Популярные услуги

Курсовой проект по деталям машин под ключ
Все лабораторные под ключ! КМ-1. Комбинационные логические схемы + КМ-2. Комбинационные функциональные узлы и устройства + КМ-3. Проектирование схем
ДЗ по ТММ в бауманке
КМ-3. Типовое задание к теме прямые измерения. Контрольная работа (ИЗ1) - любой вариант!
Любая лабораторная в течение 3 суток! КМ-1. Комбинационные логические схемы / КМ-2. Комбинационные функциональные узлы и устройства / КМ-3. Проектирование схем
КМ-2. Выпрямители. Письменная работа (Электроника семинары)
Допуски и посадки и Сборочная размерная цепь + Подетальная размерная цепь
Курсовой проект по деталям машин под ключ в бауманке
ДЗ по матведу любого варианта за 7 суток
Любой ДЗ по метрологии, стандартизации и сертификаци
Главная » Лекции » Инженерия » Сигналы и линейные системы » Энергетические спектры сигналов

Энергетические спектры сигналов

2021-03-09СтудИзба

Тема 7:  энергетические  спектры  сигналов

Математик может говорить все, что взбредет ему в голову, но физик обязан сохранять хотя бы крупицу здравого смысла.

 Джосайя Гиббс  (XIX в.).

Американский физик

Хотела бы я знать, где эта самая крупица здравого смысла в энергии сигналов, если еще ни одному человеку в мире на этой энергии не удалось приготовить себе завтрак. 

Маргарита Пястолова, (ХХ в.).

Иркутский  геофизик Уральской школы.

Содержание:  7.1. Мощность и энергия сигналов.  7.2. Энергетические спектры сигналов. Скалярное произведение сигналов. Взаимный энергетический спектр. Энергетический спектр сигнала. Литература.

7.1. Мощность и энергия сигналов [1,3,16].

Рекомендуемые материалы

Частотное представление применяется не только для спектрального анализа сигналов, но и для упрощения вычислений энергии сигналов и их корреляционных характеристик.

Как уже рассматривалось ранее, для произвольного сигнала s(t) = a(t)+jb(t), где а(t) и b(t) - вещественные функции, мгновенная мощность сигнала (плотность распределения энергии) определяется выражением:

w(t) = s(t)s*(t) = a2(t)+b2(t) = |s(t)|2.

Энергия сигнала равна интегралу от мощности по всему интервалу существования сигнала. В пределе:

Еs =w(t)dt =|s(t)|2dt.

По существу, мгновенная мощность является плотностью мощности сигнала, так как измерения мощности возможны только через энергию, выделяемую на определенных интервалах ненулевой длины:

w(t) = (1/Dt)|s(t)|2dt.

Сигнал s(t) изучается, как правило, на определенном интервале Т (для периодических сигналов - в пределах одного периода Т), при этом средняя мощность сигнала:

WT(t) = (1/T)w(t) dt = (1/T)|s(t)|2 dt.

Понятие средней мощности может быть распространено и на незатухающие сигналы, энергия которых бесконечно велика. В случае неограниченного интервала Т строго корректное определение средней мощности сигнала производится по формуле:

Ws = w(t) dt.

Энергия и норма сигналов связаны соотношениями: 

Es = ||s(t)||2,         ||s|| = .

7.2. Энергетические спектры сигналов [1].

Скалярное произведение сигналов. Энергия суммы двух произвольных сигналов u(t) и v(t) определяется выражением:

E =[u(t)+v(t)]2 dt = Eu + Ev + 2u(t)v(t) dt.                             (7.2.1)

Как следует из этого выражения, энергии сигналов, в отличие от самих сигналов, в общем случае не обладают свойством аддитивности. Энергия суммарного сигнала u(t)+v(t), кроме суммы энергий составляющих сигналов, содержит в себе и так называемую энергию взаимодействия сигналов или взаимную энергию:

Euv = 2u(t)v(t) dt.                                                 (7.2.2)

Интеграл выражения (7.2.2) для двух вещественных сигналов является фундаментальной характеристикой, пропорциональной взаимной энергии сигналов. Его называют скалярным произведением сигналов:

    Пuv = (u(t),v(t)) =u(t)v(t) dt = ||u||×||v|| cos j,                            (7.2.3)

Скалярное произведение обладает следующими свойствами:

1. (u,v) ³ 0;

2. (u,v) = (v,u);

3. (au,v) = a(u,v), где а – вещественное число;

4. (u+v, a) = (u,a) + (v,a).

