Популярные услуги

Курсовой проект по деталям машин под ключ
Все лабораторные под ключ! КМ-1. Комбинационные логические схемы + КМ-2. Комбинационные функциональные узлы и устройства + КМ-3. Проектирование схем
ДЗ по ТММ в бауманке
КМ-3. Типовое задание к теме прямые измерения. Контрольная работа (ИЗ1) - любой вариант!
Любая лабораторная в течение 3 суток! КМ-1. Комбинационные логические схемы / КМ-2. Комбинационные функциональные узлы и устройства / КМ-3. Проектирование схем
КМ-2. Выпрямители. Письменная работа (Электроника семинары)
Допуски и посадки и Сборочная размерная цепь + Подетальная размерная цепь
КМ-3. Задание по Matlab/Scilab. Контрольная работа - любой вариант за 3 суток!
ДЗ по матведу любого варианта за 7 суток
Задача по гидравлике/МЖГ

Оборудование и оснастка для дефектации

2021-03-09СтудИзба

2.4. 2.5. Оборудование и оснастка для дефектации

2.5.1. Рентгеновский и гамма-методы

Гамма-аппараты. Для получения рентгенограммы, обеспечивающей наибольшую чувствительность к дефектам, конверт с пленкой необходи­мо устанавливать на возможно мень­шем расстоянии от детали. Чем это расстояние больше, тем меньше и чувствительность контроля. Чувстви­тельность рентгеновского метода мо­жет понижаться в тех случаях, если при просвечивании изделия между контролируемым участком детали, источником излучения и пленкой на­ходятся другие, мешающие контролю детали. Снижение чувствительности тем больше, чем больше толщина и плотность материала детали, меша­ющих просвечиванию.

Радиографический контроль изде­лия в эксплуатации должен прово­диться транспортабельными, облег­ченными рентгеновскими гамма-ап­паратами. К таким аппаратам отно­сятся переносные аппараты типа РУП-120-5 и РУП-200-5, а также но­вые аппараты типа РАП-160-10П и РАП-160-10Н. Эти аппараты состоят из высоковольтного блока, в котором находятся рентгеновская трубка и питающий ее высоковольтный гене­ратор, пульта управления и перенос­ного штатива. Высоковольтный блок соединяется с пультом управления электрическим кабелем длиной 30 м. Сетевой кабель имеет длину 5 м, водо­проводные шланги (для охлаждения анода трубки)— 10м. Масса высоко­вольтного блока РУП-120-5 равна 45 кг, масса РУП-200-5 —82 кг, масса пульта соответственно30и35кг, шта­тива-тележки — 40 — 43 кг.

В аппаратуре РУП-120-5 анодное напряжение может изменяться от 35 до 120 кВ, анодный ток — от 0 до 5м А, что позволяет просвечивать стальные детали толщиной до 20 мм, а детали из алюминиевых сплавов — до 100 мм.

В аппаратуре РУП-200-5 интервал изменения анодного напряжения — 45 — 200 кВ и тока — 0 — 5 мА. Это позволяет просвечивать стальные де­тали толщиной до 35 мм при фокус­ном расстоянии около 50 см и при ис­пользовании высокочувствительной пленки типа РТ-1.

Пленка   РТ-5 обладает меньшей, чем пленка РТ-1, чувствительностью к рентгеновским лучам, поэтому при использовании ее можно просветить менее толстостенные изделия, но при этом обеспечивается более высокая контрастность рентгенограмм, а сле­довательно, лучше выявляются де­фекты.

Новый рентгеновский аппарат РАП-160-Ю является более универ­сальным, чем предыдущие, так как спектр излучения его содержит зна­чительно больше "мягких" лучей, что позволяет получать высококачест­венные рентгенограммы с объектов из алюминиевых сплавов и сталей. При сравнительно высоком анодном напряжении, равном 160 кВ, масса аппарата составляет 55 кг; анодный ток аппарата 10 мА.

Менее транспортабельными явля­ются кабельные аппараты РУП-160-20 и РУП-150/300-10. Аппарат РУП-150-10 снабжен трубкой с выносным анодом, который вводится в отвер­стие диаметром, равным или более 10 мм; всю трубку можно вводить в по­лость диаметром не менее 220 мм; ап­парат позволяет просвечивать коль­цевые швы на одну экспозицию.

Переносные гамма-дефектоскопы РИД-11, РИД-21 и РК-2 (табл; 2.5) можно применять для контроля труд­нодоступных мест изделий в условиях эксплуатации в тех случаях, когда рентгеновские аппараты нельзя ис­пользовать для этих целей из-за их громоздкости. Важными преимуще­ствами рентгеновского контроля по сравнению с гамма-контролем явля­ются его более высокая чувствитель­ность, производительность и возмож­ность плавной регулировки энергии излучения. Регулировка энергии из­лучения определенного изотопа при гамма-дефектоскопии исключается.

Основы методики контроля. Основ­ные технологические прооперации контроля. Процесс радиографиче­ского контроля включает следующие основные операции:

Рекомендуемые материалы

конструктивно-технологический анализ объекта и подготовка его к просвечиванию;

выбор источника излучения и фото­материалов;

определение режимов и проведе­ние просвечивания объекта;

химико-фотографическая обработ­ка экспонированной пленки;

расшифровка снимков с оформле­нием полученных результатов.

Задача контролера-дефектоскописта состоит в получении радиографи­ческого снимка, пригодного для про­ведения по нему оценки качества объ­екта.

В процессе подготовки к просвечи­ванию необходимо детально ознако­миться с участками изделия, которые подлежат контролю: установить раз­меры и конфигурацию контролируе­мых участков, определить толщину и плотность материала на этих уча­стках (желательно по чертежам), оценить возможность подхода со средствами контроля к просвечивае­мой зоне.

Кассеты с рентгеновскими пленка­ми маркируют в том же порядке, что и соответствующие участки изделия. Кассеты маркируют накладыванием свинцовых цифр и стрелок, прикреп­ляемых при помощи липкой (про­зрачной) ленты либо при помощи пластилина. Рекомендуется приме­нять свинцовые маркировочные зна­ки по ГОСТ 15843—79.

Выбор источника излучения и фо­томатериалов зависит от области применения рентгено- и гаммаграфии и контролепригодности изделия. Основным техническим требованием к выбору источника излучения и рен­тгеновской пленки является обеспе­чение высокой чувствительности ме­тода.

Таблица 2.5. Основные характеристики отечественных гамма-аппаратов для контроля изделий в условиях эксплуатации

Как было указано выше, для конт­роля качества участков изделий с просвечиваемой толщиной до 50 мм (по стали) целесообразно Использо­вать рентгеновские аппараты 7Л2, РУП-120-5-1, РАП-160-10Н, РАП-160-6П, РУП-200-5-1 и РАП-300-5Н. В том случае, если просвечиваемая толщина (по стали) превышает 50 мм или контролепригодность изделия не позволяет использовать существую­щую рентгеновскую технику; необхо­димо применить гамма-дефектоско­пы РК-2, РИД-11, РИД-2Ш, РИД-22, РУП—1г-5-2, РУП—Сз-2-1. Вы­бор пленки для просвечивания опре­деляется минимальными размерами дефектов, подлежащих выявлению, а также толщиной и плотностью мате­риала контролируемого объекта. При контроле объектов м алой толщи­ны и особенно из легких сплавов целе­сообразно применять высококонтра­стные и мелкозернистые пленки типа РТ-5, РНТМ-1 или РТ-4М. При просвечивании больших толщин следует использовать более чувствительную пленку типа РТ-1. При работе на на­пряжении свыше 200 кВ или с радио­активными источниками излучения пленку в кассету следует заряжать вместе с усиливающими металличе­скими экранами(обычно оловянисто-свинцовая фольга толщиной 0,05 — 0,1 мм), позволяющими повысить ка­чество получаемых изображений и сократить продолжительность экспо­зиции.

2.5.2. Капиллярный метод Аппаратура и приспособления.

