Классификация математических моделей
Классификация математических моделей.
Основные признаки классификации и типы ММ, применяемые в САПР, даны в таблице 1.
Таблица 1.
Признак классификации | Математические модели |
Характер отображаемых свойств объекта | Структурные; функциональные |
Принадлежность к иерархическому уровню | Микроуровня; макроуровня; метауровня |
Рекомендуемые материалы-70% Задача 6.1 + Задача 6.2 FREE Бараненков Г. С., Демидович Б. П., Ефименко В. А. - Задачи и упражнения по математическому анализу для втузов - 2004 -40% РК2 по ТФКП Билет 1_5 и ответы -30% Задача 5.2 -30% Задача 5.2 Вариант 26 - ДЗ №1 - Булевы функции Степень детализации описания внутри одного уровня | Полные; макромодели |
Способ представления свойств объекта | Аналитические, алгоритмические, имитационные |
Способ получения модели | Теоретические, эмпирические |
По характеру отображаемых свойств объекта ММ делятся на структурные и функциональные.
Структурные ММ предназначены для отображения структурных свойств объекта. Различают структурные ММ топологические и геометрические.
В топологических ММ отображаются состав и взаимосвязи элементов объекта. Топологические модели могут иметь форму графов, таблиц (матриц), списков и т. п.
В геометрических ММ отображаются геометрические свойства объектов, в них дополнительно к сведениям о взаимном расположении элементов содержатся сведения о форме деталей. Геометрические ММ могут выражаться совокупностью уравнений линий и поверхностей; алгебрологических соотношений, описывающих области, составляющие тело объекта; графами и списками, отображающими конструкции из типовых конструктивных элементов и т. п.
Функциональные ММ предназначены для отображения физических или информационных процессов, протекающих в объекте при его функционировании или изготовлении. Функциональные ММ представляют собой системы уравнений, связывающих фазовые переменные, внутренние, внешние и выходные параметры, т.е. алгоритм вычисления вектора выходных параметров Y при заданных векторах параметров элементов X и внешних параметров Q.
Количество иерархических уровней при моделировании определяется сложностью проектируемых объектов и возможностью средств проектирования. Однако для большинства предметных областей можно отнести имеющиеся иерархические уровни к одному из трех обобщенных уровней, называемых далее микро-, макро- и метауровнями.
В зависимости от места в иерархии описаний математические модели делятся на ММ, относящиеся к микро-, макро- и метауровням.
Особенностью ММ на микроуровне является отражение физических процессов, протекающих в непрерывных пространстве и времени. Типичные ММ на микроуровне - дифференциальные уравнения в частных производных (ДУЧП).
На макроуровне используют укрупненную дискретизацию пространства по функциональному признаку, что приводит к представлению ММ на этом уровне в виде систем обыкновенных дифференциальных уравнений (ОДУ). Системы ОДУ являются универсальными моделями на макроуровне, пригодными для анализа как динамических, так и установившихся состояний объектов. Модели для установившихся режимов можно также представить и виде систем алгебраических уравнений. Порядок системы уравнений зависит от числа выделенных элементов объекта. Если порядок системы приближается к 103, то оперирование моделью становится затруднительным и поэтому необходимо переходить к представлениям на метауровне.
На метауровне в качестве элементов принимают достаточно сложные совокупности деталей. Метауровень характеризуется большим разнообразием типов используемых ММ. Для многих объектов ММ на метауровне по-прежнему представляются системами ОДУ. Однако так как в моделях не описываются внутренние для элементов фазовые переменные, а фигурируют только фазовые переменные, относящиеся к взаимным связям, элементов, то укрупнение элементов на метауровне означает получение ММ приемлемой размерности для существенно более сложных объектов, чем на макроуровне.