Линейное пространство сигналов с таким скалярным произведением называется гильбертовым пространством Н. С учетом того, что cos j £ 1, в гильбертовом пространстве справедливо неравенство Коши-Буняковского:

        |Пuv| £ ||u||×||v||.                                                    (7.2.4)

Для комплексного гильбертова пространства скалярное произведение также представляет собой вещественное число и вычисляется по формуле:

      Пuv =u(t)v*(t) dt ºu*(t)v(t) dt.                              (7.2.3')

Из выражения (7.2.3) следует, что косинус угла между сигналами:

    cos j = Пuv/(||u||×||v||).                                            (7.2.5)

При полной тождественности сигналов (равенстве амплитуд и временных координат)  имеем j = 0, cos j = 1, и скалярное произведение становится равным энергии сигналов:

Пuv = u(t)2 dt ºv(t)2 dt º ||u||2 º ||v||2 .

Дискретные сигналы обычно рассматриваются в пространстве Евклида (обозначение пространства - R2). Скалярное произведение двух сигналов в пространстве Евклида:

 Пuv = (uk,vk) =ukvk,

где n - размерность пространства.

Взаимный энергетический спектр. Из очевидной однозначности энергии взаимодействия сигналов независимо от формы их математического представления (в динамической и частотной модели) следует выражение для скалярного произведения произвольных вещественных сигналов u(t) и v(t) через спектральные плотности сигналов U(w) и V(w) в комплексном гильбертовом пространстве:

Пuv = (1/2p)U(w)V*(w) dw º (1/2p)U*(w)V(w) dw.            (7.2.6)

            Функции

Wuv(w) = U(w)V*(w),  Wvu(w) = U*(w)V(w),   Wuv(w) = Wvu*(w),         (7.2.7)

для которых справедливо выражение (7.2.6), называется взаимными энергетическими спектрами вещественных сигналов и являются функциями распределения плотности энергии взаимодействия сигналов (мощности взаимодействия) по частоте.

В общем случае, за исключением спектров четных функций, взаимные энергетические спектры также являются комплексными функциями:

U(w) = Au(w) + j Bu(w),     V(w) = Av(w) + j Bv(w).

  Wuv = AuAv+BuBv+j (BuAv - AuBv) = Re Wuv(w) + j Im Wuv(w).             (7.2.7')

            С учетом четности реальной части и нечетности мнимой части энергетических спектров, интеграл мнимой части выражения (7.2.7') равен нулю, а, следовательно, скалярное произведение сигналов всегда является вещественным и неотрицательным, как и энергия сигналов:

    Пuv = (1/2p)Wuv(w) dw º (1/p)Re Wuv(w) dw.                    (7.2.8)

Описание: Ts7_1_1

Рис. 7.2.1. Форма и энергетические спектры сигналов.

На рис. 7.2.1 приведена форма двух одинаковых сдвинутых во времени и частично перекрывающихся лапласовских импульсов u(t) и v(t), а также суммарный импульс z(t)=u(t)+v(t). Плотности энергии сигналов W(f) приведены в относительных единицах плотности энергии суммарного сигнала Wz(f) на нулевой частоте.

Как видно из графиков, плотности энергии сигналов являются вещественными неотрицательными функциями и содержат только реальные части. В отличие от них, плотность взаимной энергии сигналов является комплексной функцией, при этом модуль плотности по своим значениям на шкале частот соизмерим с средними значениями плотности энергии сигналов на этих частотах и не зависит от их взаимного расположения на временной оси. Для сигналов, одинаковых по форме, модуль взаимной плотности равен значениям плотности энергии сигналов. 

Описание: Ts7_1_2

Рис. 7.2.2. Взаимные энергетические спектры сигналов.

На рис. 7.2.2 приведены плотности взаимной энергии тех же сигналов при разной величине временного сдвига Dt между сигналами. Однако при постоянном значении модуля взаимной энергии сигналов действительная и мнимая функции спектра мощности существенно изменяются при изменении сдвига между сигналами. При незначительной величине временного перекрытия сигналов частота осцилляций реальной и мнимой части плотности взаимной энергии достаточно велика, а относительный коэффициент затухания колебаний (уменьшение амплитудных значений от периода к периоду) достаточно мал. Соответственно, при вычислении скалярного произведения по формуле (7.2.8) положительные амплитудные значения осцилляций Re(Wuv) практически полностью компенсируются отрицательными значениями и результирующий интеграл, а равно и энергия взаимодействия сигналов (удвоенное значение скалярного произведения), близка к нулевой (стремится к нулю по мере увеличения сдвига между сигналами).