Чувствительность капиллярного ме­тода контроля в условиях эксплуата­ции зависит от выбора комплекта применяемых дефектоскопических материалов и точности выполнения оптимальных условий контроля:

1. Температура контролируемой поверхности, дефектоскопических материалов и окружающего воздуха должна быть в пределах 20 — 25 °С. Повышениетемпературыдо40 — 45 °С незначительно снижает чувствитель­ность метода. Понижение температу­ры до 10 "С существенно снижает чувствительность.

2. Контролируемая поверхность не должна иметь каких-либо покрытий, если не ставится вопрос об обнаруже­нии сплошности самого покрытия, но при этом покрытие не должно быть пористым или адсорбирующим инди­каторный ненетрант.

3. Чистота обработки поверхности должна быть не ниже 5. Ухудшение частоты обработки контролируемой поверхности снижает чувствитель­ность метода, а в ряде случаев приво­дит к невозможности его применения.

Одним из основных условий приме­нения капиллярного метода является доступность контролируемого участ­ка для проведения технологических операций контроля, необходимого ос­вещения контролируемой поверхно­сти, ее свободного осмотра. В связи с этим при разработке новых конструкций целесообразно предусмотреть возможность доступа к деталям и уз­лам, где в процессе эксплуатации мо­жет возникнуть необходимость конт­роля капиллярными методами (на­пример, к лопаткам турбины и комп­рессора, трубопроводам и т. д.).

Для подготовки контролируемой поверхности к контролю, заключаю­щемуся в основном в удалении раз­личного рода покрытий, а также на­гара, окалины, ржавчины и т. д., ис­пользуют обычно механические сред­ства (напильники, наждачные шкур­ки, шаберы и др.), если при этом не происходит "заволакивание" дефек­тов. Демонтируемые детали и узлы дополнительно подвергают пескост­руйной обработке или очистке в ульт­развуковых ваннах.

Для обработки объектов дефекто­скопическими материалами исполь­зуют аэрозольные баллоны с требуе­мым комплектом материалов или плотно закрывающиеся, не корродирующие от дефектоскопических ма­териалов вместимости, краскорас­пылители, жесткие (волосяные) или мягкие(беличьи) кисти, хлопчатобу­мажную ветошь. Для защиты кожи рук от действия токсичных дефекто­скопических материалов используют хлопчатобумажные и резиновые пер­чатки, а для предохранения органов дыхания, особенно при работе в зам­кнутых объемах и невозможности эф­фективного удаления продуктов ис­парения и распыления используемых материалов, — респираторы или противогазы.

Для зарядки баллонов необходи­мыми дефектоскопическими состава­ми целесообразно использовать спе­циальное зарядное устройство КД-40ЛД. В условиях эксплуатации удобно пользоваться переносным де­фектоскопом ДМК-4, в комплекте ко­торого имеются наборы кистей, вме­стимости с пенетрантом и проявите­лем, краскораспылитель и другие не­обходимые для контроля принадлеж­ности и материалы.

Краскораспылители типа 0-31А, 0-37А и др. в полевых условиях целесообразно подключать к баллонам со сжатым аргоном или азотом, через редуктор с манометром (давление 0,2 — 0,3 МПа). При понижении тем­пературы окружающей среды для обеспечения нормальных условий контроля следует использовать спе­циальные калориферные устройства.

Чтобы облегчить выявление дефек­тов, используют (при необходимости) различные оптические приспособле­ния: зеркала, лупы 4 — 7-кратного увеличения и др., при недостаточной освещенности контролируемой по­верхности дневным светом применя­ют дополнительное просвечивание контролируемого участка лампами накаливания. Степень освещенности контролируемой поверхности изме­ряют люксметром типа Ю-16 непос­редственно на контролируемом уча­стке или на искусственно созданной модели, имитирующей этот участок.

Для выявления дефектов при лю­минесцентном методе контроля ис­пользуется переносный ультрафио­летовый осветитель.

Таблица 2.6. Комплекты материалов для капиллярной дефектоскопии

Тип комплекта

Дефектоскопические материалы

Минимальные размеры

Ненетрант

Очиститель

Проявитель

Ширина, мкм

Длина, мм

Люминесцентный ЛЮМ-А ЛЮМ-ВЗ

ЛЖ-6А ЛЖ-6А

ОЖ-1 или керосин Тоже

ПР-1 ПР-4

1 — 2 2 — 3

1,0 1,0

Цветной КМ

к

Керосиново-масляная смесь

М

2 — 3

1,0

КВ

к

Тоже

В (для кислоты)

2 — 3

1,0

Основы методики контроля. Выбор цветного или люминесцентного мето­да обусловливается необходимой сте­пенью чувствительности к дефектам. Материалы, которые могут быть ис­пользованы в условиях эксплуата­ции, приведены в табл. 2.6.

Последовательность контроля сле­дующая: подготовка контролируемой поверхности, нанесение индикатор­ной жидкости (ненетранта), удаление ненетранта, нанесение проявителя, осмотр, промывка. Очень важным

этапом является операция обезжири­вания деталей. Их промывают снача­ла в бензине, а затем в ацетоне. Краситель (ненетрант К в цветном соста­ве КМ или КВ) четырежды наносят на поверхность с интервалами в 1,5 — 2,0 мин. Удаление ненет­ранта осуществляется водой, спе­циальной очищающей жидкостью или керосином.

После протирки хлопчатобумаж­ной ветошью наносят проявитель при помощи краскопульта (проявитель ПР-1 и М) или кисти (проявитель В). Необходимо помнить, что все прояви­тели токсичны (кроме ПР-4). К осмот­ру детали можно приступить после нанесения проявителя М — через 1 ч, проявителя В — через 30 мин, про­явителей ПР-1 и ПР-4 — через 45 мин. Удаляют проявители ацетоном или водой (ПР-4).

2.5.3. Ультразвуковой метод

Аппаратура для ультразвукового контроля. Чувствительность контро­ля оценивается наименьшей пло­щадью надежно выявляемого дефек­та в данном материале. Она зависит от частоты УЗК, применяемой аппа­ратуры, акустических свойств мате­риала детали, чистоты обработки и кривизны поверхности, структурного состояния материала, формы, ориен­тировки и глубины залегания дефек­та. В реальных условиях могут быть выявлены трещины площадью от 1 — 10 мм2 (табл. 2.7).

Таблица 2.7. Характерные случаи в практике ультразвукового контроля

Надежность результатов ультра­звуковой (УЗ) дефектоскопии зави­сит от состояния поверхности, формы детали и структурного состояния ма­териала. Удовлетворительные ре­зультаты достигаются при контроле деталей, изготовленных из деформи­рованных полуфабрикатов с чисто­той обработки поверхности не ниже 6 и имеющих простую форму. Литые детали как правило, ультразвуково­му контролю не подвергаются.

Затруднен ультразвуковой Конт­роль деталей, сложной формы, изго­товленных из деформированных полу­фабрикатов, например, болтов, лопа­ток, тройников, кронштейнов и т. д. Необходимым условием УЗ контроля является наличие хотя бы односто­роннего доступа к контролируемой поверхности. Элементы изделия, за­крытые обшивкой, не могут быть про­контролированы. Чувствительность УЗ контроля резко снижается при на­личии толстых лакокрасочных по­крытий, при грубой обработке поверхности и при коррозионных пораже­ниях.

В эксплуатации следует использо­вать портативные, транспортабель­ные ультразвуковые приборы. Наи­более приемлемым является дефек­тоскоп ДУК-66П и толщиномеры ти­па УТ-30. В табл. 2.8 приведены пара­метры данных приборов и аналогич­ных зарубежных образцов.

Ультразвуковые дефектоскопы УД-11ПУ и УД2-12 являются базовы­ми дефектоскопами нового поколе­ния, реализующими возможность контроля с применением эхо-метода, теневого и резонансного методов со скоростями распространения про­дольных волн в диапазоне от 2500 до 6500 м/с. В основу работы дефекто­скопов положен описанный выше принцип.

