Популярные услуги

Главная » Лекции » Сельское хозяйство и пищевая промышленность » Фитоиммунология » Экологические и трофические особенности фитопатогенных организмов, типы их специализации и особенности патогенеза

Экологические и трофические особенности фитопатогенных организмов, типы их специализации и особенности патогенеза

2021-03-09СтудИзба

ТЕМА 2. Экологические и трофические особенности фитопатогенных организмов, типы их специализации и особенности патогенеза

Облигатные сапротрофы,  факультативные паразиты, факультативные сапротрофы, облигатные паразиты. Некротрофы, биотрофы, гемибиотрофы. Монофаги, олигофаги и полифаги. Органотропная и/или тканевая специализация патогенов. Особенности патологических процессов, вызываемые фитопатогенными вирусами, бактериями, оомицетами и грибами. Патогенез Agrobacterium tumefaciens: восприятие сигналов поврежденного растения, образование переносимой Т-нити, транспорт Т-комплекса  в клетку растения, транспорт Т-ДНК в ядро клетки растения.

С точки зрения экологических особенностей, точнее по соотношению сапротрофной и паразитической фаз в жизненном цикле микроорганизма, еще великий Антонио де Бари разделил все микроорганизмы на четыре группы: облигатных сапротрофов, факультативных паразитов, факультативных сапротрофов и облигатных паразитов.

С трофической точки зрения фитопатогенные организмы используют одну из трех главных стратегий атаки  растения: некротрофию, биотрофию или гемибиотрофию. Некротрофы сначала убивают клетки  хозяина, а затем используют  их содержимое. Биотрофные патогены вторгаются в живые клетки растения и направляют обмен веществ в сторону поддержки своего собственного роста и репродукции. Гемибиотрофные патогены начинают свое развитие как биотрофы, но убивают  окружающие клетки  хозяина в течение более поздних стадий инфекции.

Паразитирующие на растениях микроорганизмы имеют различные типы специализации. Самый известный тип специализации имеет отношение к таксонам растений-хозяев, на которых может паразитировать данный фитопатоген. Этот тип специализации можно назвать филогенетической специализацией. На основании этой особенности издавна возбудители болезней растений делят на монофагов, олигофагов и полифагов. Монофаги поражают растения одного вида, одного рода или нескольких близких родов. Олигофаги специализируются в пределах семейства высших растений, и, наконец, полифаги могут поражать растения из разных семейств, порядков и даже классов.

Помимо филогенетической специализации, некоторые фитопатогенные организмы могут развиваться только в определенных тканях или органах растений, то есть имеют тканевую и/или органотропную специализации. Например, возбудитель пузырчатой головни кукурузы поражает только меристематические ткани в разных органах растения; возбудитель рака картофеля поражает столоны и клубни, но не корни.

Особенности патологических процессов, вызываемые фитопатогенными вирусами, бактериями, оомицетами и грибами.

Фитопатогенные вирусы. Большинство фитопатогенных вирусов имеют одноцепочечную (+)РНК, хотя среди них могут встречаться все возможные варианты генома – одно- и двуцепочечные РНК и ДНК. Вироиды имеет короткую кольцевую молекулу РНК, не кодирующую белки.

По тканевой специализации вирусы разделяют на паренхимные и флоэмные. Паренхимные находятся в клетках листовой паренхимы и вызывают различные повреждения. Самый обычный симптом болезней, вызыва­емых паренхимными вирусами — чередования темно-зеленых и более светлых участков листа, то есть мозаика.

Рекомендуемые материалы

Вследствие задержки роста светлых участков возникают деформации зараженных листьев — пузыревидные вздутия участков листа, морщи­нистость вследствие более глубокого расположения жилок, а в некоторых случаях разрушение листовой паренхимы, которая сохраняется только в непосредственной близости от жилок. При некоторых вирусных болезнях светлые участки распределены по листу не случайно, а образуют рисунки в виде колец (кольцевые мозаики), волнистых полос (гравировки) и др. Часто заболевания сопровождаются некротическими поражениями жилок листа (полосчатые мозаики), переходящими на черешки и стебли.

Флоэмные вирусы локализуются во флоэме. Это часто приводит к повреждению флоэмного оттока и скручиванию листьев, переполненных продуктами фотосинтеза. Скручиванием листьев часто болеют картофель и хлопчатник. Многие флоэмные вирусы нарушают обмен фитогормонов, вследствие чего воз­никают различного рода уродливости — тератоморфы: превращение вегетативных органов в генеративные, пролиферации цветка и отдельных его частей, чрезмерная кустистость, карликовость и др.

Сохранение. Лучший источник  сохранения вирусов в зимний период — вегетативные части зараженных растений. Поэтому наибольший урон вирусы наносят растениям, размножаемым вегетативно — картофелю, плодово-ягодным породам, цветочным культурам. Накапливаясь из года в год, вирусы вызывают постепенное сниже­ние продуктивности и изменение присущих сорту признаков, получившие название вырождения. Поскольку большинство вирусов имеет широкий круг хозяев, большую угрозу для сельскохозяйственных растений несет пораженность сорных и дикорастущих растений, в зимующих органах кото­рых могут сохраняться опасные вирусы.

У вирусов растений обнаружена способность сохраняться в семенах, причем число инфицированных семян, сформированных на зараженных растениях, может колебаться от долей до 100%. Наиболее стойкие вирусы, такие как ВТМ, могут сохраняться на поверхности семян.

