Популярные услуги

Любая задача по линалу
Любая задача по математическому анализу и по интегралам и дифференциальным уравнениям
КМ-3 Важнейшие аспекты теории графов - любой вариант за 3 суток!
Решу любую задачу
Любая задача по Линейной алгебре и аналитической геометрии
НОМОТЕХ
Предельные теоремы и математическая статистика
Повышение уникальности твоей работе
Контрольная работа по рядам (КМ-3) ИДДО 2022
Сдам любой тест по дискретке в течение суток на положительную оценку!
Главная » Лекции » Математика » Теория игр » Игры двух лиц с произвольной суммой

Игры двух лиц с произвольной суммой

2021-03-09СтудИзба

БЕСКОАЛИЦИОННЫЕ ИГРЫ

Антагонистические игры, которые мы изучали ранее, описывают конфликты весьма частного вида. Более того, для большинства имеющих место в реальной жизни конфликтов антагонистические игры либо вовсе не могут считаться приемлемыми, адекватными описаниями, либо, в лучшем случае, могут рассматриваться как первые грубые приближения.

Во-первых, антагонистические игры никак не затрагивают своими описаниями конфликты с числом строк, большим чем два. В месте с тем, такие многосторонние конфликты не только встречаются в действительности, но являются принципиально более сложными, чем конфликты с двумя участниками, и даже не поддаются сведению к последним.

Во-вторых, даже в конфликтах с двумя участниками интересы сторон вовсе не обязаны быть противоположными; во многих конфликтах такого рода случается так, что одна из ситуаций оказывается предпочтительнее другой для обоих участников.

В-третьих, даже если любые две ситуации сравниваются игроками по их предпочтительности противоположным образом, различие разностей в оценках этой предпочтительности оставляет место для соглашений, компромисов и коопераций.

Наконец, в-четвёртых, содержательная острота конфликта не обязательно соответствует его формальной антагонистичности. Например, при встрече двух боевых единиц воюющих сторон (скажем, танков) обоюдное их стремление уничтожить друг друга не выражает антогонистичности конфликта: в антогонистическом конфликте цели сторон оказываются строго противоположными, и стремлению одной стороны уничтожить другую противоположным будет стремление избежать уничтожения.

В качестве примера БАИ рассмотрим:

1. Игры двух лиц с произвольной суммой.

Бескоалиционные игры.

Рекомендуемые материалы

В конечной бескоалиционной игре двух игроков (КБИДИ)каждый из них делает один ход – выбирает одну стратегию из имеющегося у него конечного числа стратегий, и после этого он получает свой выигрыш согласно определённым для каждого из них матрицами выигрышей. Другими словами КБИДИ полностью определяется двумя матрицами выигрышей для двух игроков. Поэтому такие игры называются биматричными. Пусть у игрока 1 имеется m стратегий, i =, у игрока 2 имеется n стратегий, j =. Выигрыши игроков 1 и 2 соответственно задаются матрицами

А = ,   В =

Будем по-прежнему считать полный набор вероятностей  x = (x1, ..., xm) применения 1 игроком своих чистых стратегий смешанной стратегией игрока 1, и у = (y1, ..., yn) – смешанной стратегией игрока 2. тогда средние выигрыши игроков 1 и 2 соответственно равны

                 

Ситуация равновесия для биматричной игры составляет пару (x,y) таких смешанных стратегий игроков 1 и 2, которые удовлетворяют неравенствам :

или

Для определения ситуаций равновесия необходимо решить систему неравенств (1) и (2)  ( и ) относительно неизвестных x = (x1, ..., xm)  и  у = (y1, ..., yn) при условиях

,   ,   xi ³ 0   (i =),   yj ³ 0   (j =).

Теорема (Нэша). Каждая биматричная игра имеет по крайней мере одну ситуацию равновесия.

В качестве примера рассмотрим случай, когда каждый игрок имеет две чистые стратегии. В этом случае матрицы A и B равны :

A = ,   B = .