В основу измерительной схемы приборов положен метод измерения временного интервала между зонди­рующим и отраженным импульсами. Принцип работы дефектоскопов заключается в следующем. Возбуди­тель преобразователя, запускаемый, как и другие блоки дефектоскопа, от внутреннего или внешнего преобра­зователя, вырабатывает радиоим­пульс в пьезоэлементе, подключае­мом к выходному разъему дефекто­скопа.

Преобразователь, контактируя с объектом через слой контактной смазки, обеспечивает ввод в объект механических ультразвуковых коле­баний, которые, распространяясь в нем, отражаются от границ раздела сред (металл—воздух) или имеющих­ся дефектов и вновь поступают на приемный преобразователь, подклю­ченный к входному разъему дефекто­скопа.

В приемном преобразователе ульт­развуковые колебания преобразуют­ся в электрические колебания и восп­ринимаются приемным устройством дефектоскопа. Усиленные и преобра­зованные сигналы поступают на эк­ран электронно-лучевой трубки. Пре­дусмотренная в дефектоскопе систе­ма автоматической сигнализации де­фекта позволяет определить расстоя­ние от поверхности до дефекта. Нали­чие дефекта сопровождается свето­вой и звуковой сигнализацией. Вмон­тированный в дефектоскоп блок циф­рового отсчета позволяет выполнять настройку без применения контроль­ных образцов.

Основы методики контроля. Повер­хность деталей .смазывают акустиче­ской смазкой для обеспечения на­дежного контакта с датчиком-иска­телем. Прозвучивание ведется в на­правлении, перпендикулярном пло­скости наиболее вероятного располо­жения дефекта. О наличии дефекта свидетельствует эхо-сигнал в зоне контроля, равный или больший амп­литуды эхо-сигналу от заданного кон­трольного отражателя в стандартном образце.

Для каждой детали разрабатывают свою методику контроля, где отра­жают: назначение методики; метод контроля, типа выбранной волны и частоту УЗК; типа дефектоскопа и искателя; стандартные образцы для настройки; порядок проверки и на­стройки дефектоскопа; порядок про­ведения контроля.

Цифровые ультразвуковые толщи­номеры фирмы "Панаметрикс" используют для исследования боль­шинства видов материала, включая металлы, стекло, керамику, пласт­массы, стекловолокно, жидкости, а также резину. Предельные значения толщины, которые могут быть заме­рены, зависят от вида материала, его размера, состояния поверхности, а также от выбранного прибора и дат­чика. Точность измерения составляет 0,001 мм для металлов и0,01 для пла­стмасс.

2.5.4. Магнитопорошковый метод

Аппаратура, приспособления и вспомогательные материалы. При

благоприятных условиях магнитопорошковым методом можно обнару­живать трещины с раскрытием до 0,001 мм и протяженностью до 0,5 мм. С увеличением глубины залегания дефекта чувствительность метода резко падает.

Контролируемые изделия должны иметь поверхность с чистотой обра­ботки (Rа) 1,6 — 2,5, при этом может быть обеспечена (при правильно ус­тановленных режимах намагничива­ния) максимальная чувствитель­ность контроля. При более грубой об­работке поверхности чувствитель­ность метода снижается. Для получе­ния высокой чувствительности конт­роля необходимо удалить покрытие с поверхности и зачистить контролиру­емый участок детали до требуемой чистоты.

Таблица 2.8. Ультразвуковые дефектоскопы и толщиномер, рекомендуемые для примене­ния в условиях эксплуатации

Ниже указаны диапазоны измере­ния в зависимости от вида материала:

Металл .................... 0,12+1240 мм

Пластмасса    ............... 0,12+125 мм

Стекло   .................... 0,12+1250 мм

Стекловолокно  ............. 3,75+75 мм

Резина   .................... 3,75+75 мм

Жидкость   ................. 1,25+1250 мм

Принцип работы приборов основан на эхоимпульсном методе.

Магнитопорошковый метод позво­ляет контролировать ферромагнит­ные детали практически любой фор­мы и размеров при возможности на­магничивания и осмотра контролиру­емого участка.

Весьма удобен контроль деталей, имеющих отверстия, благодаря кото­рым можно проводить циркулярное намагничивание, пропуская ток че­рез стержень или толстый провод, введенный в это отверстие. Такой спо­соб намагничивания устраняет опас­ность прижогов и в ряде случаев по­зволяет контролировать изделия без снятия неэлектропроводного покры­тия.

Магнитный контроль получил ши­рокое, распространение на ремонт­ных заводах, где используются стаци­онарные установки универсального типа. К ним относятся магнитные де­фектоскопы типа УМД-2500, 2МДЭ-10000, а также УМД-9000.

При контроле в условиях эксплуа­тации рекомендуется использовать передвижные МП-50П или перенос­ные ПМД-70 дефектоскопы (табл. 2.9). Указанные дефектоскопы снаб­жены приставными электромагнита­ми для продольного намагничивания отдельных участков деталей.

Наибольшее распространение в магнитной дефектоскопии получил "мокрый" способ, при котором на­магниченную деталь обрабатывают суспензией со взвешенными частица­ми порошка. Для приготовления сус­пензий используют черный магнит­ный порошок (ТУ-6-14-1009-74). В ка­честве жидкой среды могут быть ис­пользованы масла (типа МК-22) или керосин.

В эксплуатации целесообразно применять керосиново-масляную суспензию следующего состава (в расчете на 1 л):

Керосин, мл ..................... 800

Масло трансформаторное, мл   .... 175

Черный магнитный порошок, г   ... 25

Присадка АКОР-1, г ............. 0,5—1,0

При контроле следят за концентра­цией порошка в суспензии и, периоди­чески добавляя порошок, доводят ее до необходимого уровня (25-|-5) г/л.

Основы методики контроля. Конт­роль каждой конкретной детали или отдельного участка этой детали дол­жен проводиться в соответствии с конкретной методикой, при установ­лении которой необходимо решить ряд вопросов, наиболее важными из которых являются:

выбор способа контроля (в прило­женном поле или остаточной намагни­ченности); выбор аппаратуры; уста­новление режимов контроля; выбор ти­пов порошка, суспензии; выбор спосо­бов установки (и последующей перестановки) на контролируемом участ­ке намагничивающих устройств (электроконтактов, электромагнитов и др.).

Таблица 2.9. Дефектоскопы, применяемые в эксплуатации при магнитопорошковом контроле

Кроме того, должны быть учтены такие вопросы, как расположение ап­паратуры и самого оператора в про­цессе контроля, обеспечение выпол­нения правил техники безопасности, обеспечение защиты аппаратуры от порчи, обеспечение требуемого мик­роклимата для нормальной работы аппаратуры и операторов и т. д.

Исходными данными для решения методических вопросов являются же­лаемая чувствительность контроля, значения магнитных характеристик материала контролируемой детали (коэрцитивная сила и остаточная ин­дукция), а также конструктивные особенности узла, в котором необхо­димо проводить контроль детали (степень контролепригодности).

В практике магнитопорошкового контроля условно приняты следую­щие три уровня чувствительности (А, Б, В), позволяющие приближенно су­дить о размерах обнаруживаемых по­верхностных дефектов, таких как тре­щины (табл. 2.10).

В подавляющем большинстве слу­чаев контроль ведется на уровне чувствительности, близком к уровню Б. При ужесточенных требованиях уро­вень чувствительности может при­ближаться к уровню А и наоборот, по мере снижения требований — куров-ню В.

Как указывалось выше, более про­стым, удобным и быстрым является контроль способом остаточной на­магниченности. Однако прежде чем вводить этот способ магнитного конт­роля, необходимо убедиться, что чув­ствительность при этом будет оста­ваться на удовлетворительном уровне.

При контроле способом остаточной намагниченности для продольного намагничивания применяют солено­иды. При этом контроль можно осу­ществлять только тех деталей, у кото­рых отношение длины к эквивалентному диаметру не менее 25. Эквива­лентный диаметр

Таблица 2.10. Размеры обнаруживаемых поверхностных дефектов

Эквива­лентный диаметр

,

где S — площадь поперечного сечения детали.

