвигов в соединениях и др. Неразрушимость конструкций должна быть обеспечена на всем протяжении их работы, поэтому расчет конструкций по несущей способности производится на максимальное воздействие расчетных нагрузок.

Вторая группа включает предельные состояния, затрудняющие нормальную эксплуатацию конструкций или снижающие долговечность зданий (сооружений) по сравнению с предусматриваемым сроком службы вследствие появления недопустимых перемещений (прогибов, осадок опор, углов поворота), колебаний, трещин и т.п. (при эксплуатации металлических конструкций трещины недопустимы). При расчете конструкций или их элементов по второй группе предельных состояний перемещения и деформации определяют от максимальных нагрузок нормальной эксплуатации.

Расчет конструкций по предельным состояниям направлен на предотвращение достижения любого из предельных состояний при возведении здания или сооружения в течение всего срока его службы.

Рекомендуемые материалы

Расчет по первому предельному состоянию выражается неравенством

N £ S,

где   S – наибольшее возможное расчетное усилие в элементе конструкции или конструкции в целом от суммы всех расчетных нагрузок и других воздействий;

Ф – минимальная несущая способность (предельное усилие, которое может воспринять рассчитываемый элемент конструкций), являющаяся функцией геометрических размеров элемента, прочностных характеристик материала и условий работы.

Граничное условие второй группы предельных состояний

f £ fu,

где    f – перемещение конструкции или ее элемента от максимальных нагрузок нормальной эксплуатации;

fu – предельное перемещение, допустимое по условиям нормальной эксплуатации (зависит от назначения конструкции и устанавливается строительными нормами и правилами).

1.3.2. Нагрузки и воздействия

Несущие конструкции зданий и сооружений воспринимают различные виды нагрузок, обеспечивая передачу силовых потоков от мест приложения нагрузок к фундаментам, при этом конструкция должна соответствовать эксплуатационным требованиям.

Классификация нагрузок и воздействий с точки зрения их влияния на работу конструкций представлена на рис. 1.4.

Нагрузки,По природе происхождения,По продолжительности действия,По характеру изменения
во времени
,По интенсивности,от собственного веса,полезные и сопутствующие,атмосферные и другие,постоянные,временные,статические,динамические,нормативные,расчетные,длительные,кратковременные,особые


Рис. 1.4. Классификация нагрузок

По природе происхождения существуют следующие нагрузки: от собственного веса конструкций и грунтов; полезные и сопутствующие (от оборудования, людей, животных, складируемых материалов и изделий, мостовых и подвесных кранов, отложений производственной пыли, и т.п.); атмосферные (от напора ветра, веса снега и гололеда); монтажные; аварийные; а также температурные (технологические и климатические), сейсмические и взрывные воздействия;.

Основными характеристиками нагрузок являются их нормативные значения, т.е. максимальные значения, отвечающие нормальной эксплуатации: gn – равномерно распределенные по площади; qn – погонные; Fn – сосредоточенные).

Нормативные значения нагрузок, обычно принимаемых равномерно распределенными по площади, определяют по СНиП «Нагрузки и воздействия» [7], техническому заданию на проектирование, справочным данным:

– для нагрузок от собственного веса – по проектным значениям геометрических и конструктивных параметров и по средним значениям плотности с учетом имеющихся данных предприятий-изготовителей об ожидаемой массе конструкции (например, нагрузки от веса покрытия находят по толщине слоев – рулонного ковра, стяжки утеплителя, пароизоляции, несущей плиты и др.) и средней плотности материалов;

– для атмосферных нагрузок (например, ветровой, снеговой, гололедной, волновой, ледовой) и воздействий (например, температурных, влажностных) –  по наибольшим годовым значениям, соответствующим определенному среднему периоду их превышения; нормативные значения атмосферных нагрузок, которые могут вызывать в конструкциях динамические усилия или деформации должны определяться с учетом динамических явлений и динамических характеристик конструкций. Значения таких нагрузок зависят от географического района. В нормах [7] территория России разделена на шесть снеговых, восемь ветровых и пять гололедных районов, для каждого из которых установлены соответствующие значения нагрузок;