Смешанные стратегии для игроков 1 и 2 имеют вид :

(x, 1– x),    (y, 1– y)          0 £ x £ 1;   0 £ y £ 1,

а средние выигрыши равны :

E1(A,x,y) = xA = (x; 1- x)=

= (a11 – a12 – a21 + a22) xy + (a12 - a22) x + (a21 - a22) y + a22.

E2(B,x,y) = xB = (x; 1- x)=

= (b11 - b12 - b21 + b22) xy + (b12 - b22) x + (b21 - b22) y + b22.

Условия  и  будут выглядеть

 £  E1(A,x,y),

(x; 1- x) £  E2(B,x,y),

или

                    

                   

Преобразовав (3) и (4), получим

(1- x) y +  (1- x) £ 0

(a11 - a12 - a21 + a22) xy + (a12 - a22) x ³ 0

или

Т. о., множество всех приемлемых стратегий для игрока 1 удовлетворяет условиям (5) и (6),  0 £ x £ 1;  0 £ y £ 1. Чтобы найти x рассмотрим 3 случая :

1.   Если x = 0, то (6) справедливо " y, а (5) имеет вид :

a1y - a2 £ 0.                                     

2.   Если x = 1, то (5) справедливо " y, а (6) имеет вид :

a1y - a2 ³ 0.                                     

3.   Если 0 < x < 1, то (5) разделим на (1 - x), а (6) – на  x  и получим

       

Итак, множество К решений системы (5) – (6) состоит из

1)  всех ситуаций вида (0; y), если  a1y - a2 £ 0;  0 £ y £ 1;

2)  всех ситуаций вида (x; y), если  a1y - a2 = 0;  0 < x < 1;

3)  всех ситуаций вида (1; y), если  a1y - a2 ³ 0;  0 £ y £ 1.

Если  a1 = a2 = 0, то решением является  xÎ[0; 1],  yÎ[0; 1],  т. к. все неравенства    (7) – (8) выполняются при всех  x и y,  т. е. множество приемлемых для игрока 1 ситуаций покрывает весь единичный квадрат.

Если  a1 = 0,  a2 ¹ 0,  то выполняется либо (7), либо (8), и поэтому решением является либо  x = 0, либо x=1  при  0 £ y £ 1 (приемлемой стратегии в игре не существует).

Если  a1 > 0,  то из (7) получаем решение

x = 0;  y £ := a,

Из (8) следует ещё решение  x = 1,  y ³ a,  из (9) следует ещё решение

0 < x < 1,   y = a.

Если a1 < 0, то решение следующее :

x = 0,  y ³ a;  x = 1,  y £ a;  0 < x < 1,  y = a.

При этом необходимо учитывать, что дополнительно должно быть

0 £ y £ 1.

Геометрически это выглядит следующим образом :

Для игрока 2 исследования аналогичны. Если ввести обозначения

b1 := b11 - b12 - b21 + b22

b2 := b22 -

то множество L приемлемых для него ситуаций состоит из :

1)  всех ситуаций вида (x, 0), если  b1x - b2 < 0; 0 £ x £ 1,

2)  всех ситуаций вида (x, y), если  b1x - b2 = 0; 0 £ x £ 1; 0 < y < 1,

3)  всех ситуаций вида (x, 1), если  b1x - b2 > 0; 0 £ x £ 1.

Результаты следующие :

если  b1 = b2 = 0, то решение 0 £ x £ 1; 0 £ y £ 1;

если  b1 = 0; b2 ¹ 0, то решение либо y = 0, либо y = 1 при 0 £ x £ 1 (приемлемой стратегии в игре не существует);

если  b1 > 0, то решения следующие :

y = 0,  x < = b;  y = 1,  x > b;  0 < y < 1;  x = b;

если  b1 < 0, то решения следующие :

y = 0,  x > b;  y = 1,  x < b;  0 < y < 1;  x = b

При этом необходимо учитывать, что 0 £ x £ 1.

Решением игры является пересечение множеств K и L, т.е. те значения  x и y, которые являются общими для множеств K и L.