Некоторые вирусы сохраняются в теле их переносчиков.

Распространение вирусов может быть вертикальное (от родителей по­томству) и горизонтальное (от зараженных растений здоровым). Горизонтальное распространение может осуществ­ляться по-разному.

Контактное распространение происходит при соприкосновении листь­ев или корней зараженных и здоровых растений. При смыкании растений на трущихся друг о друга поверхностях листьев возникают мелкие ранки (например, поломка волосков), через которые содержащий вирусы сок переходит из одного растения в другое. Следовательно, контактная пе­редача возможна только для вирусов, накапливающихся в эпидермальных клетках. Флоэмные вирусы при контакте передаваться не могут. Для таких вирусов, как ВТМ, ХВК, вирус желтой мозаики турнепса контактный способ является преоблада­ющим. Особенно большую угрозу представляет распространение виру­сов контактным способом в период ухода за растениями, связанного с их повреждениями — культивация, пасынкование томатов, ломка листьев та­бака и др.

С помощью прививки передаются все известные вирусы. Такой способ распространения имеет большое значение в плодоводстве, где растения размножают прививкой на подвои. Прививкой распространяются такие вредоносные болезни, как мозаика яблони, розеточность персика, курча­вость хмеля.

Некоторые вирусы (карликовости сливы, штриховатости табака, скру­чивания листьев вишни и др.) могут адсорбироваться на пыльце в складках экзины и распространяться от больных растений к здоровым ветром или насекомыми-опылителями.

Наиболее распространенный в природе способ распространения ви­русов — векторный (с помощью переносчиков). Большинство переносчи­ков вирусов относится к членистоногим животным (насекомым, клещам), имеющим колюще-сосущий ротовой аппарат. Для флоэмных вирусов передача переносчиками — единствен­ный природный способ попадания в восприимчивую ткань (их перенос­чики питаются флоэмным соком).

По взаимоотношению с переносчиками вирусы разделяют на неперсистентные (или стилетные) и персистентные (циркулятивные). Переносчи­ки неперсистентных вирусов приобретают их очень быстро, в течении 30 с—2 мин. питания (из клеток эпидермиса, ибо за такой короткой период стилет не проникает более глубоко); сразу после питания способны передавать ви­русы здоровым растениям и быстро теряют способность к передаче. Так передаются только паренхимные вирусы, причем основной механизм передачи — адсорбция частиц на стилете. Однако только механической адсорбцией на стилете передачу вирусов объяснить нельзя, ибо некоторые вирусы, включая ВТМ, несмотря на высокую концентра­цию частиц в соке, насекомыми не передаются; известна определенная вза­имная специализация вирусов и переносчиков и даже наличие вирусов-помощников при передаче насекомыми. Например, некоторые вирусы картофеля (аукубы-мозаики и др.) не передаются тлями, однако, если кар­тофель заражен смесью вирусов аукубы-мозаики и У (УВК), оба вируса пе­редаются тлями. Следовательно, УВК служит помощником вируса аукубы-мозаики в передаче тлями. В геноме УВК содержится ген, кодирующий 58 kD белок, названный helper component (HP), способствующий связыванию ви­русных частиц с определенными местами стилета. Мутации этого гена делают вирус неспособным к передаче тлями.

Более сложные взаимоотношения с переносчиками имеют персис­тентные вирусы. Переносчики приобретают вирусы после более длитель­ного периода питания (более 30 минут). К этой группе от­носятся все флоэмные вирусы. После периода питания необходим опре­деленный латентный период (от нескольких дней до нескольких недель), чтобы насекомое приобрело способность к заражению здоровых расте­ний, однако эта способность сохраняется у него длительный период (иног­да в течение всей жизни). Вирусы всасываются с соком, попадают в кишеч­ник, через стенки которого проникают в гемолимфу, разносятся по телу, попадают в слюнные железы, а из них наг­нетаются в новое растение. На такую циркуляцию в теле переносчика не­обходимо время, определяемое как латентный период. В теле переносчи­ков многие персистентные вирусы размножаются и откладываются в виде кристаллических или аморфных включений. У некоторых цикад вирусные частицы попадают в яйцеклетки и передаются новому поколению.

Ряд вирусов распространяются нематодами и грибоподобными протистами.

Особого упоминания заслуживает вопрос перемещения вирусов по растению. После репродукции в первично зараженной клетке происходит зара­жение всего растения вследствие перемещения вирусов из клетки в клетку (ближний транспорт) и по флоэме (дальний транспорт).

Ближний транспорт осуществляется через плазмодесмы. Опыты с молекулами декстрана показали, что через плазмодесмы могут проходить только очень мелкие молекулы размером около 1 kD. Од­нако вирусная нуклеиновая кислота кодирует специальный транспортный белок (ТБ), который содействует переходу через плазмодесмы. Первый та­кой белок был открыт у ВТМ. Он имеет молекулярную массу 30 kD. Этот белок открывает плазмодесмы, позволяя проходить через них крупным молеку­лам. Гены, кодирующие синтез транспортных белков, обнаружены и у других вирусов. Таким образом, движение через плазмодесмы осуществляется в форме нуклеопротеида — транспортного белка, соединенного с вирусной РНК. Несколько молекул ТБ связываются с вирусной молекулой РНК и этот комплекс движется по элементам цитоскслета: в цитоплазме по микротрубочкам, вблизи плазмодесм — по филаментам актина, пронизывающим плазмодесмы. Скорость движения вируса гравировки табака составляет 1 клетка за 2 часа.