– для технологических статических нагрузок (например, от оборудования, приборов, материалов, обстановки, людей) – по ожидаемым наибольшим значениям для предусмотренных условий изготовления, эксплуатации или производства работ с учетом паспортных данных оборудования;

– для технологических динамических нагрузок (от движущихся механизмов, машин, транспортных средств) – по значениям параметров, определяющим динамические воздействия, по значениям масс и геометрических размеров движущегося механизма или частей машины в соответствии с ее кинематической схемой и режимом работы. Например, для нагрузки от мостовых и подвесных кранов находят по ГОСТам на краны с учетом требований норм [7];

– для сейсмических и взрывных воздействий, а также для нагрузок, вызываемых резкими нарушениями технологического процесса, временной неисправностью или поломкой оборудования, в том числе наездом транспортных средств – в соответствии с требованиями специальных нормативных документов.  Например,  величины  сейсмических  воздействий  определяют  по СНиП II-7-81* [8] в зависимости от района возведения сооружения (по двенадцатибальной шкале Рихтера) с учетом сейсмичности площадки строительства, определенной на основании сейсмического микрорайонирования;

– нормативные воздействия предварительного напряжения конструкций устанавливают в процессе проектирования.

Нагрузки, действующие на сооружение (конструкцию) в процессе эксплуатации, обладают определенной изменчивостью и могут отличаться от установленных нормами значений, предсказать их величину можно лишь с той или иной степенью вероятности.

Возможное отклонение нагрузок в неблагоприятную (большую или меньшую) сторону от их нормативных значений вследствие изменчивости нагрузок или отступлений от условий нормальной эксплуатации учитывается коэффициентами надежности по нагрузке gf. Значения коэффициентов gf  зависят от вида нагрузок и могут быть различными для  отдельных предельных состояний и ситуаций (табл. 1.2).

Таблица 1.2

Коэффициенты надежности по нагрузке

Наименование нагрузки

Коэффициент

gf

Металлические конструкции

1,05

Бетонные (со средней плотностью свыше 1600 кг/м3), железобетонные каменные, армокаменные, деревянные конструкции

1,1

Бетонные (со средней плотностью 1600 кг/м3 и менее), изоляционные, выравнивающие и отделочные слои (плиты, металлы в рулонах, засыпки, стяжки и т.п.), выполняемые:

– в заводских условиях

– на строительной площадке

1,2

1,3

Стационарное оборудование

1,05

Для крановых воздействий

1,1

Ветровая нагрузка

1,4

Снеговая нагрузка

1,4

П р и м е ч а н и е: При расчете элементов конструкций покрытия, для которых отношение учитываемого нормативного значения равномерно распределенной нагрузки от веса покрытия (включая вес стационарного оборудования) к нормативному значению веса снегового покрова S0 менее 0,8, gf следует принимать равным 1,6.

Коэффициенты gf  характеризуют только изменчивость нагрузок, они не учитывают их динамическое воздействие (для этого вводятся специальные коэффициенты динамичности). Расчетное значение нагрузки (максимально возможное в процессе эксплуатации) получается путем умножения нормативного значения на соответствующий коэффициент надежности по нагрузке (g = gngf ; q = qngf ; F = Fngf  и т.п.).

При проверке конструкции на устойчивость положения против опрокидывания, а также в других случаях, когда уменьшение ее веса (постоянной нагрузки) может ухудшить условия работы, следует производить расчет, принимая для веса конструкции или ее части коэффициент надежности по нагрузке gf = 0,9. Временные нагрузки в этих случаях просто исключаются из сочетания нагрузок.

При определении нормативных и расчетных значений нагрузок, изменяющихся во времени, допускается учитывать предусматриваемый срок службы здания или сооружения.

По характеру изменения во времени различают статические и динамические нагрузки, а также переменные и многократно повторяющиеся нагрузки.

К статическим относятся нагрузки, интенсивность, местоположение и направление которых не зависят от времени или меняются столь медленно, что вызываемые ими силы инерции практически не влияют на работу конструкции. Для динамических нагрузок вводится коэффициент динамичности, равный 1,1 – 1,2.