Намагниченную деталь или уча­сток детали следует обработать предварительно перемешанной сус­пензией. Осмотр детали можно про­водить только после окончательного стекания суспензии (в сомнительных случаях следует применять лупу 2 — 4-кратного увеличения). Особенно тщательному контролю следует под­вергать зоны переходных сечений (резьбу, зубья шестерен, шлицы), в которых могут концентрироваться напряжения в процессе эксплуата­ции.

После проведения магнитного кон­троля проконтролированный узел должен быть размагничен.

2.5.5. Импедансный метод

Аппаратура для контроля. Метод основан на различии механических импедансов бездефектного и дефект­ного участков изделия, определяе­мых в точке ввода колебаний. Меха­ническим импедансом 2. называется отношение возмущающей силы F к вызываемой ею колебательной ско­рости частиц среды в точке прило­жения силы: При возбуждении изгибных коле­баний в Конструкции последняя ко­леблется как единое целое, и механи­ческий импеданс будет иметь макси­мальное значение. При нарушении сплошности конструкции механиче­ский импеданс будет существенно меньше. Этот эффект и используется в дефектоскопии.

Импедансный метод подразделя­ют на амплитудный и фазовый. При амплитудном методе регистрируется уменьшение уровня сигнала на изме­рительном пьезоэлементе датчика. При фазовом методе дефект фикси­руется по изменению фазы силы ре­акции изделия на датчик. Метод при­меняется для контроля клеевых сое­динений обшивки и готовых конструкций. Чувствительность импедансного метода зависит от конкретных условий его применения (увеличение шероховатости и кривизны поверхно­сти изделия приводят к снижению чувствительности метода).

В практике большее распростра­нение получил контроль амплитуд­ным импедансным методом. Однако при контроле готовых панелей с мел­кими и средними ячейками заполни­теля (сторона ячейки 2,5 — 4 мм) и средним и толщинами обшивок (0,4 — 0,6 мм для алюминиевых сплавов) це­лесообразно использовать фазовый метод.

Для успешного применения импедансного метода необходимо, чтобы отношение импеданса всей конструк­ции к импедансу отделенного дефек­том слоя было достаточно большим. При склеивании двух слоев из одина­кового материала контроль соедине­ния оказывается возможным в том случае, если эти слои имеют разную толщину и проверка выполняется со стороны более тонкого слоя. Конт­роль соединений однородных слоев одинаковой толщины (например, двух металлических листов) импе­дансным методом обычно невозмо­жен. Для контроля этим методом не­обходим свободный доступ к контро­лируемой поверхности.

В табл. 2.11 приведены характер­ные случаи практики контроля аку­стическим импедансным методом де­фектоскопом ИАД-3. Для контроля могут быть использованы дефекто­скопы типа ИАД-3, ИАД-2 или АД-40И. Дефектоскоп ИАД-3 в отличие от дефектоскопа ИАД-2 имеет допол­нительный фазовый канал, что позво­ляет использовать его для контроля не только амплитудным, но и фазо­вым импедансным методом (табл. 2.12).

Основы методики контроля. Для выбора оптимальных режимов конт­роля и определения чувствительно­сти метода необходимы контрольные образцы с искусственными или есте­ственными дефектами различных размеров. Эти образцы должны иметь те же основные параметры (толщину и материал обшивки соеди­ненных с ней элементов, размер сото­вой ячейки и т. д.), что и контролиру­емое изделие. Длина и ширина образ­цов могут быть меньше, чем соответ­ствующие размеры изделий. При кон­троле датчик перемещают по поверх­ности изделия, наблюдая за находя­щейся в датчике сигнальной лампоч­кой. В процессе контроля необходимо следить, чтобы ось датчика не откло­нялась от перпендикулярного поло­жения более чем на 10°.

Импедансный метод может быть использован в тех случаях, когда мо­дуль упругости материала того слоя, со стороны которого проводится кон­троль, достаточно велик (металлы, стеклотекстолит и др.). Контроль со •стороны материалов с низким значе­нием модуля упругости (мягкая рези­на, пенопласт и т. п.) обычно невозмо­жен. С уменьшением модуля упруго­сти внутреннего элемента чувстви­тельность метода падает. Наиболь­шая чувствительность достигается при гладких поверхностях контроли­руемого изделия. Шероховатость по­верхности снижает чувствительность метода.

Таблица 2.11. Характерные случаи контро­ля дефектоскопом И АД-3

Лакокрасочные и другие тонкие покрытия этим методом обычно контролировать нельзя.

2При контроле одной стороны дефекты выявляют­ся на глубине 0,5 от толщины изделия.

При контроле малогабаритных конструкций, особенно металличе­ских, возможен значительный раз­брос показаний дефектоскопа в зонах с хорошим соединением, обусловлен­ный резонансными явлениями в изде­лии. Снижение этого разброса может быть достигнуто экспериментальным подбором оптимальной рабочей час­тоты.

Тестер качества клеевых соедине­ний "ФОККЕР" (ФРГ) представляет собой ультразвуковой резонансно-импедансный прибор с пьезоэлектри­ческим датчиком. При наложении датчика на испытуемое соединение значения резонансной частоты и ме­ханического сопротивления меняют­ся в зависимости от физических свойств изделия. Изменение резонан­сной частоты фиксируется на элект­ронно-лучевой трубке (шкала А), а изменение сопротивления замеряется при помощи амперметра (шкала В).

Т а б л и ц а 2.12. Аппаратура для акустического импедансного контроля

Тестер укомплектован пробника­ми и адаптерами. Пробники марки­руют в зависимости от толщины и ди­аметра используемого датчика, т.е. каждому пробнику соответствует лишь определенный датчик. В то же время любой пробник стыкуется с любым адаптером, независимо от его типа. В настоящее время изготавли­вают два типа адаптеров: для посто­янного напряжения и для постоянно­го тока. Первый тип предназначен для измерения пиковых смещений (амплитуд) или комбинации пиковых амплитуд и демпфирования. Де­мпфирование определяется сопро­тивлением адаптера. Низкое сопро­тивление увеличивает степень де­мпфирования и снижает показание шкалы В. Второй тип адаптера (по­стоянный ток) разработан специаль­но для испытаний, требующих силь­ного демпфирования пиковых вели­чин (например, для исследования со­товых конструкций).

Выбор пробника зависит от раз­личных факторов. Одним из ограни­чивающих факторов является толщи­на верхнего листа. Если толщина слишком велика для данного датчи­ка, то резонансный пик "затухает" полностью. В этом случае приходится брать большой пробник. После ка­либровки прибора местоположение пика или отклонение стрелки опреде­ляется главным образом толщиной нижнего листа или плотностью серд­цевины. Если отклонение недостаточно, можно выбрать меньший пробник или изменить "О" прибора. Для обес­печения лучшего контакта датчика с проверяемой поверхностью исполь­зуется обычное минеральное масло. При испытаниях пористых поверхно­стей или поверхностей, подлежащих окраске или склеиванию, применяют специальную жидкость.

Основные технические данные прибора

Питание от сети переменного тока:

напряжение, В   .........   115/220

частота, Гц .....,...-..,   50/60

Потребляемая мощность, Вт     20

Рабочая частота (10 диапазо­нов), кГц ...................   30-ЫООО

Скорость развертки (7 положеннй),МГц   ...............   0,1-ИО

Рабочая температура, °С   ...   0-5-50

Габаритные размеры, мм   ...   225x370X340

 Масса, кг   ..................   13,2

Область применения: соединения металл—металл, композиционные материалы и др.