Дальний транспорт осуществляется флоэмным током, поэтому ско­рость и направления тока оказывают решающее влияние на распростране­ние вирусов по растению. Давно было показано, что после заражения одно­го листочка томата ВТМ сначала инфицируется весь зараженный лист, за­тем — стебель ниже листа и корни, затем — верхушка и после этого — все растение. Движение по флоэме осуществляется как в форме целых частиц, так и в форме нуклеопротеидов, в которых вирусная РНК соединена с белком.

Фитопатогенные грибы и оомицеты. Все ~300 000 видов цветковых растений заражаются патогенными грибами и оомицетами. Однако отдельный вид растения может быть хозяином только нескольких видов грибов, и точно так же большинство грибов обычно имеет ограниченный круг растений–хозяев.

Стратегии, используемые грибными патогенами и оомицетами при заражении растений, являются различными для разных типов взаимодействий с хозяевами. Тем не менее, можно выделить отдельные особенности, которые обусловливают паразитизм грибов и оомицетов.

1. Активное внедрение в растение.

Для колонизации растения, грибы и грибоподобные протисты развили различные стратегии внедрения в растительные ткани. Большинство факультативно паразитических грибов и оомицетов, так же как и фитопатогенные бактерии и некоторые вирусы, для внедрения в растение нуждаются в естественных отверстиях или в повреждении покровных растительных тканей. В противоположность этому, многие другие фитопатогены выработали механизмы активного преодоления структурных наружных барьеров растений, кутикулы и клеточной стенки клетки эпидермиса.  Для достижения этой цели, грибы обычно секретируют смесь гидролитических ферментов, включающих кутиназы, целлюлазы, пектиназы и протеазы. Поскольку эти ферменты необходимы также для сапротрофного образа жизни, то они не представляют инструменты, специфически выработанные грибами для обеспечения патогенеза, и каждый гидролитический фермент в отдельности может и не быть абсолютно необходимым для проникновения. Это, однако, не свидетельствует о том, что структуры или регуляция биосинтеза этих ферментов  не адаптированы для специфических потребностей патогена на определенном растении-хозяине.

Эксперименты, посвященные выяснению роли кутиназы, иллюстрируют это положение. Кутикула закрывает воздушные части живых растений, и ее нужно преодолеть до того, как другие механизмы патогенности станут эффективными. Поэтому,  ферментативная деградация кутина, структурного полимера кутикулы растения, постулировалась как критическая для патогенности грибов, и кутиназа, как предполагается, является ключевым игроком в процессе проникновения. Хотя ряд специалистов ключевую роль кутиназы для проникновения грибов в растения подвергают сомнению.

Альтернативно или в комбинации с гидролитическими ферментами, некоторые грибы развили более сложный и изощренный механизм, чтобы проникнуть через кутикулу растений-хозяев. Вообще, фитопатогенные грибы формируют специализированные органы проникновения, названные аппрессориями, в кончике их ростковых трубок; эти органы прочно присоединены к поверхности растения клейкими внеклеточными веществами. Когда аппрессорий развивается, пористость его стенки у проникающих механическим путем грибов заметно уменьшается за счет включения меланина, и внутри аппрессория развивается очень высокое тургорное давление – >8 мегапаскалей, что в 40 раз выше давления типичных автомобильных шин. Это давление фокусируется  на маленькой области в основе аппрессория, которая остается свободной от материала стенки и меланина. Из этой пенетрационной поры развивается инфекционная гифа и проникает через кутикулу и стенку клетки, возможно при определенной  помощи гидролитических ферментов.

Высокое тургорное давление в аппрессориях аскомицетов может быть обусловлено многоосновными спиртами, или полиолами. Высокие концентрации глицерола, достаточные, чтобы объяснить тургорное давление, были найдены в аппрессориях M. grisea.

У этого гриба дефицитные по меланину мутанты неспособны заражать интактные растения, но становятся патогенными на листьях с ободранной кутикулой, то есть поврежденных. Таким образом, меланин является существенным фактором патогенности для некоторых грибов, которые проникают в растение механическим путем.

Некоторые другие виды фитопатогенных грибов, включая некоторые ржавчинные грибы, не выработали механизма прямого проникновения, и взамен этого обходят кутикулу и наружные клеточные стенки за счет внедрения через устьица. Эти грибы выработали пока еще плохо понятный механизм обнаружения этих отверстий на поверхности растения.

Таким образом, проникновение грибов в растения контролируется комбинацией различных факторов, и в дополнение к факторам гриба в число этих факторов могут входить структуры поверхности растения, а также активаторы и ингибиторы прорастания спор грибов и формирования ростковых трубок.

2. Нарушение метаболизма растений с помощью токсинов

После проникновения, следующим шагом стратегии гриба в колонизации растения является секреция токсинов или веществ с гормональной активностью, которые изменяют физиологию растения в сторону, благоприятную для патогена. Такое вмешательство в метаболизм растения может состоять просто в убийстве клеток растений и использования их для питания, или в более тонкой переориентации клеточных процессов; часто эта цель достигается выделением продуцирования фитопатогенным грибом фитотоксинов, которые имеют варьирующую степень специфичности по отношению к различным растениям.