По продолжительности действия различают постоянные и временные (длительные, кратковременные и особые) нагрузки.

Постоянными нагрузками называются такие, которые действуют на конструкцию в течение всего периода эксплуатации здания (сооружения). К ним следует относить вес частей зданий и сооружений, в том числе несущих и ограждающих строительных конструкций; вес и давление грунтов (насыпей, засыпок); сохраняющиеся в конструкции усилия от предварительного напряжения.

Временные нагрузки подразделяются на длительные и кратковременные. В нормах проектирования [7] приведены величины некоторых нагрузок в двух вариантах: при полном и пониженном нормативных значениях. В зависимости от количественной характеристики одна и та же нагрузка, например, полезная на перекрытия жилых зданий (нагрузка от людей и мебели) может рассматриваться как кратковременная при полном нормативном значении, либо как длительная с пониженным нормативным значением (только от мебели).

Длительными нагрузками называют такие, которые воздействуют на конструкцию продолжительное время в течение многих месяцев и лет (но могут и отсутствовать).

К длительным нагрузкам следует относить: вес стационарного оборудования, вес жидкостей, газов и сыпучих тел, заполняющих оборудование, трубопроводы и емкости в процессе их эксплуатации; нагрузки на перекрытиях складских помещений, холодильников, зерно-  и книгохранилищ, архивов, библиотек и подобных зданий и помещений; вес слоя воды на водонаполненных плоских покрытиях, вес отложений производственной пыли, если ее накопление не исключено соответствующими мероприятиями, а также часть временных нагрузок с пониженным нормативным значением (см. [7]).

Кратковременными называют нагрузки, действующие на конструкцию непродолжительное время.

К кратковременным нагрузкам относятся следующие: от подвижного подъемно-транспортного оборудования (кранов, тельферов и т.п.); от оборудования, возникающие в пускоостановочном, переходном и испытательном режимах; от веса людей, мебели, деталей, ремонтных материалов и переносного оборудования; снеговые с полным нормативным значением; ветровые, гололедные, температурные климатические воздействия с полным нормативным значением.

К особым нагрузкам, являющимся разновидностью временных, следует относить: сейсмические и взрывные воздействия; а также вызываемые резкими нарушениями технологического процесса, временной неисправностью или поломкой оборудования; воздействия неравномерных деформаций основания, вызванных коренным изменением структуры грунта (при замачивании посадочных грунтов) или оседанием его в районах горных выработок и в карстовых.

Характерным для временных нагрузок в процессе эксплуатации конструкции является их полное расчетное воздействие или отсутствие и возможное изменение местоположения. Например, в неразрезной балке для получения максимального расчетного изгибающего момента в рассматриваемом пролете 2 необходимо загрузить балку временной нагрузкой q через пролет (рис. 1.5), так как загружение временной нагрузкой соседних полетов окажет разгружающее воздействие и уменьшит суммарный изгибающий момент от p и q. При этом, естественно, постоянная нагрузка распределяется по всей длине балки равномерно.

В стропильных фермах максимальные значения усилия в элементах получают от полного загружения нагрузками p и q, но при односторонней временной нагрузке (на половине пролета) знак усилий в средних элементах решетки может поменяться с «плюса» на «минус» и сечение таких стержней необходимо подбирать уже с повышенными требованиями по устойчивости.

Сочетания нагрузок. Расчет конструкций по предельным состояниям первой и второй группы следует выполнять с учетом наиболее неблагоприятных сочетаний нагрузок или соответствующих им усилий (для сечений, элементов, конструкций и их соединений, либо для всего здания и сооружения в целом).

В зависимости от учитываемого состава нагрузок следует различать:

основные сочетания нагрузок, состоящие из постоянных, длительных и кратковременных;

особые сочетания нагрузок, состоящие из постоянных, длительных, кратковременных и одной из особых нагрузок и воздействий.

Одновременное появление наибольших значений нескольких нагрузок менее вероятно, чем появление наибольших значений одной, поэтому, чем больше нагрузок в сочетании при одновременном их действии, тем меньше вероятность появления их наибольших значений в этом сочетании.