При увеличении степени взаимного перекрытия сигналов частота осцилляций плотности взаимной энергии уменьшается (Dt = 50 mkc на рис. 7.2.2) и основным по энергии реальной части спектра становится центральный низкочастотный пик, площадь которого не компенсируется площадью последующей отрицательной полуволны осцилляции. Соответственно, возрастает и энергия взаимодействия сигналов. При полном перекрытии сигналов (при нулевом фазовом угле между сигналами) осцилляции исчезают и энергия взаимодействия сигналов максимальна.

Энергетический спектр сигнала. Если функция s(t) имеет фурье-образ S(w), то  плотность мощности сигнала (спектральная плотность энергии сигнала) определяется выражением:

                               w(t) = s(t)s*(t) = |s(t)|2 Û |S(w)|2 = S(w)S*(w) = W(w).                      (7.2.9)

Спектр мощности W(w) - вещественная неотрицательная четная функция, которую обычно называют энергетическим спектром. Спектр мощности, как квадрат модуля спектральной плотности сигнала, не содержит фазовой информации о его частотных составляющих, а, следовательно, восстановление сигнала по спектру мощности невозможно. Это означает также, что сигналы с различными фазовыми характеристиками могут иметь одинаковые спектры мощности. В частности, сдвиг сигнала не отражается на его спектре мощности. Последнее позволяет получить выражение для энергетического спектра непосредственно из выражений (7.2.7). В пределе, для одинаковых сигналов u(t) и v(t) при сдвиге Dt Þ 0, мнимая часть спектра Wuv(w) стремится к нулевым значениям, а реальная часть – к значениям модуля спектра. При полном временном совмещении сигналов имеем:

         Wuv(w) = U(w)V*(w) = U(w)U*(w) = |U(w)|2 = Wu(w).                  (7.2.10)

            Соответственно, полная энергия сигнала:

Еu =u(t)2dt = (1/2p)Wu(t)dt = (1/2p)|U(w)|2 dw,                (7.2.11)

т.е. энергия сигнала равна интегралу квадрата модуля его частотного спектра - сумме энергии его частотных составляющих, и всегда является вещественной величиной.

Для произвольного сигнала s(t) равенство

|s(t)|2 dt =|S(f)|2 df

обычно называют равенством Парсеваля (в математике – теоремой Планшереля, в физике – формулой Релея). Равенство очевидно, так как координатное и частотное представления по существу только разные математические отображения одного и того же сигнала. Аналогично для энергии взаимодействия двух сигналов:

u(t) v*(t) dt =U(f) V*(f) df.

            Из равенства Парсеваля следует инвариантность скалярного произведения сигналов и нормы относительно преобразования Фурье:

(u(t),v(t)) = (U(f),V(f)),     ||s(t)||2 = ||S(f)||2.

Ещё посмотрите лекцию "Управление памятью" по этой теме.

            В целом ряде чисто практических задач регистрации и передачи сигналов энергетический спектр сигнала имеет весьма существенное значение.

Описание: Ts7_2_3

Рис. 7.2.3. Энергетический спектр

 прямоугольного импульса.

            Как правило, спектры сигналов с крутыми фронтами (например, кодовых сигналов при передаче цифровых данных) являются многолепестковыми с постепенным затуханием энергии в последовательных лепестках. Пример нормированного энергетического спектра прямоугольного импульса длительностью tи приведен на рис. 7.2.3. Спектры выполнены в линейном (сплошная линия) и логарифмическом (пунктир) масштабе по оси значений. Для четкого разделения лепестков функции спектров  приведены по безразмерной частотной переменной f×tи.