Фитотоксины идентифицированы у большого количества патогенов, но их действительная роль в патогенеза в большинстве случаев остается плохо понятной и спорной. Однако, в некоторых взаимодействиях растение-гриб, генетические и биохимические исследования показали, что токсины являются детерминантами специфичности гриба. В этих случаях, устойчивость или восприимчивость к грибу всегда высоко коррелирует с нечувствительностью или чувствительностью к токсину. Эти специфические для хозяина токсины продуцируются в основном грибами родов Alternaria и Cochliobolus.

Специфические фитотоксины.

Специфические токсины по отношению к чувствительным сортам и линиям растений активны при концентрациях в пределах от ~10 pM до 1 μM, и их степени специфики (селективности для хозяина) находятся в диапазоне от 100-кратной до >106-кратной.

Примеры специфических токсинов

T-токсин

T-токсин  производится изолятами расы T C. heterostrophus. Раса T C. heterostrophus очень вирулентная для линий кукурузы, обладающих цитоплазматической мужской стерильностью техасского типа (Tcms). Раса 0 C. heterostrophus, которая не производит T-токсин, является второстепенным патогеном кукурузы независимо от цитоплазмы.

T-токсин активен при ~10 nM у Tcms кукурузы и при ~10 μM у кукурузы с нормальной цитоплазмой. Чувствительны к токсину митохондрии растений. Основа чувствительности к T-токсину – перегруппировка митохондриального генома Tcms растений, которая приводит к синтезу химерного белка URF13, локализованного во внутренней митохондриальной мембране. Физические и биохимические исследования указывают, что URF13 формирует олигомерные поры в мембранах митохондрий в присутствии T-токсина.

Викторин

Викторин был одним из первых обнаруженных специфических токсинов; он имеет высокую токсичность (эффект был зарегистрирован при 10 pM). C. victoriae (возбудитель увядания овса Виктория) отрицательно воздействовал на экономику Соединенных Штатов в течение 1930-ых, вызывая главные эпидемии овса. Происхождение эпидемии увядания Виктории связано с модификацией генома овса. В 1930-ых, серьезной болезнью овса была корончатая ржавчина, вызванная Puccinia coronata. Обнаруженный в Уругвае ген Pc-2 обеспечивает хорошую устойчивость к P. coronata, и он был внедрен в основные сорта овса в Соединенных Штатах, в первую очередь сорт Виктория. Вскоре  появилось ранее неизвестное увядание, которое специфически поражало сорта овса с  геном Pc-2. Ген, который обеспечивает восприимчивость к C. victoriae, названный Hv-7 или Vb, является или тем же самым геном, что и Pc-2, или очень сильно связанным.

Несмотря на длительное изучение, точный механизм действия викторина остается неизвестным. Предполагается, что он связывается с одной из субъединиц декарбоксилазы глицина (GD) – сложного фермента с 42 субъединицами четырех типов. Фермент локализован в митохондриях и играет центральную роль в цикле фотодыхания. Викторин специфически ингибирует GD  в растительных тканях, но он не оказывает никакого эффекта на GD в выделенных, неповрежденных митохондриях, из-за отсутствия поглощения. В интактных тканях, викторин накапливается в митохондриях чувствительных клеток, но не в митохондриях устойчивых клеток. Возможно, продукт гена Hv-7 может контролировать поглощение митохондриями или метаболизм викторина.

HC-токсин

Восприимчивость к C. carbonum раса 1 и чувствительность к его токсину, HC-токсину, контролируется двумя генами кукурузы, Hm1 и Hm2. Устойчивая кукуруза  имеет ферментативную активность редуктазы HC-токсина, которая детоксифицирует HC-токсин. Современное доказательство указывает, что сайт действия HC-токсина – деацетилаза гистонов (HD), фермент, который обратимо деацетилирует внутренние гистоны (H3 и H4), когда они собраны в хроматине. Ацетилирование и деацетилирование внутренних гистонов изменяют индуцибельность и супрессивность некоторых классов генов, но детали того, как это происходит, не выяснены. HC-токсин ингибирует HD кукурузы, вызывая накопление ацетилированных гистонов in vivo.

В настоящее время исследователи пытаются понять, как ингибирование активности HD способствует заражению кукурузы C. carbonum раса 1. Одно возможное объяснение действия HC-токсина – то, что он способствует заражению, интерферируя с индукцией генов защиты кукурузы, то есть препятствует индукции защитных реакций растения.

Имеется большое количество других специфических токсинов. Исследования последних лет показали, что специфические фитотоксины не являются попросту метаболическими ядами, убивающими клетки растения. Для проявления их токсического действия необходимо активное участие метаболизма клетки хозяина; например, их токсический эффект не проявляется в случае ингибирования синтеза белка в клетки растения. В последнее время накапливается все больше экспериментальных данных, которые свидетельствуют о том, что гибель клеток растения обусловлена внутренними механизмами и представляет собой фактически защитную реакцию растения ­ – реакцию сверхчувствительности. Если это так, то некротрофные патогены ­– продуценты специфических фитотоксинов – фактически индуцирую реакцию устойчивости, и в дальнейшем используют ее результат к собственной выгоде.