2.5.6. Велосимметрический метод

Аппаратура. Ультразвуковой велосимметрический метод дефекто­скопии основан на влиянии дефектов на скорость распространения упругих волн в контролируемой конструкции, а также на изменении пути волны между излучателем и приемником, вызван­ном наличием дефекта. Контроль этим методом может осуществляться одно­сторонним и двусторонним способами. При одностороннем контроле искательная головка с расположенными в одном корпусе излучающим и прием­ным вибраторами устанавливается на поверхности изделия (рис. 2.17). От из­лучающего вибратора во все стороны распространяется упругая изгибная волна. Регистрируется разность ско­ростей на бездефектном и дефектном участках, а также изменение амплиту­ды принятого сигнала. При двусто­роннем контроле излучающий и при­емный вибраторы располагаются соосно по обе стороны контролируемого объекта. Основным признаком дефекта яв­ляется отставание фазы колебания в точке приема от фазы на бездефект­ном участке изделия. Как упомина­лось, фиксируется также изменение амплитуды принятого сигнала. Велосимметрический метод предназначен для контроля неметаллических мате­риалов в крупногабаритных много­слойных конструкциях. Основная за­дача — выявление расслоений в из­делиях из слоистых пластиков и нару­шений клеевого соединения (табл. 2.13).

Необходимо учитывать, что ввиду наличия "краевого эффекта" затруд­нено выявление дефектов в неметал­лических изделиях на расстоянии ме­нее 50 мм от края, что не позволяет использовать велосимметрический метод на малоразмерных деталях. Предельная глубина выявляемых в слоистых пластиках дефектов — око­ло 25 мм. Чувствительность метода зависит от параметров изделия и глу­бины залегания дефекта и уменьша­ется с увеличением последней. Мини­мальная площадь выявляемого де­фекта составляет 1,5 см2.

Одностороннему варианту метода свойственна "мертвая" зона. Она прилегает к поверхности, противопо­ложной поверхности ввода упругих колебаний, и составляет 20 — 40 % от толщины изделия. У двустороннего способа "мертвая" зона отсутствует, зато не всегда удается разместить го­ловки по обе стороны объекта, а так­же обеспечить их соосность.


Рис. 2.17. Принципиальная схема одно­стороннего а и двустороннего б велосимметрического контроля:

ИВ — излучающий вибратор; ПВ — приемный вибратор; Д — дефект

Контроль изделий проводится уль­тразвуковым велосимметрическим фазовым дефектоскопом УВФД-1 или АД-10У (табл. 2.14). Дефектоскоп УВФД-1 предназначен для односто­роннего контроля, однако его вибра­торы можно демонтировать из корпу­са и расположить в приспособлении (типа скобы) для двустороннего кон­троля.

Основы методики контроля. Конт­роль состоит в перемещении иска­тельной головки по поверхности кон­тролируемого изделия и в наблюде­нии за сигнальной лампочкой, заго­рающейся при попадании головки в дефектную зону. Для настройки де­фектоскопов используют специаль­ные контрольные образцы.

При одностороннем контроле иска­тельную головку следует перемещать по поверхности изделия со скоростью не более 10 м/мин. Шаг перемещения головки (расстояние между соседни­ми ее следами) должен быть равным 10 — 15 мм. При контроле по измене­нию фазы дефекты отмечаются по загоранию расположенной в корпусе искательной головки- сигнальной лампочки и отклонению стрелки фа­зометра вправо. При этом часто (но не всегда) наблюдается отклонение стрелки индикатора А вправо, что служит дополнительным признаком дефекта. При контроле по изменению амплитуды критерием дефекта слу­жит также отклонение вправо стрел­ки индикатора А, но не сопровождаю­щееся включением сигнальной лам­почки.

Т а б л и ц а 2.13. Характерные случаи в практике контроля ультразвуковым велосимметриче­ским методом дефектоскопом УВФД-1

Вид обнаруживаемых дефектов

Параметры минимального обнаруживаемого дефекта, мм

Примечание

Глубина за­легания

Протяжен­ность

Расслоение в деталях слоистых пластиков

Непроклей и расслоение между неметаллическим покрытием и силовым каркасом, расслоение в покрытии

0,5

25

40

0,5 — 25

15

40

20

15 — 40

Дефекты выявляются на глубине не более 2/3 от общей толщины детали при одностороннем контроле

Глубина   залегания   и   протяжен­ность минимального обнаруживае­мого дефекта зависят от материала покрытия

Таблица 2.14. Аппаратура для контроля ультразвуковым велосимметрическим методом в условиях эксплуатации

При двустороннем контроле ско­рость перемещения искательной го­ловки также не должна превышать 10 м/мин. Дефекты отмечаются включением сигнальной лампочки и отклонением стрелки фазометра. На дефектах показания индикатора А обычно уменьшаются.

Контуры дефектов отмечаются по показаниям дефектоскопа, границы дефектов очерчиваются мягким карандашом или мелом. Бракуется из­делие на основании установленных техническими условиями норм допустимых дефектов.

2.5.7. Метод вихревых токов

Принцип   работы   приборов. 

При воздействии на металлическую де­таль или образец переменным маг­нитным полем в материале возника­ют вихревые токи. Величина этих то­ков максимальна на поверхности и убывает по мере удаления от поверх­ности в глубь образца. Для возбужде­ния вихревых токов обычно использу­ют питаемые переменным током про­ходные (охватывающие витками образец ил и деталь), накладные {подно­симые к образцу торцом) или экран­ные (располагающиеся по разные стороны стенки) катушки-датчики.

Созданное вихревыми токами вто­ричное электромагнитное поле ока­зывает обратное влияние на возбуждающую катушку, что проявляется в изменении ее активного и индуктив­ного сопротивлений. Величина и ха­рактер распределения вихревых то­ков в теле металла зависят от часто­ты тока, питающего катушку, от элек­трической проводимости и магнитной проницаемости материала, а также от формы и размера катушки и конт­ролируемой детали.

Важно, что характер влияния раз­личных перечисленных выше факторов на активное и индуктивное сопро­тивление катушки не одинаков. Это дает возможность уменьшать влия­ние тех или иных факторов и созда­вать приборы, чувствительные к ка­кому-либо одному из факторов, на­пример, к электропроводности или к наличию поверхностных трещин. Схе­мы таких приборов подробно описа­ны в специальной литературе.

Применяют различные способы получения и обработки информации, снимаемой с катушки-датчика. Наи­более распространенными являются: амплитудно-фазовый, фазовый, резо­нансный, амплитудночастотный и многочастотный способы.

Метод успешно используется:

для выявления усталостных тре­щин в поверхностных слоях металли­ческих деталей; для измерения тол­щины покрытий, нанесенных на ме­таллическое основание; для опреде­ления толщины стенок листовых ма­териалов; для обнаружения зон структурной неоднородности, напри­мер, в результате термического воз­действия и других факторов.

Потенциально высокая чувстви­тельность метода вихревых токов по­зволяет использовать его для оценки степени структурных превращений в материале.

Основы методики контроля. Для обнаружения трещин и других несплошностей в поверхностных слоях деталей в условиях эксплуатации ре­комендуется использовать электро­магнитные статистические дефекто­скопы типа ППД-1М, ППД-2М, ВД-1 ГА, ВДЦ-2. В дефектоскопах имеют­ся датчики накладного типа. В этих приборах используется амплитудно-частотный способ, при котором дат­чик включается в резонансный кон­тур автогенератора. При попадании датчика в зону трещины происходит срыв генерации, что фиксируется стрелочным индикатором, а также световыми или звуковыми сигнала­ми. Статистические дефектоскопы успешно применяют для обнаруже­ния усталостных трещин в узлах дви­гателей, барабанах колес, тягах и т. д.

При контроле исследуемая поверх­ность подвергается сканированию (как бы прощупывается) рабочей торцевой частью датчика. Шаг ска­нирования не должен превышать ди­аметра сердечника датчика, в про­тивном случае часть мелких трещин может быть не обнаружена. В пере­численных статистических дефекто­скопах минимальные диаметры дат­чиков, а следовательно, и максималь­ный шаг сканирования составляют 1,5 — 2,0 мм. При соблюдении усло­вий контроля обнаруживаются по­верхностные дефекты (трещины) длиной от 2 —4 мм, глубиной более 0,25 мм при ширине раскрытия 2 — 20 мкм.