В ряде предметных областей удается использовать специфические особенности функционирования объектов для упрощения ММ. Примером являются электронные устройства цифровой автоматики, в которых возможно применять дискретное представление таких фазовых переменных, как напряжения и токи. В результате ММ становится системой логических уравнений, описывающих процессы преобразования сигналов. Такие логические модели существенно более экономичны, чем модели электрические, описывающие изменения напряжений и сил токов как непрерывных функций времени. Важный класс ММ на метауровне составляют модели массового обслуживания, применяемые для описания процессов функционирования информационных и вычислительных систем, производственных участков, линий и цехов.
Структурные модели также делятся на модели различных иерархических уровней. При этом на низших иерархических уровнях преобладает использование геометрических моделей, на высших иерархических уровнях используются топологические модели.
По степени детализации описания в пределах каждого иерархического уровня выделяют полные ММ и макромодели.
Полная ММ - модель, в которой фигурируют фазовые переменные, характеризующие состояния всех имеющихся межэлементных связей (т. е. состояния всех элементов проектируемого объекта), описывающая не только процессы на внешних выводах моделируемого объекта, но и внутренние процессы объекта.
Макромодель - ММ, в которой отображаются состояния значительно меньшего числа межэлементных связей, что соответствует описанию объекта при укрупненном выделении элементов.
Примечание. Понятия «полная ММ» и «макромодель» относительны и обычно используются для различения двух моделей, отображающих различную степень детальности описания свойств объекта.
По способу представления свойств объекта функциональные ММ делятся на аналитические и алгоритмические.
Аналитические ММ представляют собой явные выражения выходных параметров как функций входных и внутренних параметров. Такие ММ характеризуются высокой экономичностью, но получение явного выражения удается лишь в отдельных частных случаях, как правило, при принятии существенных допущений и ограничений, снижающих точность и сужающих область адекватности модели.
Алгоритмические ММ выражают связи выходных параметров с параметрами внутренними и внешними в форме алгоритма.
Имитационная ММ - алгоритмическая модель, отражающая поведение исследуемого объекта во времени при задании внешних воздействий на объект. Примерами имитационных ММ могут служить модели динамических объектов в виде систем ОДУ и модели систем массового обслуживания, заданные в алгоритмической форме.
Обычно в имитационных моделях фигурируют фазовые переменные. Так, на макроуровне имитационные модели представляют собой системы алгебро-дифференциальных уравнений:
(1)
где V - вектор фазовых переменных; t - время; Vo - вектор начальных условий. К примерам фазовых переменных можно отнести токи и напряжения в электрических системах, силы и скорости - в механических, давления и расходы - в гидравлических.
Выходные параметры систем могут быть двух типов. Во-первых, это параметры-функционалы, т. е. функционалы зависимостей V(t) в случае использования (1). Примеры таких параметров: амплитуды сигналов, временные задержки, мощности рассеивания и т. п. Во-вторых, это параметры, характеризующие способность проектируемого объекта работать при определенных внешних условиях. Эти выходные параметры являются граничными значениями диапазонов внешних переменных, в которых сохраняется работоспособность объекта.
При проектировании технических объектов можно выделить две основные группы процедур: анализ и синтез. Для синтеза характерно использование структурных моделей, для анализа - использование функциональных моделей. К математическому обеспечению анализа относятся математические модели, численные методы, алгоритмы выполнения проектных процедур. Компоненты МО определяются базовым математическим аппаратом, специфичным для каждого из иерархических уровней проектирования.
В САПР анализ выполняется математическим моделированием.
Математическое моделирование - процесс создания модели и оперирование ею с целью получения сведений о реальном объекте.
Моделирование большинства технических объектов можно выполнять на микро-, макро и метауровнях, различающихся степенью детализации рассмотрения процессов в объекте.