Неспецифические фитотоксины

Неспецифические фитотоксины активны как для растений-хозяев, так и нехозяев. Такая неселективность, очевидно, противоречит роли для токсина в детерминации диапазона растений-хозяев. Тем не менее, эти токсины могут выполнять определенную функцию в течение патогенеза гриба на конкретном хозяине. Хотя механизм действия неспецифических токсинов остается в большинстве случаев неизвестным, тем не менее есть данные, что они могут затрагивать фундаментальные процессы метаболизма.

Фитопатогенные бактерии. В отличие от грибов и оомицетов, фитопатогенные бактерии не могут проникать через неповрежденные покровные ткани растений. В то же время большинство бактерий являются достаточно маленьким, чтобы проникнуть через устьица и другие естественные отверстия в апопласт.

Большинство фитопатогенных бактерий являются грамотрицательными.

Фитопатогенные бактерии можно разделить на некротрофные и биотрофные. Некротрофными являются, например, Erwinia ca­rotovora  E. chrysan­themi, вызывающие мягкие гнили многих растений. Биотрофными являются большинство представителей родов Pseudomonas,  Ralstonia и Xanthomonas, а также Erwinia amylovora.

Паразитизм грамотрицательных бактерий зависит от нескольких особенностей. Одна из основных предпосылок – наличие так называемых hrp (гарп) генов. При нарушении функции любого из этих генов бактерии перестают вызывать реакцию сверхчувствительности при заражении растений-нехозяев, а также утрачивают способность к паразитизму на растениях-хозяевах. Иначе говоря, мутанты по генам   hrp ведут себя подобно непатогенным бактериям. Таким образом, наличие функциональных генов hrp является обязательным условием для паразитизма фитопатогенных бактерий. Ряд этих генов кодируют компоненты системы секреции белка типа III, которая, по всей видимости, позволяет доставлять бактериальные белки внутрь клеток хозяина.

Наличие генов hrp является необходимым, но недостаточным условием для патогенеза на растениях. Например, когда кластеры этих генов внедряли в сапротрофные бактерии P. fluorescens или E. coli, эти бактерии начинали вызывать реакцию сверхчувствительности у многих растений, но не могли вызвать болезнь, то есть не становились фитопатогенными. Для патогенеза на растениях необходимы дополнительные факторы.

Одним из таких факторов являются эффекторы патологического процесса, чаще всего белковой природы. Эти белки доставляются в растительную клетку системой секреции типа III, и несмотря на то, что их функция плохо понятна, считается, что они в частности подавляют защитные реакции растения.

Кроме этого, имеются другие факторы, обуславливающие вирулентность бактерий. К таким факторам относят в частности токсины. Токсины, продуцируемые некрогенными грамотрицательными патогенами (прежде всего патоварами P. syringae) являются вторичными метаболитами (главным образом маленькие пептиды). Они не выявляют никакой специфичности по отношению к хозяину, типично не вносят вклад в размножение бактерий в растениях, легко диффундируют и часто вызывают характерные повреждения. Бактериальные токсины, как полагают, являются факторами вирулентности.

Фактические роли индивидуальных токсинов в патогенезе все еще неясны. Токсины продуцируются некоторыми нефитопатогенными штаммами P. syringae, и многие из них также имеют антибактериальную активность и таким образом могут первично функционировать как факторы конкуренции бактерий в течение эпифитной стадии развития. В некоторых случаях гены, обусловливающие биосинтез токсина, могут быть удалены без влияния на патогенность бактерий. В то же время ряд токсинов, как считают, вносят вклад в патологический процесс, по крайней мере, на ранней стадии.

Еще одним фактором вирулентности являются внеклеточные полисахариды. Внеклеточные полисахариды, в отличие от токсинов, производятся большинством бактерий, включая многих патогенов растений, и секретируются как свободная слизь или как материал капсулы. Они, как полагают, защищают свободноживущие бактерии от разнообразных экологических стрессов и могут способствовать патогенезу, поддерживая насыщение водой межклеточного пространства, снижая доступность бактериальных клеток для антибактериальных соединений, нарушая распространение сигналов, активирующих защиту растений, и блокируя ксилему, таким образом, вызывая симптомы увядания. Исследования мутантов этих бактерий выявило, что внеклеточные полисахариды  вообще являются фактором вирулентности, внося вклад в формирование симптомов увядания и водянистости тканей. При этом они не являются абсолютно необходимыми для патогенеза, и не имеют никакой специфичности для хозяина. Следует отметить, что фитопатогенные бактерии, как и все остальные бактерии, в естественных условиях образуют биопленки, и динамика развития биопленок и их свойства во многом связаны с составом внеклеточных полисахаридов. В свою очередь этот состав подвержен изменениям в зависимости от этапов развития биопленки и регулируется в частности таким явлением, как ощущение кворума.

Следующим фактором вирулентности бактерий являются пектиназы. Все деградирующие клеточную стенку ферменты бактерий экспортируются из клеток посредством системы секреции типа II. Бактериальная мягкая гниль, вызываемая некротрофными патогенами E. carotovora, E. chrysanthemi и P. viridiflava, существенно отличается от болезней, вызванных биотрофными патогенами. Эти бактерии имеют широкий диапазон хозяев, особенно среди растений с мясистыми паренхиматическими тканями, степень развития болезни больше зависит от экологических условий, которые ослабляют хозяина. Патогенез определяется пектиновыми ферментами, которые расщепляют α-1,4-галактуронозильные связи в полимерах клеточной стенки растения посредством гидролиза (полигалактуроназы) или β-элиминирования (пектат- или пектинлиазы). Из-за структурной важности и уникальной доступности пектиновых полимеров в первичных клеточных стенках и срединных пластинках двудольных и некоторых однодольных растений, пектиновые ферменты – существенное оружие патогенеза с использованием, так сказать, грубой силы, и они вызывают как гибель клеток, так и мацерацию ткани, то есть первичные признаки мягкой гнили.