            Интегрированием энергетического спектра по интервалам лепестков спектра нетрудно вычислить, что в пределах первого лепестка сосредоточено 90.2% энергии всего сигнала, в пределах второго – 4.8%, в пределах третьего – 1.7%, и т.д. Если форма сигналов в пункте их приема (детектирования) существенного значения не имеет, а регистрация сигналов идет на уровне статистических шумов, равномерно распределенных по всему частотному диапазону,  то такие сигналы целесообразно пропускать через фильтр нижних частот с выделением только первого энергетического лепестка сигнала. Естественно, что при этом фронты регистрируемого сигнала будут сглажены. Но при расширении полосы пропускания фильтра на два или три лепестка энергия принимаемого сигнала будет увеличена соответственно на 4.8 или 6.5%, в то время как энергия шумов в 2 или 3 раза.

Свежие статьи
Популярно сейчас
Зачем заказывать выполнение своего задания, если оно уже было выполнено много много раз? Его можно просто купить или даже скачать бесплатно на СтудИзбе. Найдите нужный учебный материал у нас!
Ответы на популярные вопросы
Да! Наши авторы собирают и выкладывают те работы, которые сдаются в Вашем учебном заведении ежегодно и уже проверены преподавателями.
Да! У нас любой человек может выложить любую учебную работу и зарабатывать на её продажах! Но каждый учебный материал публикуется только после тщательной проверки администрацией.
Вернём деньги! А если быть более точными, то автору даётся немного времени на исправление, а если не исправит или выйдет время, то вернём деньги в полном объёме!
Да! На равне с готовыми студенческими работами у нас продаются услуги. Цены на услуги видны сразу, то есть Вам нужно только указать параметры и сразу можно оплачивать.
Отзывы студентов
Ставлю 10/10
Все нравится, очень удобный сайт, помогает в учебе. Кроме этого, можно заработать самому, выставляя готовые учебные материалы на продажу здесь. Рейтинги и отзывы на преподавателей очень помогают сориентироваться в начале нового семестра. Спасибо за такую функцию. Ставлю максимальную оценку.
Лучшая платформа для успешной сдачи сессии
Познакомился со СтудИзбой благодаря своему другу, очень нравится интерфейс, количество доступных файлов, цена, в общем, все прекрасно. Даже сам продаю какие-то свои работы.
Студизба ван лав ❤
Очень офигенный сайт для студентов. Много полезных учебных материалов. Пользуюсь студизбой с октября 2021 года. Серьёзных нареканий нет. Хотелось бы, что бы ввели подписочную модель и сделали материалы дешевле 300 рублей в рамках подписки бесплатными.
Отличный сайт
Лично меня всё устраивает - и покупка, и продажа; и цены, и возможность предпросмотра куска файла, и обилие бесплатных файлов (в подборках по авторам, читай, ВУЗам и факультетам). Есть определённые баги, но всё решаемо, да и администраторы реагируют в течение суток.
Маленький отзыв о большом помощнике!
Студизба спасает в те моменты, когда сроки горят, а работ накопилось достаточно. Довольно удобный сайт с простой навигацией и огромным количеством материалов.
Студ. Изба как крупнейший сборник работ для студентов
Тут дофига бывает всего полезного. Печально, что бывают предметы по которым даже одного бесплатного решения нет, но это скорее вопрос к студентам. В остальном всё здорово.
Спасательный островок
Если уже не успеваешь разобраться или застрял на каком-то задание поможет тебе быстро и недорого решить твою проблему.
Всё и так отлично
Всё очень удобно. Особенно круто, что есть система бонусов и можно выводить остатки денег. Очень много качественных бесплатных файлов.
Отзыв о системе "Студизба"
Отличная платформа для распространения работ, востребованных студентами. Хорошо налаженная и качественная работа сайта, огромная база заданий и аудитория.
Отличный помощник
Отличный сайт с кучей полезных файлов, позволяющий найти много методичек / учебников / отзывов о вузах и преподователях.
Отлично помогает студентам в любой момент для решения трудных и незамедлительных задач
Хотелось бы больше конкретной информации о преподавателях. А так в принципе хороший сайт, всегда им пользуюсь и ни разу не было желания прекратить. Хороший сайт для помощи студентам, удобный и приятный интерфейс. Из недостатков можно выделить только отсутствия небольшого количества файлов.
Спасибо за шикарный сайт
Великолепный сайт на котором студент за не большие деньги может найти помощь с дз, проектами курсовыми, лабораторными, а также узнать отзывы на преподавателей и бесплатно скачать пособия.
Популярные преподаватели
Добавляйте материалы
и зарабатывайте!
Продажи идут автоматически
5137
Авторов
на СтудИзбе
440
Средний доход
с одного платного файла
Обучение Подробнее