Уменьшение вероятности одновременного превышения несколькими нагрузками их расчетных значений по сравнению с вероятностью превышения одной нагрузкой ее расчетного значения учитывается коэффициентом сочетаний нагрузок y.

Постоянные нагрузки в любом сочетании принимаются с коэффициентом сочетания y = 1.

Рис. 1.5. Эпюры изгибающих моментов:

а – от постоянной нагрузки p; б – от временной q; в – суммарная от p и q

При расчете конструкций на основные сочетания, содержащие одну временную нагрузку (длительную или кратковременную) последняя учитывается без снижения, а при учете двух или более временных нагрузок расчетные значения длительных нагрузок умножаются на коэффициент сочетания y1 = 0,95, кратковременных – на y2 = 0,9.

При рассмотрении особых сочетаний расчетные значения временных нагрузок умножаются на коэффициенты сочетания, равные для длительных нагрузок y1 = 0,95, для кратковременных – y2 = 0,8, значение особой нагрузки принимается без снижения (y3 = 1).

1.3.3. Нормативные и расчетные сопротивления

материалов

Основными прочностными характеристиками металла являются временное сопротивление su и предел текучестиsy. Прочностные характеристики определяются испытанием стандартных образцов (круглого или прямоугольного сечения) на статическое растяжение с записью диаграммы зависимости между напряжением s  и относительным удлинением e (рис.1.6, а).

а)                                                                 б)

Рис. 1.6. Диаграммы растяжения образцовиз сталей:

а – малоуглеродистой; б – низколегированной

Временное сопротивление – предельная сопротивляемость материала разрушению, равная разрешающей нагрузке, отнесенной к первоначальной площади поперечного сечения образца.

Предел текучести – нормальное напряжение, практически постоянное, при котором происходит текучесть материала (деформирование при постоянном напряжении). Горизонтальный участок диаграммы, называемый площадкой текучести, у малоуглеродистых сталей находится в пределах относительных удлинений от e  = 0,2 до e = 2,5%.

Для сталей, не имеющих площадки текучести (низколегированные стали), вводится понятие условного предела текучести σ0,2, величина которого соответствует напряжению, при котором остаточная деформация достигаетe = 0,2% (рис. 1.6, б).

За предельное сопротивление сталей принимают предел текучести или условный предел текучести, так как при дальнейшем росте нагрузки развиваются чрезмерные пластические деформации и недопустимо большие перемещения конструкций. В тех случаях, когда допускается работа конструкции при развитии значительных пластических деформаций (например, трубопроводы, находящиеся в земле), за предельное сопротивление стали может быть принято временное сопротивление.

Механические свойства материалов изменчивы (имеют разброс своих значений при испытании стандартных образцов), поэтому государственными стандартами и техническими условиями установлены гарантированные пределы их изменения.

Основными характеристиками сопротивления материалов силовым воздействиям являются нормативные сопротивления по пределу текучести Ryn  и по временному сопротивлению Run.

За нормативные сопротивления стали растяжению, сжатию и изгибу Ryn и Run принимают соответственно наименьшие значения предела текучести и временного сопротивления, гарантированные ГОСТами и установленные с учетом условий контроля и статистической изменчивости свойств стали, выпускаемой промышленностью.

Обеспеченность нормативных сопротивлений для большинства строительных сталей составляет, как правило, не менее 0,95, т.е. металлургический завод должен горантировать, что не менее 95% его продукции имеет нормативное сопротивление, превышающее установленную ГОСТом величину.

Возможные отклонения прочностных и других характеристик материалов в неблагоприятную сторону от их нормативных значений учитываются коэффициентами надежности по материалу γm.

Кроме того, коэффициентом надежности по материалу учитываются факторы, которые могут привести к снижению фактических характеристик прочности и геометрических характеристик сечений по сравнению с гарантированными заводом-изготовителем:

– значение механических свойств металлов проверяется на заводах выборочными испытаниями;

– механические свойства металлов контролируют на малых образцах при кратковременном растяжении, фактически металл работает длительное время в большеразмерных конструкциях при сложном напряженном состоянии;

– в прокатных профилях могут быть минусовые допуски.