Приборы ВД-1ГА, ВДЦ-2 и ППД-2М оснащены комплектами датчи­ков, позволяющих проводить конт­роль участков деталей различной конфигурации. Для выявления де­фектов в панелях, кузове и других де­талях с малой кривизной поверхности целесообразно использовать динами­ческие (модуляционные (дефектоско­пы типа ЭДМ-Т. В динамических де­фектоскопах (в отличие от статисти­ческих) датчик представляет собой две рядом расположенные и вращаю­щиеся по окружности регулируемого радиуса катушки. В приборе ЭДМ-Т частота вращения катушек — 2000— 5000 об/мин, минимальный диаметр вращения — 18 мм. Использование таких приборов дает возможность на порядок увеличить шаг сканирова­ния с контролем статистическими де­фектоскопами. Динамические дефек­тоскопы обладают также и повышен­ной чувствительностью. Так, при по­мощи прибора ЭДМ-Т можно обнару­живать трещины длиной, равной или большей 2 мм, а также коррозионные поражения. канавки которых должны служить упорами при перемещении датчика с заданным шагом сканирования.

Контрольные образцы необходи­мы: для настройки дефектоскопа и оценки их работоспособности; для оценки реальной чувствительности контроля конкретных деталей в конк­ретных условиях. В качестве конт­рольных образцов могут быть исполь­зованы детали или участки деталей с дефектами, выявленными ранее дру­гими методами.

При отсутствии деталей с естест­венными дефектами (трещинами) та­кие трещины следует наносить на бездефектные участки деталей ис­кусственно, при помощи механиче­ских вибраторов.

На образцах, при помощи которых проводится оценка чувствительности метода, воспроизводят все те затруд­няющие контроль особенности(ради­усные переходы, отверстия, ребра жесткости, элементы крепления, ла­кокрасочные покрытия и пр.), кото­рые возможны у подлежащих контро­лю деталей,

Измерение толщины и оценка каче­ства покрытий. В приборах для изме­рения толщины неэлектропровод­ных, например лакокрасочных, по­крытий на металлических деталях использована зависимость значения наводимых токов от расстояния меж­ду катушкой датчика и металличе­ской основой. Для измерения толщи­ны лакокрасочных покрытий, оксидных и анодных пленок и других спла­вов могут быть использованы прибо­ры ТПН-1 {или ТПН-1МУ) н ТПН-П. Диапазон измерения приборов на­стольного типа ТПН-1 и ТПН-1МУ 15 —300мкм.

Прибор ТПН-П выполнен на тран­зисторах, компактен и имеет авто­номное питание. Диапазон измере­ния прибора — 10 — 200 мкм. При­бор может использоваться для изме­рения толщины покрытия из низко­электропроводных материалов (с элек­тропроводностью от 0,5 м/Ом • мм2 и выше), например, для измерения тол­щины неэлектропроводных покрытий

на лопатках. Приборы типа ТПН-П серийно выпускаются на Чебоксар­ском приборостроительном заводе.

Толщиномерные приборы ТПН-1, ТПН-1МУ и ТПН-П могут приме­няться также для оценки степени коррозионного поражения деталей из алюминиевых и других цветных спла­вов.

Электромагнитный метод приме­няется и для измерения более тол­стых неэлектропроводящих покры­тий (до 100 мм) на металлических ос­новах, Имеется ряд опытных образ­цов подобных приборов, успешно применявшихся в промышленности, например приборы ТПК, ЭФИТ, "Дельта", ВТ-20идр.

Измерение толщины стенок. В тех случаях, когда глубина проникнове­ния вихревых токов в глубь материа­ла существенно превышает его тол­щину, метод можно использовать для измерения толщины стенок. Практи­чески достигнут диапазон измерения от нескольких микрон до нескольких миллиметров.

В условиях эксплуатации для кон­троля, например, толщины обшивки с целью обнаружения мест, поражен­ных коррозией, рекомендуется ис­пользовать прибор ТФ-1 (или УФТ-1). Эти приборы позволяют проводить контроль при одностороннем доступе к контролируемой детали.

Кроме обычного накладного датчи­ка, прибор ТФ-1 снабжен также эк­ранным датчиком, состоящим из двух катушек, располагающихся в про­цессе измерения по разные стороны стенки контролируемого изделия (стенка в данном случае играет роль экрана). Применение экранного дат­чика позволяет увеличить верхний предел измеряемых толщин до 4—5мм при контроле изделий из алюми­ниевых сплавов и до 10 — 12 мм при контроле изделий из титановых спла­вов. Однако в связи с необходимостью доступа к двум сторонам стенки эк­ранные датчики более удобны в усло­виях производства или ремонта и ме­нее пригодны в условиях эксплуата­ции.

Чтобы обеспечить необходимую надежность контроля, целесообразно применять специальные приспособ­ления, которые обеспечивали бы вер­тикальное положение датчика в про­цессе контроля. При контроле откры­тых поверхностей следует пользо­ваться специальными трафаретами, Следует помнить о возможности использования электромагнитных толщиномеров с накладным датчи­ком для оценки толщины остаточного сечения тонкостенных деталей, на­пример, обшивки, из алюминиевых и других сплавов при коррозионных по­ражениях.

Токовихревой дефектоскоп ВР5-9000 (Франция). Дефектоскоп пред­назначен для неразрушающего конт­роля объектов при помощи низкоча­стотных вихревых токов и отличается высокой надежностью. Он позволяет выявить поверхностные и внутренние дефекты ферромагнитных материа­лов (трещины, отклонения разме­ров, коррозию), а также определить качественные свойства материалов (твердость, сопротивление, термооб­работку, химический состав, тексту­ру и т. п.).

Несмотря на высокий технический уровень дефектоскопа он отличается удобством в эксплуатации и просто­той интерпретации измерений. Ши­рокий диапазон частот (от 1до 2000Гц) и большая выходная мощность сигна­ла практически обеспечивают реше­ние всех проблем, возникающих при исследовании ферромагнитных ма­териалов. Амплитуда и фаза сигна­ла анализируются в модуляторе, что позволяет дифференцировать вы­явленные дефекты в зависимости от их характера и критерия приемлемо­сти.

Дефектоскоп ВРЗ-9000 выпускает­ся в трех вариантах в зависимости от условий его применения и характери­стик окружающей атмосферы. Он имеет синусоидальный генератор со сменными модулями, определяющи­ми необходимую частоту. Значение тока регулируется от 0 до 0,5 А или от 0 до 5 А специальным переключате­лем с цифровыми отметками. Дефек­тоскоп работает от сети переменного тока (220/110 В, 50/60 Гц). Сигнал на телевизионном экране (размером 31 см) имеет вид пятна, кривой или эллипса. Размеры дефектоскопа 490 X 590Х X 520 мм; масса — 50 кг. Экран ус­ловно разбит на 9 регулируемых зон, положение которых регулируется для упрощения анализа изображе­ния.

Виды и методы неразрушающего контроля. Визуальный контроль по­зволяет определить видимые нару­шения целостности детали. Визуаль­но-оптический контроль обладает ря­дом очевидных преимуществ перед визуальным контролем. Гибкая волоконная оптика с манипулятором позволяет осмотреть значительно большие зоны, недоступные для от­крытого обзора. Однако многие опас­ные дефекты, проявляющиеся в про­цессе эксплуатации, визуально-опти­ческими методами в большинстве своем не обнаруживаются. К таким дефектам относятся в первую оче­редь усталостные трещины неболь­ших размеров, коррозионные пора­жения, структурные превращения материала, связанные с процессами естественного и искусственного ста­рения и т. д.

В этих случаях используются физи­ческие методы неразрушающего контроля (НК). В настоящее время изве­стны следующие основные виды не­разрушающего контроля: акустиче­ский, магнитный, радиационный, ка­пиллярный и вихретоковый. Их крат­кая характеристика приведена в табл. 2.3.

Каждый из видов неразрушающего контроля имеет несколько разновид­ностей. Так, среди акустических ме­тодов можно выделить группу ульт­развуковых методов, импедансный, свободных колебаний, велосимметрический и т. д. Капиллярный метод подразделяется на цветной и люми­несцентный, радиационный метод — на рентгено - и гамма-методы.