Патогенез Agrobacterium tumefaciens

Agrobacterium tumefaciens является фитопатогеном почвы, который генетически трансформирует хозяина, вызывая корончатые галловые опухоли, важную болезнь, которая затрагивает большинство двудольных растений. В природе, эти опухоли обычно формируются на границе воздух-почва, так называемой короне растения. В патологическом процессе, ДНК транспортируется из дикого типа Agrobacterium в ядро клетки растения. Экспрессия этой перемещенной ДНК (T-ДНК) имеет результатом неопластический рост (опухоли) на растении-хозяине.

Для трансформации клетки растения требуются три генетических компонента Agrobacterium.  Первый компонент – T-ДНК, которая физически транспортируется из бактерии в клетку растения. T-ДНК – дискретный сегмент ДНК, расположенной на 200-kb Ti-плазмиде Agrobacterium; она ограничена двумя 25-bp неполными прямыми повторениями, известными как границы T-ДНК. Второй компонент – 35-kb область вирулентности (vir), также расположенная на Ti плазмиде, которая состоит из семи главных локусов (virA, virB, virC, virD, virE, viG и virH). Белковые продукты этих генов, которые называют белками вирулентности (Vir), отвечают на специфические вещества, секретируемые поврежденным растением, чтобы произвести копию T-ДНК, и опосредуют ее перемещение в клетку хозяина. Третий компонент – набор хромосомных генов вирулентности (chv), расположенных на хромосоме Agrobacterium. Гены chv вовлечены в хемотаксис бактерии  и прикрепление к поврежденной клетке растения.

Восприятие сигналов поврежденного растения. Поврежденные растения секретируют сок с характерным кислым pH (от 5.0 до 5.8) и высоким содержанием различных фенольных соединений, типа предшественников флавонидов и лигнина. Эти условия специфически стимулируют экспрессию vir генов Agrobacterium. Лучше всего охарактеризованные и самые эффективные индукторы генов vir – моноциклические фенольные вещества типа ацетосирингона (AS). Эти молекулы не обнаружены, или обнаружены на низких уровнях, у неповрежденных растений, но их количество значительно увеличивается в поврежденных клетках растений.

Сигналы растения воспринимаются сенсорной двухкомпонентной системой   бактерий, которая состоит из мембранной сенсорной киназы и цитоплазматического регуляторного белка. У Agrobacterium имеется двухкомпонентная система трансдукции сигнала, состоящая из белков вирулентности VirA и VirG. Вместе, эти белковые молекулы чувствуют сигнальные молекулы, секретируемые поврежденными клетками растения, и активируют экспрессию других vir генов, таким образом инициируя процесс транспорта T-ДНК. Сенсорным компонентом является белок  VirA, являющийся сенсорной киназой. Сигналы растения активируют VirA, после чего эта киназа  автофосфорилируется в остатке His-474, а затем фосфатная группа переносится на остаток аспарагина белка VirG. Белок  VirG взаимодействует с так называемым vir-боксом, то есть  с консервативной последовательностью из 12 нуклеотидов  в регионах промотора индуцибельных vir генов на Ti-плазмиде.

Прикрепление Agrobacterium к клеткам растения-хозяина является предпосылкой для передачи ДНК. Распознавание Agrobacterium–клетка хозяина – процесс из двух шагов. На первом шаге, бактерии свободно связывают с поверхностью клетки хозяина, и на втором  связанные бактерии синтезируют нити целлюлозы, которые стабилизируют начальное закрепление, приводя к тесной ассоциации между Agrobacterium и клеткой хозяина.

Показано, что каждая клетка растения связывает конечное число бактерий; поэтому считают, что в связывание вовлечены насыщаемые поверхностные рецепторы растения. У животных белок внеклеточного матрикса витронектин функционирует как рецептор для нескольких бактериальных штаммов. Подобные витронектину молекулы, которые были найдены на поверхности клетки многих видов растений, могут обусловить закрепление Agrobacterium на клетке растения. Витронектин человека, так же как антитела против витронектина, блокируют прикрепление Agrobacterium к культивируемым клеткам растения. Потенциально подобный витронектину белок (PVN) растений может представить один из рецепторов, ответственных за специфическое взаимодействие между Agrobacterium и клетками растения. В дополнение к PVN, другие белки и углеводы поверхности клетки растения, вероятно, могут быть вовлечены во взаимодействие с Agrobacterium. Однако эти молекулы еще не  идентифицированы.

Образование переносимой Т-нити

Индукция экспрессии генов vir в конечном счете имеет одним из результатов производство копии T-ДНК, которая является способной к генетическому преобразованию клеток растения. Различные типы Ti-плазмид несут элементы T-ДНК различного состава. Например, T-ДНК в нопалиновой Ti-плазмиде – непрерывный отрезок ~22 kb. Интересно, что T-ДНК как таковая  не оказывает никакого влияния на эффективность перемещения. Поэтому неонкогенные («разоруженные») Ti-плазмиды, с большинством внутренних последовательностей T-ДНК, замененных интересующей ДНК, широко используются как векторы для генетической трансформации растений.