Коэффициент надежности по материалу γm устанавливается на основании анализа кривых распределений результатов испытаний стали и ее работы в конструкции. При поставке сталей по ГОСТ 27772-88 для всех сталей (кроме С590 и С590К) γm = 1,025; для сталей С590 и С590К γm = 1,05.

При расчете конструкций с использованием расчетного сопротивления Ru, установленного по временному сопротивлению, учитывают повышенную опасность такого состояния (приближение к напряжению разрыва), вводят дополнительный коэффициент надежности γu = 1,3.

Основной расчетной характеристикой стали является расчетное сопротивление, значение которого получается делением нормативного сопротивления на коэффициент надежности по материалу:

– по пределу текучести Ry = Ryn/γm;

– по временному сопротивлению Ru = Run/γm.

1.3.4. Учет условий работы

Возможные отклонения принятой расчетной модели от реальных условий работы элементов конструкций, соединений, зданий и сооружений и их оснований, а также изменение свойств материалов вследствие влияния температуры, влажности, длительности воздействия, его многократной повторяемости и других факторов, не учитываемых непосредственно в расчетах и не нашедших отражение при установлении расчетных характеристик, но способных повлиять на несущую способность или деформативность конструкций, учитываются коэффициентом условий работы γс.

К таким факторам относятся: случайные эксцентриситеты нагрузки и отклонения от прямолинейности осей сжатых стержней, наличие концентрации напряжений, динамический характер нагрузки, развитие чрезмерных пластических деформаций в отдельных локальных зонах, соотношение постоянных и временных нагрузок и др. Коэффициент условий работы дифференцирован по видам элементов и характерам воздействий. На этот коэффициент умножают расчетное сопротивление стали.

Коэффициенты условий работы, способ их введения в расчет устанавливаются на основе экспериментальных и теоретических данных о действительной работе материалов, конструкций, оснований в условии эксплуатации и производства работ.

Значение коэффициентов γс для наиболее распространенных стальных конструкций приведены в табл. 1.3.

1.3.5. Учет ответственности зданий и сооружений

Для учета ответственности зданий и сооружений, характеризуемой экономическими, социальными и экологическими последствиями их отказов, устанавливается три уровня: I – повышенный, II – нормальный, III – пониженный.

Таблица 1.3

Коэффициенты условий работы

п/п

Элементы конструкций

Коэффициенты

условий работы gс

1

Сжатые основные элементы (кроме опорных) решетки составного таврового сечения из уголков сварных ферм покрытий и перекрытий (например, стропильных и аналогичных им ферм) при гибкости l ³ 60

0,8

2

Сплошные балки при расчетах на общую устойчивость при jb < 1,0

0,95

3

Элементы стержневых конструкций покрытий и перекрытий:

а) сжатые (за исключением замкнутых трубчатых сечений) при расчетах на устойчивость;

б) растянутые в сварных конструкциях

0,95

0,95

4

Сплошные составные балки, колонны, а также стыковые накладки из стали с пределом текучести до 440 МПа, несущие статическую нагрузку и выполненные с помощью болтовых соединений (кроме соединений на высокопрочных болтах), при расчетах на прочность

1,1

5

Сечения прокатных и сварных элементов, а также накладок из стали с пределом текучести до     440 МПа в местах стыков, выполненных на болтах (кроме стыков на высокопрочных болтах), несущих статическую нагрузку, при расчетах на прочность:

а) сплошных балок и колонн;

б) стрежневых конструкций покрытий и перекрытий

1,1

1,05

6

Сжатые элементы из одиночных уголков, прикрепляемые одной полкой (для неравнополочных уголков только меньшей полкой)

0,75

П р и м е ч а н и я: 1. Коэффициенты условий работы gс < 1 при расчете одновременно учитывать не следует.

2. Коэффициенты условий работы, приведенные в поз.1; 2; 3, а; 4, 5, а также в    поз. 3, б (кроме стыковых сварных соединений), при расчете соединений рассматриваемых элементов учитывать не следует.