Математической моделью технического объекта на микроуровне, называемого распределенным, является система дифференциальных уравнений в частных производных (ДУПЧ), описывающая процессы в сплошной среде с заданными краевыми условиями. Независимыми переменными являются пространственные координаты и время. К моделям на микроуровне относятся многие сравнения математической физики. Объектами исследования являются поля физических величин, что требуется при анализе прочности строительных сооружений или машиностроительных деталей, исследовании процессов в жидких средах, моделировании концентраций и потоков частиц в электронных приборах и т. п. С помощью этих уравнений рассчитываются поля механических напряжений и деформаций, электрических потенциалов, давлений, температур и т.д. Возможности применения ММ в виде ДУЧП ограничены отдельными деталями, попытки анализировать с их помощью процессы в многокомпонентных средах, сборочных единицах, электронных схемах не могут быть успешными из-за чрезмерного роста затрат машинного времени и памяти.
Система дифференциальных уравнений, как правило, известна (уравнения Ламе для механики упругих сред; уравнения Навье-Стокса для гидравлики; уравнения теплопроводности для термодинамики и т.д.), но точное решение ее удается получить лишь для частных случаев, поэтому первая задача, возникающая при моделировании, состоит в построении приближенной дискретной модели. Для этого используются методы конечных разностей и интегральных граничных уравнений, одним из вариантов последнего является метод граничных элементов.
Число совместно исследуемых различных сред (число деталей, слоев материала, фаз агрегатного состояния) в практически используемых моделях микроуровня не может быть большим ввиду сложностей вычислительного характера. Резко снизить вычислительные затраты в многокомпонентных средах можно, только применив иной подход к моделированию, основанный на принятии определенных допущений.
Допущение, выражаемое дискретизацией пространства, позволяет перейти к моделям макроуровня, называемым сосредоточенными. Математической моделью технического объекта на макроуровне является система алгебраических и обыкновенных дифференциальных уравнений (ОДУ) с заданными начальными условиями.
В этих уравнениях независимой переменной является время t, а вектор зависимых переменных V составляют фазовые переменные, характеризующие состояние укрупненных элементов дискретизированного пространства. Такими переменными являются силы и скорости механических систем, напряжения и силы тока электрических систем, давления и расходы гидравлических и пневматических систем и т.п.
В основе ММ лежат компонентные уравнения отдельных элементов и топологические уравнения, вид которых определяется связями между элементами. Предпосылкой создания единого математического и программного обеспечения анализа на макроуровне являются аналогии компонентных и топологических уравнений физически однородных подсистем, из которых состоит технический объект. Для получения топологических уравнений используются формальные методы.
Основными методами получения ММ объектов на макроуровне являются:
· Обобщенный метод,
· Табличный метод,
Вам также может быть полезна лекция "4. Обеспечение надежности работы систем противопожарного водоснабжения".
· Узловой метод,
· Метод переменных состояний.
Методы отличаются друг от друга видом и размерностью получаемой системы уравнений, способом дискретизации компонентных уравнений реактивных ветвей, допустимыми типами зависимых ветвей. Упрощение описания отдельных компонентов (деталей) позволяет исследовать модели процессов в устройствах, приборах, механических узлах, число компонентов в которых может доходить до нескольких тысяч. Для сложных технических объектов размерность ММ становится чрезмерно высокой, и для моделирования приходится переходить на метауровень.
На метауровне моделируют в основном две категории технических объектов: объекты, являющиеся предметом исследований теории автоматического управления, и объекты, являющиеся предметом теории массового обслуживания. Для первой категории объектов возможно использование математического аппарата макроуровня, для второй категории объектов используют методы событийного моделирования.
Когда число компонентов в исследуемой системе превышает некоторый порог, сложность модели системы на макроуровне вновь становится чрезмерной. Принимая соответствующие допущения, переходят на функционально-логический уровень, где используется аппарат передаточных функций для исследования аналоговых (непрерывных) процессов или аппарат математической логики и конечных автоматов, если объектом исследования является дискретный процесс.
Для исследования еще более сложных объектов (производственные предприятия и их объединения, вычислительные системы и сети, социальные системы и др.) применяют аппарат теории массового обслуживания, возможно использование и некоторых других подходов, например сетей Петри. Эти модели относятся к системному уровню моделирования.