Клетки Agrobacterium с индуцированными генами vir производят линейную одноцепочечную копию области T-ДНК, называемую T-цепью. T-цепь обнаруживается приблизительно в одной копии на индуцированную клетку Agrobacterium. Белки VirDl и VirD2  вместе функционируют как эндонуклеаза, которая выполняет сайт- и цепь-специфические разрезы в участке границ T-ДНК. После расщепления, VirD2 ковалентно прикрепляется к 5′ концу T-цепи. Вырезаемая T-цепь удаляется, и результирующий одноцепочечный промежуток восстанавливается.

В середине 1990-х годов были получены прямые доказательства, что в клетку растения и в ее ядро перемещается именно одноцепочечная, а не двухцепочечная,  ДНК.

Считают, что T-цепь перемещается из бактерии и в клетку растения как комплекс белок–нуклеиновая кислота. Это промежуточное звено транспорта T-ДНК, названное как T-комплекс, состоит, по крайней мере, из трех компонентов, а именно, из самой молекулы ДНК T-цепи, а также  связанных с нею белков VirD2 и VirE2, которые защищают T-цепь, формируют ее в передаваемый (тонкой и развернутый) форме и снабжают специфические сигналы нацеливания. После разрезания ДНК Ti-плазмиды при посредстве белков VirDl и VirD2, которые вместе действуют как эндонуклеаза, одна молекула белка VirD2 ковалентно присоединена к каждой T-цепи. Также ассоциированным с  T-цепью является белок VirE2, который имеет свойство связывать одноцепочечную ДНК. Связывание VirE2 с одноцепочечной ДНК in vitro является сильным и кооперативным, что приводит к формированию очень устойчивых развернутых комплексов VirE2-ssDNA, которые являются в значительной степени устойчивыми к внешней нуклеолитической активности. На основании данных электронной микроскопии и кинетики связывания белка VirE2 in vitro предполагается, что нопалин-специфические T-комплексы имеют 3600 nm в длину и 2 nm в ширину. Они содержат ~600 молекул VirE2 и одну молекулы VirD2 и имеют предсказанную молекулярную массу 50 000 kD.

Транспорт Т-комплекса в клетку растения

Очевидно, что межклеточный транспорт ДНК требует прямого прохода между донором и реципиентом. Таким образом, Agrobacterium, как предсказывается, формирует канал, через который T-комплексы перемещаются в цитоплазму клетки растения-хозяина. Молекулярный механизм, которым этот проход формируется и функционирует – все еще биологический черный ящик. Однако кажется вероятным, что канал Agrobacterium-клетка растения кодируется virB локусом.

Оперон virB содержит  кодирует девять белков, для которых показано, что они ассоциированы с бактериальными мембранами. Эти белки стабилизируют один другого таким образом, что функция некоторых продуктов генов virB зависит от присутствия других VirB белков. Эти данные предполагают, что координированный синтез белка стабилизирует отдельные VirB полипептиды, возможно позволяя им формировать многобелковую структуру. Подобная стабилизация белка через взаимодействия белок-белок была описана в течение формирования некоторых пилей у грамотрицательных бактерий. Подобно генерации T-цепей, формирование VirB канала, по-видимому, эволюционно связано с бактериальной конъюгацией.

Транспорт Т-ДНК в ядро клетки растения

Ещё посмотрите лекцию "Отбор" по этой теме.

Размер T-комплекса (50 000 kD) предполагает необходимость активных транспортных процессов. Поскольку T-цепь самостоятельно не несет сигналы нацеливания, ядерный импорт T-комплекса наиболее вероятно опосредуется белками VirD2 и VirE2.

Как правило, у эукариот активный ядерный импорт белков требует специфического сигнала ядерной локализации (NLS). Детальные исследования позволили выяснить, что функциональный сигнал ядерной локализации действительно имеется у белка VirD2 который присоединен к 5’ концу T-цепи, и исследования с мутантами показали, что он действительно активен в направлении T-комплекса в ядро клетки хозяина. Однако VirD2 – не единственный посредник ядерного поглощения T-комплекса. Впоследствии была показана ядерная локализация VirE2, главного структурного компонента T-комплекса. У этого белка были идентифицированы два функциональных NLS. Хотя каждый из сигналов ядерной локализации белка VirE2 был независимо активным, максимально эффективный ядерный импорт VirE2 требовал присутствия обоих сигналов.

У эукариотических организмов, распознавание сигнала ядерной локализации белка происходит через взаимодействие NLS с клеточными рецепторами, обычно принадлежащими к семейству белков кариоферинов. Введенный в клетку животных белок  VirD2 быстро оказывался в ядре; таким образом, сигнал ядерной локализации этого белка является функциональным и в клетках растений, и в клетках животных. В отличие от VirD2, веденный в клетки животных VirE2 оставался в цитоплазме; таким образом, сигналы ядерной локализации этого белка не распознаются в системе животных и поэтому являются специфическими для растений. Таким образом, возможно, что клетки растения имеют набор рецепторов NLS, которые отсутствуют в клетках животных.