3. В случаях, не оговоренных в настоящих нормах, в формулах следует принимать

gс = 1.

Повышенный уровень ответственности следует принимать для зданий и сооружений, отказы которых могут привести к тяжелым экономическим, социальным и экологическим последствиям (резервуары для нефти и нефтепродуктов вместимостью 10000 м3 и более, магистральные трубопроводы,

производственные здания с пролетами 100 м и более, сооружения связи высотой 100 м и более, а также уникальные здания и сооружения).

Нормальный уровень ответственности следует принимать для зданий и сооружений массового строительства (жилые, общественные, производственные, сельскохозяйственные здания и сооружения).

Пониженный уровень ответственности следует принимать для сооружений сезонного или вспомогательного назначения (парники, теплицы, летние павильоны, небольшие склады и подобные сооружения).

При расчете несущих конструкций и оснований следует учитывать коэффициент надежности по ответственности γn, принимаемый равным: для I уровня ответственности более 0,95, но не более 1,2; II уровня – 0,95; III уровня – менее 0,95, но не менее 0,8.

На коэффициент надежности по ответственности следует умножать нагрузочный эффект (внутренние силы и перемещения конструкций и оснований, вызываемые нагрузками или воздействиями).

Уровни ответственности, кроме учета при расчете несущих конструкций, следует принимать во внимание также при определении требований к долговечности зданий и сооружений, номенклатуры и объема инженерных изысканий для строительства, установления правил приемки, испытаний, эксплуатации и технической диагностики строительных объектов.

Отнесение объекта к конкретному уровню ответственности и выбор значения коэффициента γn производится генеральным проектировщиком по согласованию с заказчиком.

1.3.6. Условия предельных состояний

В развернутом виде предельные неравенства имеют вид:

– для первой группы предельных состояний

gnåNiFniγfiy £ A (Ryn/γm)γc;

– для второй группы предельных состояний

gnåfi Fniy £ fu,

где   Ni – усилие (нормальная сила, изгибающий момент, поперечная сила     и т.п.) от единичной нагрузки Fi = 1;

fi – перемещение от единичной нагрузки;

Fn i – нормативная  i-я нагрузка;

А – геометрическая характеристика сечения (площадь, момент сопротивления и т.п.);

fu – предельное перемещение, допустимое по условиям нормальной эксплуатации.

Нормальная эксплуатация конструкции обеспечивается выполнением требований по ограничению перемещений и колебаний. К таким требованиям относят:

технологические (обеспечение условий эксплуатации оборудования, контрольно-измерительных приборов и т.п.);

конструктивные (обеспечение целостности примыкающих друг к другу элементов конструкций, их стыков, обеспечение заданных уклонов);

физиологические (предотвращение вредных воздействий и ощущений дискомфорта при колебаниях);

эстетико-психологические (предотвращение впечатления опасности, обеспечение благоприятных впечатлений от внешнего вида конструкций).

Вертикальные предельные прогибы fu элементов конструкций от постоянных и временных длительных нагрузок определяются по СНиП «Нагрузки и воздействия». Для балок, прогонов и настилов покрытий и перекрытий, открытых для обзора, при пролете l предельные прогибы приведены в табл. 1.4.

Таблица 1.4

Вертикальные предельные прогибы fu

элементов конструкций

Пролет балки l, м

Предельный прогиб fu

относительный

абсолютный, мм

£ 1

3

6

24 (12)

³ 36 (24)

l/120

l/150

l/200

l/250

l/300

8,3

20

30

96 (48)

120 (96)

Вместе с этой лекцией читают "Дипломатический словарь".

П р и м е ч а н и я: 1. Для промежуточных значений l предельные прогибы следует определять линейной интерполяцией.

2. Цифры, указанные в скобках, следует принимать при высоте от пола до низа несущих конструкций £ 6м.

Вертикальные предельные прогибы fu для балок крановых путей под мостовые и подвесные краны, управляемые:

с пола – l/250;

из кабины, при группах режимов работы по ГОСТ 25546-82):

от 1К до 6К – l/400; 7К – l/500; 8К – l/600.