Общей особенностью методов не­разрушающего контроля является то, что непосредственно измеряемы­ми этими методами являются физи­ческие параметры такие, как элект­ропроводность, поглощение рентге­новских лучей, характер отражения и поглощения рентгеновских лучей, ха­рактер отражения и поглощения уль­тразвуковых колебаний в исследуе­мых изделиях и т. д. По изменению значений этих параметров в ряде слу­чаев можно судить об изменении свойств материала, имеющих весьма важное значение для эксплуатацион­ной надежности изделий. Так, резкое изменение магнитного потока на по­верхности намагниченной стальной детали свидетельствует о наличии в данном месте трещины; появление дополнительного отражения ультра­звуковых колебаний при прозвучивании детали сигнализирует о наруше­нии однородности материала(напри­мер, расслоений, трещин и др.); по из­менению электропроводности мате­риала часто можно судить и об изме­нении его прочностных свойств и т. п. Не во всех случаях можно дать точ­ную количественную оценку обнару­женного дефекта, так как связь меж­ду физическими параметрами и па­раметрами, подлежащими определе­нию в процессе контроля (например, размер трещины, степень понижения прочностных свойств и др.), как пра­вило, не бывает однозначной, а имеет статистический характер с различ­ной степенью корреляции. Поэтому физические методы неразрушающе­го контроля в большинстве случаев являются скорее качественными и реже — количественными.

Различные методы неразрушаю­щего контроля не заменяют, а лишь дополняют друг друга. Каждый из них имеет свою, характерную для данного метода, область применения. Одни методы дают возможность об­наруживать мелкие поверхностные дефекты типа трещин, но непригодны для обнаружения внутренних дефек­тов, другие удобны для обнаружения коррозионных поражений и т. д. Поэ­тому в некоторых случаях, особенно для контроля наиболее ответствен­ных участков деталей бывает целесо­образно применять несколько разных методов, что обеспечивает более пол­ную проверку качества соответству­ющих деталей.

Необходимо иметь в виду, что воз­можность использования методов не­разрушающего контроля зависит от выполнения ряда требований. Одним из основных требований является обеспечение свободного доступа к контролируемому участку поверхно­сти:

При оценке эффективности ис­пользования того или иного метода контроля важнейшим параметром является чувствительность, которая оценивается размерами минималь­ных, надежно обнаруживаемых дан­ным методом дефектов. Необходимо учитывать, что физические методы являются чувствительными не только к дефектам, подлежащим обнаруже­нию, но и к различным, так называе­мым мешающим факторам, т. е. та­ким параметрам контролируемых де­талей, изменения которых даже в до­пустимых техническими условиями пределах оказывают заметное влия­ние на результаты контроля физиче­скими методами. Так, при контроле ультразвуковым методом отражение ультразвукового луча может быть не только от нарушений сплошности, но и от неоднородности структуры, на-

пример, крупных зерен; допускаемые включения ("аустенитная полосча­тость") могут вызывать такую же картину осаждения магнитного по­рошка при магнитной дефектоско­пии, как и поверхностные трещины и т. д. Поэтому повышать чувствитель­ность в результате повышения коэф­фициента усиления приборов или ис­пользования ужесточенных режимов контроля, например, за счет приме­нения более проникающих жидко­стей при капиллярной дефектоско­пии следует не беспредельно, а лишь до тех пор, пока сигналы от дефек­тов — "полезные" сигналы — можно надежно отличить от сигналов, вызы­ваемых мешающими факторами.

Далеко не всегда необходимо поль­зоваться максимальной чувствитель­ностью, которую может обеспечить данный метод с использованием кон­кретной аппаратуры. Чувствитель­ность необходимо выбирать с таким расчетом, чтобы могли быть надежно выявлены лишь те дефекты материа­ла, которые и являются дефектами изделия, т. е. делают данное изделие (деталь) непригодным для эксплуа­тации (что должно быть оговорено в соответствующей нормативно-техни­ческой документации). Один и тот же дефект материала в одних случаях может считаться допустимым, в дру­гих является основанием для браков­ки деталей, так как по условиям экс­плуатации деталь с таким дефектом становится ненадежной.

Таким образом, говоря о чувстви­тельности метода, следует различить максимальную и реально устанавли­ваемую чувствительность. Макси­мальная чувствительность метода оценивается размерами минималь­ного дефекта, который может быть .надежно, с заметным превышением "полезного" сигнала над сигналом от мешающих факторов (шумов) выяв­лен в деталях данного типа, в конк­ретных условиях контроля, при ис­пользовании определенной аппара­туры.

Реально устанавливаемая чувст­вительность или чувствительность метода оценивается минимальными размерами 'дефектов (или их анало­гов на специальных образцах), кото­рые должны бытъ надежно с задан­ной степенью вероятности (напри­мер, 95 %) обнаружены в соответст­вии с нормативными документами на конкретную деталь конкретными ме­тодами и аппаратурой.

Часто, когда речь идет об особо на­груженных ответственных деталях, применяют выражение "никакие дефекты не допускаются". Это означа­ет, что для контроля таких деталей должна устанавливаться чувстви­тельность, соответствующая макси­мальной чувствительности данного метода и не должны пропускаться ни­какие достаточно надежно обнару­женные дефекты.

Максимальная чувствительность одного и того же метода может суще­ственно меняться в зависимости от конкретных условий контроля. Оче­видно, что в условиях эксплуатации эта чувствительность как правило, меньше, чем в лабораторных услови­ях, когда используется стационарная аппаратура и для контроля созданы оптимальные условия работы.

Выбор того или иного метода конт­роля должен основываться не только на требованиях технической доку­ментации.

Сама сущность методов предопре­деляет целесообразность их примене­ния во всех случаях, когда нельзя од­нозначно судить о качестве того или иного объекта.

Акустические методы неразруша­ющего контроля. Эти методы основа­ны на регистрации параметров упру­гих волн, возбуждаемых или возника­ющих в контролируемом объекте. Ис­пользовать особенности прохожде­ния акустических (ультразвуковых) колебаний через среду для определе­ния ее свойств впервые удалось со­ветскому исследователю С. Я. Соко­лову в 1928 г. Он же сконструировал первый промышленный дефекто­скоп.

По характеру взаимодействия фи­зических полей с контролируемым

объектом акустический вид НК делят на методы прошедшего излучения, отраженного излучения (эхо-метод), резонансный, импедансный, свобод­ных колебаний и акустико-эмиссионный.

Для целей НК в настоящее время ,используют упругие колебания час­тотой от нескольких десятков до мил­лионов герц. При частоте колебаний, например, 109 Гц в твердых телах возбуждаются волны длиной около 1 мкм, что и определяет высокое раз­решение метода. Акустический конт­роль применяют для обнаружения несплошностей (трещин, пор, рако­вин, расслоений и т. п.), структурно­го анализа (определение размеров зе­рен, наличия примесей и неоднородностей и т. д.), измерения толщин при одностороннем доступе к деталям, определения уровня жидкости в сосу­дах и для решения многих других де­фектоскопических и измерительных задач. По универсальности это один из лучших методов НК, который мо­жет применяться для исследования как твердых, так и жидких тел.

Чаще всего для контроля деталей и узлов используют ультразвуковой вид акустического НК. Излучение и прием ультразвуковых колебаний (УЗК) осуществляют при помощи пьезоэлектрических преобразовате­лей— специальных пластинок из кварца, сульфата лития, титаната бария и т. п. Пьезоэлектрический преобразователь является основным элементом искателя (рис. 2.6) — уст­ройства, предназначенного для излу­чения и (или) приема акустических колебаний и входящего в комплект ультразвукового дефектоскопа.

Ультразвуковые колебания (УЗК), генерируемые пьезопреобразователем, представляют собой импульс, или, точнее, волновой пакет, основная частота которого соответствует соб­ственной частоте колебаний пласти­ны. Для контроля объектов применя­ют несколько видов ультразвуковых волн: продольные, поперечные и по­верхностные.