При этом зигзаги  K и L  могут быть не только одинаковой, но и противоположной направленности. В первом случае зигзаги имеют одну точку пересечения, а во-втором ­­­– три. Средние выигрыши при этом определяются по формулам (*), если в них подставить полученное решение  x и y  (рис.а)). Очевидно a входит в смешанную стратегию игрока 2, хотя зависит только от выигрышей 1 игрока; b входит в смешанную стратегию игрока 1, хотя зависит только от выигрышей игрока 2. Сравнение этих результатов с результатами решения матричных игр с нулевой суммой показывает, что a совпадает с оптимальной стратегией игрока 1 в матричной игре с матрицей A, а b – с оптимальной стратегией игрока 2 в матричной игре с матрицей B. Отсюда можно сделать вывод, что равновесная ситуация направляет поведение игроков не только на максимизацию своего выигрыша, сколько на минимизацию выигрыша противника.

С другой стороны, естественно также рассматривать подходящим поведение игроков в конечных бескоалиционных играх, направленное на максимизацию своего выигрыша с учётом максимального противодействия игрока, т.е. подходящей стратегией игрока 1 считать оптимальную смешанную стратегию игрока 1 в матричной игре с матрицей A, а подходящей стратегией игрока 2 считать оптимальную смешанную стратегию игрока 2 в матричной игре с матрицей B, если в ней рассматривать решение с позиций максимизации выигрыша игрока 2, т.е. решать её, как для игрока 1, с матрицей .

Пример1. Министерство желает построить один из двух объектов на территории города. Городские власти могут принять предложения министерства или отказать. Министерство – игрок 1 – имеет две стратегии: строить объект 1, строить объект 2. Город – игрок 2 – имеет две стратегии: принять предложение министерства или отказать. Свои действия (стратегии) они применяют независимо друг от друга, и результаты определяются прибылью (выигрышем) согласно следующим матрицам :

A = ,     B =

(например: если игроки применяют свои первые стратегии, министерство решает строить 1 объект, а городские власти разрешают его постройку, тогда город получает выигрыш 5 млн, а министерство теряет 10 млн, и т.д.)

Решение. Для этой игры имеем :

a1 = a11 - a12 - a21 + a22 = -10 - 2 - 1 - 1 = -14 < 0,

a2 = a22 - a12 = -1 - 2 = -3,

.

Так как  a1 < 0, то множество решений K имеет следующий вид :

(0, y)   при   ;

(x, )   при   0 £ x £ 1;

(1, y)   при   0 £ y £ .

         Для 2 игрока имеем :

b1 = b11 - b12 - b21 + b22 = 5 + 2 + 1 + 1 = 9 > 0,

b2 = b22 - b21 = 1 + 1 = 2,

.

Так как b1 > 0, то множество решений L 

имеет следующий вид :

   (x; 0),   при   0 £ x £;                   

(; y),   при   0 £ y £ 1;                       

(x; 1),   при   £ x £ 1.

Точка пересечения множеств L и K есть точка C с координатами  x = y =  и является соответственно приемлемыми стратегиями министерства и города.

При этом выигрыш соответственно равен

E1(A,x,y) = (x, 1-x)=

= =

E2(A,x,y) = (x, 1-x)=

Обратите внимание на лекцию "Аппараты с горючими газами".

Замечание. Если решить эту игру как матричные игры двух игроков с нулевой суммой, то для игры с матрицей A оптимальные смешанные для 1 игрока и цена игры получаются из решения уравнений

откуда вероятность применения игроком 1 первой стратегии равна , цена игры –  , что совпадает с E1, вероятность применения игроком 2 первой стратегии ; для игры с матрицей B оптимальные смешанные стратегии и цена игры для игрока 2 определяются из системы :

Следовательно, вероятность применения игроком 2 своей стратегии , а игроком 1, цена игры , что совпадает с E2.

Таким образом, если каждый из игроков будет применять свои стратегии в этой игре, исходя только из матриц своих выигрышей, то их оптимальные средние выигрыши совпадают с их выигрышами при ситуации равновесия.