Свежие статьи
Популярно сейчас
А знаете ли Вы, что из года в год задания практически не меняются? Математика, преподаваемая в учебных заведениях, никак не менялась минимум 30 лет. Найдите нужный учебный материал на СтудИзбе!
Ответы на популярные вопросы
Да! Наши авторы собирают и выкладывают те работы, которые сдаются в Вашем учебном заведении ежегодно и уже проверены преподавателями.
Да! У нас любой человек может выложить любую учебную работу и зарабатывать на её продажах! Но каждый учебный материал публикуется только после тщательной проверки администрацией.
Вернём деньги! А если быть более точными, то автору даётся немного времени на исправление, а если не исправит или выйдет время, то вернём деньги в полном объёме!
Да! На равне с готовыми студенческими работами у нас продаются услуги. Цены на услуги видны сразу, то есть Вам нужно только указать параметры и сразу можно оплачивать.
Отзывы студентов
Ставлю 10/10
Все нравится, очень удобный сайт, помогает в учебе. Кроме этого, можно заработать самому, выставляя готовые учебные материалы на продажу здесь. Рейтинги и отзывы на преподавателей очень помогают сориентироваться в начале нового семестра. Спасибо за такую функцию. Ставлю максимальную оценку.
Лучшая платформа для успешной сдачи сессии
Познакомился со СтудИзбой благодаря своему другу, очень нравится интерфейс, количество доступных файлов, цена, в общем, все прекрасно. Даже сам продаю какие-то свои работы.
Студизба ван лав ❤
Очень офигенный сайт для студентов. Много полезных учебных материалов. Пользуюсь студизбой с октября 2021 года. Серьёзных нареканий нет. Хотелось бы, что бы ввели подписочную модель и сделали материалы дешевле 300 рублей в рамках подписки бесплатными.
Отличный сайт
Лично меня всё устраивает - и покупка, и продажа; и цены, и возможность предпросмотра куска файла, и обилие бесплатных файлов (в подборках по авторам, читай, ВУЗам и факультетам). Есть определённые баги, но всё решаемо, да и администраторы реагируют в течение суток.
Маленький отзыв о большом помощнике!
Студизба спасает в те моменты, когда сроки горят, а работ накопилось достаточно. Довольно удобный сайт с простой навигацией и огромным количеством материалов.
Студ. Изба как крупнейший сборник работ для студентов
Тут дофига бывает всего полезного. Печально, что бывают предметы по которым даже одного бесплатного решения нет, но это скорее вопрос к студентам. В остальном всё здорово.
Спасательный островок
Если уже не успеваешь разобраться или застрял на каком-то задание поможет тебе быстро и недорого решить твою проблему.
Всё и так отлично
Всё очень удобно. Особенно круто, что есть система бонусов и можно выводить остатки денег. Очень много качественных бесплатных файлов.
Отзыв о системе "Студизба"
Отличная платформа для распространения работ, востребованных студентами. Хорошо налаженная и качественная работа сайта, огромная база заданий и аудитория.
Отличный помощник
Отличный сайт с кучей полезных файлов, позволяющий найти много методичек / учебников / отзывов о вузах и преподователях.
Отлично помогает студентам в любой момент для решения трудных и незамедлительных задач
Хотелось бы больше конкретной информации о преподавателях. А так в принципе хороший сайт, всегда им пользуюсь и ни разу не было желания прекратить. Хороший сайт для помощи студентам, удобный и приятный интерфейс. Из недостатков можно выделить только отсутствия небольшого количества файлов.
Спасибо за шикарный сайт
Великолепный сайт на котором студент за не большие деньги может найти помощь с дз, проектами курсовыми, лабораторными, а также узнать отзывы на преподавателей и бесплатно скачать пособия.
Популярные преподаватели
Добавляйте материалы
и зарабатывайте!
Продажи идут автоматически
5168
Авторов
на СтудИзбе
438
Средний доход
с одного платного файла
Обучение Подробнее