Ядерный импорт T-комплекса Agrobacterium достигает кульминации при интеграции транспортированной T-цепи в хромосому клетки растения-хозяина. Молекулярные механизмы, которыми это достигается, в значительной степени неизвестны. В отличие от других мобильных элементов ДНК типа транспозонов и ретровирусов, T-ДНК не кодирует никаких ферментов, которые могут обусловить интеграцию. Таким образом, вставка T-ДНК в геном растения должна опосредоваться белками, транспортированными из инфицирующей бактерии и/или факторами клетки хозяина.

В сравнительно недавних исследованиях было установлено, что оба связанных с T-цепью  белка, и VirD2 и VirE2, не только направляют Т-ДНК в ядро, но и вовлечены в процесс интеграции. Т-ДНК является одноцепочечной, и вначале предполагалось,  что интеграция предшествует синтезу второй цепи, который может выполнятся механизмами репарации ДНК клетки растения после интеграции T-цепи. Однако более поздние исследования особенностей интеграции T-ДНК привели к предложению, что T-цепи конвертируются в двухцепочечную форму перед интеграцией.

Изучение процесса интеграции Т-ДНК в геном растения позволил получить предположительный ответ на вопрос, почему Agrobacterium поражает только двудольные растения. Оказалось, что в основе устойчивости кукурузы и возможно других однодольных растений   к заражению Agrobacterium лежит блокирование  интеграции T-ДНК.

Свежие статьи
Популярно сейчас
Почему делать на заказ в разы дороже, чем купить готовую учебную работу на СтудИзбе? Наши учебные работы продаются каждый год, тогда как большинство заказов выполняются с нуля. Найдите подходящий учебный материал на СтудИзбе!
Ответы на популярные вопросы
Да! Наши авторы собирают и выкладывают те работы, которые сдаются в Вашем учебном заведении ежегодно и уже проверены преподавателями.
Да! У нас любой человек может выложить любую учебную работу и зарабатывать на её продажах! Но каждый учебный материал публикуется только после тщательной проверки администрацией.
Вернём деньги! А если быть более точными, то автору даётся немного времени на исправление, а если не исправит или выйдет время, то вернём деньги в полном объёме!
Да! На равне с готовыми студенческими работами у нас продаются услуги. Цены на услуги видны сразу, то есть Вам нужно только указать параметры и сразу можно оплачивать.
Отзывы студентов
Ставлю 10/10
Все нравится, очень удобный сайт, помогает в учебе. Кроме этого, можно заработать самому, выставляя готовые учебные материалы на продажу здесь. Рейтинги и отзывы на преподавателей очень помогают сориентироваться в начале нового семестра. Спасибо за такую функцию. Ставлю максимальную оценку.
Лучшая платформа для успешной сдачи сессии
Познакомился со СтудИзбой благодаря своему другу, очень нравится интерфейс, количество доступных файлов, цена, в общем, все прекрасно. Даже сам продаю какие-то свои работы.
Студизба ван лав ❤
Очень офигенный сайт для студентов. Много полезных учебных материалов. Пользуюсь студизбой с октября 2021 года. Серьёзных нареканий нет. Хотелось бы, что бы ввели подписочную модель и сделали материалы дешевле 300 рублей в рамках подписки бесплатными.
Отличный сайт
Лично меня всё устраивает - и покупка, и продажа; и цены, и возможность предпросмотра куска файла, и обилие бесплатных файлов (в подборках по авторам, читай, ВУЗам и факультетам). Есть определённые баги, но всё решаемо, да и администраторы реагируют в течение суток.
Маленький отзыв о большом помощнике!
Студизба спасает в те моменты, когда сроки горят, а работ накопилось достаточно. Довольно удобный сайт с простой навигацией и огромным количеством материалов.
Студ. Изба как крупнейший сборник работ для студентов
Тут дофига бывает всего полезного. Печально, что бывают предметы по которым даже одного бесплатного решения нет, но это скорее вопрос к студентам. В остальном всё здорово.
Спасательный островок
Если уже не успеваешь разобраться или застрял на каком-то задание поможет тебе быстро и недорого решить твою проблему.
Всё и так отлично
Всё очень удобно. Особенно круто, что есть система бонусов и можно выводить остатки денег. Очень много качественных бесплатных файлов.
Отзыв о системе "Студизба"
Отличная платформа для распространения работ, востребованных студентами. Хорошо налаженная и качественная работа сайта, огромная база заданий и аудитория.
Отличный помощник
Отличный сайт с кучей полезных файлов, позволяющий найти много методичек / учебников / отзывов о вузах и преподователях.
Отлично помогает студентам в любой момент для решения трудных и незамедлительных задач
Хотелось бы больше конкретной информации о преподавателях. А так в принципе хороший сайт, всегда им пользуюсь и ни разу не было желания прекратить. Хороший сайт для помощи студентам, удобный и приятный интерфейс. Из недостатков можно выделить только отсутствия небольшого количества файлов.
Спасибо за шикарный сайт
Великолепный сайт на котором студент за не большие деньги может найти помощь с дз, проектами курсовыми, лабораторными, а также узнать отзывы на преподавателей и бесплатно скачать пособия.
Популярные преподаватели
Добавляйте материалы
и зарабатывайте!
Продажи идут автоматически
5137
Авторов
на СтудИзбе
440
Средний доход
с одного платного файла
Обучение Подробнее