Свежие статьи
Популярно сейчас
Зачем заказывать выполнение своего задания, если оно уже было выполнено много много раз? Его можно просто купить или даже скачать бесплатно на СтудИзбе. Найдите нужный учебный материал у нас!
Ответы на популярные вопросы
Да! Наши авторы собирают и выкладывают те работы, которые сдаются в Вашем учебном заведении ежегодно и уже проверены преподавателями.
Да! У нас любой человек может выложить любую учебную работу и зарабатывать на её продажах! Но каждый учебный материал публикуется только после тщательной проверки администрацией.
Вернём деньги! А если быть более точными, то автору даётся немного времени на исправление, а если не исправит или выйдет время, то вернём деньги в полном объёме!
Да! На равне с готовыми студенческими работами у нас продаются услуги. Цены на услуги видны сразу, то есть Вам нужно только указать параметры и сразу можно оплачивать.
Отзывы студентов
Ставлю 10/10
Все нравится, очень удобный сайт, помогает в учебе. Кроме этого, можно заработать самому, выставляя готовые учебные материалы на продажу здесь. Рейтинги и отзывы на преподавателей очень помогают сориентироваться в начале нового семестра. Спасибо за такую функцию. Ставлю максимальную оценку.
Лучшая платформа для успешной сдачи сессии
Познакомился со СтудИзбой благодаря своему другу, очень нравится интерфейс, количество доступных файлов, цена, в общем, все прекрасно. Даже сам продаю какие-то свои работы.
Студизба ван лав ❤
Очень офигенный сайт для студентов. Много полезных учебных материалов. Пользуюсь студизбой с октября 2021 года. Серьёзных нареканий нет. Хотелось бы, что бы ввели подписочную модель и сделали материалы дешевле 300 рублей в рамках подписки бесплатными.
Отличный сайт
Лично меня всё устраивает - и покупка, и продажа; и цены, и возможность предпросмотра куска файла, и обилие бесплатных файлов (в подборках по авторам, читай, ВУЗам и факультетам). Есть определённые баги, но всё решаемо, да и администраторы реагируют в течение суток.
Маленький отзыв о большом помощнике!
Студизба спасает в те моменты, когда сроки горят, а работ накопилось достаточно. Довольно удобный сайт с простой навигацией и огромным количеством материалов.
Студ. Изба как крупнейший сборник работ для студентов
Тут дофига бывает всего полезного. Печально, что бывают предметы по которым даже одного бесплатного решения нет, но это скорее вопрос к студентам. В остальном всё здорово.
Спасательный островок
Если уже не успеваешь разобраться или застрял на каком-то задание поможет тебе быстро и недорого решить твою проблему.
Всё и так отлично
Всё очень удобно. Особенно круто, что есть система бонусов и можно выводить остатки денег. Очень много качественных бесплатных файлов.
Отзыв о системе "Студизба"
Отличная платформа для распространения работ, востребованных студентами. Хорошо налаженная и качественная работа сайта, огромная база заданий и аудитория.
Отличный помощник
Отличный сайт с кучей полезных файлов, позволяющий найти много методичек / учебников / отзывов о вузах и преподователях.
Отлично помогает студентам в любой момент для решения трудных и незамедлительных задач
Хотелось бы больше конкретной информации о преподавателях. А так в принципе хороший сайт, всегда им пользуюсь и ни разу не было желания прекратить. Хороший сайт для помощи студентам, удобный и приятный интерфейс. Из недостатков можно выделить только отсутствия небольшого количества файлов.
Спасибо за шикарный сайт
Великолепный сайт на котором студент за не большие деньги может найти помощь с дз, проектами курсовыми, лабораторными, а также узнать отзывы на преподавателей и бесплатно скачать пособия.
Популярные преподаватели
Добавляйте материалы
и зарабатывайте!
Продажи идут автоматически
5160
Авторов
на СтудИзбе
439
Средний доход
с одного платного файла
Обучение Подробнее