Продольными называют такие волны, в процессе прохождения которых через некоторую среду частицы сре­ды смещаются в направлении движе­ния волн. Эти волны иногда называют также волнами расширения или сжа­тия, или невращающимися волнами. В поперечных, или сдвиговых, волнах частицы среды колеблются в плоско­сти, перпендикулярной к направле­нию распространения волн.

Рис. 2.6. Конструкция нормального (а), раздельно-совмещенного (б) и наклонного (в) искателей: 1 — протектор;2 — корпус;3 — штепсельный разъем; 4 — экран;5 — демпфер; 6 — пьезопластина. Стрелками обозначают направление ультразвукового сигнала

При определенных условиях УЗК с достаточно большой амплитудой мо­гут распространяться по поверхно­сти материала (так называемые вол­ны Рэлея, Лэмба, Лява). Перемещение частиц в этом случае происходит в про­дольном и поперечном направлениях. Колебания происходят в плоскости на­правления распространения волн и нормали к поверхности тела.

Потеря энергии при прохождении УЗК через вещество обусловлена че­тырьмя основными процессами: теп­лопроводностью, внутренним трени­ем, упругим гистерезисом и рассея­нием. Потери зависят главным обра­зом от частоты ультразвуковых коле­баний, структуры материала, а так­же геометрических особенностей де­тали.

При акустическом контроле чрез­вычайно важен ввод УЗК в контроли­руемое изделие с минимальными по­терями энергии колебаний в месте контакта преобразователя с де­талью. Это достигается вводом УЗК

через тонкий слой жидкости (напри­мер, масла для деталей простой конфигурации), или через слой им­мерсионной жидкости, а также при­менением специальных искателей (рис. 2.7).

При больших скоростях и вибраци­ях контролируемого объекта начина­ют использоваться бесконтактные преобразователи, основанные на воз­душной акустической связи преобра­зователей с объектом контроля, тер­моакустическом эффекте, эффектах электрического и электромагнитного полей.

Чтобы обеспечить ультразвуковой контроль деталей сложной конфигу­рации, необходимо фиксировать нор­мальные или наклонные искатели в строго определенном месте контакт­ной поверхности. Для этого рекомен­дуется изготавливать специальные фиксирующие приспособления, обес­печивающие ввод УЗК в тело детали в строго определенном направлении с учетом геометрических особенностей контрольного участка и характера искомого дефекта (рис. 2.8).

В некоторых случаях при отсутст­вии доступа к участкам возникнове­ния дефектов бывает целесообразно использовать побочные поверхности деталей, которые могут способство­вать преломлению падающих на них колебаний в необходимом по отноше­нию к дефекту направлении. Влияние формы импульса и его частоты на распределение отражений от дефек­та и рассеянной энергии носит весьма сложный характер. Однако для полу­чения достаточного по амплитуде от­ражения от дефекта колебания долж­ны иметь длину волны по крайней ме­ре одного порядка с размерами де­фекта. Следовательно, для обнару­жения небольших дефектов частоту следует увеличивать.

Рис. 2.7. Схема искателя с локальной ванной: 1 — пьезоэлемент;   2 — корпус;   3 — иммерсионная жидкость; 4 — эластичная мембрана; 5 — изделие

Рис. 2.8. Положение прямого (а) и наклонного (б) искателей при ультразвуковом контроле барабанов:

1 — ограничитель; 2 — искатель; 3 — трещина

При контроле деталей использует­ся ряд методов акустической дефек­тоскопии. При контроле по методу прошедшего излучения (теневом) УЗК, как правило, вводятся с одной стороны, а принимаются с другой (рис. 2.9, а), а в зеркальном варианте (рис. 2.9, б) вводятся и принимаются с одной стороны, так как УЗК, встре­тившие на пути дефект в виде не­сплошности, отражаются в обратном направлении, что приводит к умень­шению амплитуды либо изменению базы УЗК, воспринимаемых прием­ным элементом искателя. В общем случае для контроля УЗК могут излу­чаться в непрерывном или импульс­ном режиме.

Развитие теневого метода связано с возможностями визуализации вол­нового поля для получения изобра­жения контролируемого участка де­талей, изготовленных из оптически непрозрачных материалов.

Метод отраженного излучения (эхо-метод) получил в настоящее время наибольшее распространение. При испытаниях по этому методу в изделие через связывающую среду вводится направленный импульс УЗК- Ультразвуковые волны отража­ются от противоположной поверхно­сти изделия, и отраженный сигнал (эхо-сигнал, или "донный" импульс) воспринимается преобразователем (рис. 2.10).

Излучающий преобразователь можно одновременно использовать в качестве приемника сигналов. Нали­чие в изделии дефекта (несплошно­сти) сопровождается возникновени­ем отраженного сигнала. Интервал между вводом в изделие начального импульса и приемом отраженного сигнала измеряется и наблюдается на экране дефектоскопа. Об очерта­ниях дефекта можно судить на осно­вании положения и амплитуды отра­женного от него импульса.

Рис. 2.9. Методы акустического контроля объекта А

Резонансный метод основан на ре­гистрации параметров резонансных колебаний, возбуждаемых в контро­лируемом объекте. Метод позволяет, определяя резонансные частоты сис­темы, измерить толщину изделий в контролируемой зоне, обнаружить некоторые дефекты в этой зоне. При контроле резонансным методом для возбуждения преобразователя ис­пользуют настраиваемый генератор переменной частоты. Если изделие имеет толщину, соответствующую резонансным частотам в пределах диа­пазона настройки 'генератора, то в момент прохождения резонансных частот изделие будет вибрировать в резонанс с искателем, что приведет к увеличению энергии, выделяемой преобразователем. Это увеличение энергии можно измерить. Резонанс при подобных испытаниях наступает в том случае, если толщина изделия равна целому числу полуволн упру­гой акустической волны. Наибольшее практическое применение резонанс­ный метод нашел при контроле пая­ных, клеевых и клеемеханических со­единений.

рис. 2.10. Схема акустического контроля объек­та А по методу отраженного излучения: 1 — начальный импульс; 2 — импульс от дефекта; 3 — донный импульс; 4 — многократно отраженные им­пульсы; τ — временной интервал

В последнее время получает рас­пространение метод акустической эмиссии. Первые работы в области применения явлений акустической эмиссии для контроля твердых тел относятся к 60-м годам. В настоящее время этот метод привлекает внима­ние исследователей и практиков и яв­ляется одним из наиболее динамично развивающихся. Метод успешно при­меняется для контроля сосудов высокого давления, тонкостенных оболо­чек и т. д. Соответствующая аппара­тура начинает использоваться Дли контроля и управления нёк6тдръ1ми технологическими процессами.

Интерес к методу акустической эмиссии обусловлен прежде всего тем, что он позволяет определить на­личие, величину и месторасположе­ние развивающихся микротрещин, причем дистанционно со значитель­ным быстродействием.

Акустическая эмиссия — это явле­ние распространения в твердом теле волн упругой деформации вследст­вие освобождения энергии при пла­стической деформации или разруше­нии (изломе) локального объема. Акустическая эмиссия в металле представляет собой волны упругой деформации небольшой амплитуды, создаваемые дискретными (разрыв­ными, прерывистыми) движениями, которые сопутствуют неупругой де­формаций и развитию трещины. Вол­ны упругой деформации, являющие­ся результатом деформации или раз­вития источников разрушения, обна­руживаются как небольшие смеще­ния на поверхности контролируемого объекта. Явления акустической эмиссии возникают и при внешнем трении сопряженных поверхностей, а также при технологической обработ­ке поверхностного слоя деталей.

Обнаружение волн акустической эмиссии осуществляется непосредст­венно присоединением пассивных пьезоэлектрических датчиков к по­верхности, преобразования и считы­вания быстрых электрических им­пульсов, вызванных смещением чув­ствительного элемента датчика в ви­де ряда одиночных импульсов или ко­личества энергии. Принятые импуль­сы или сигналы имеют сравнительно высокую частоту в пределах 100 кГц до 1 МГц и более.

Вследствие относительно высокого коэффициента усиления (вплоть до 106 — 107), требуемого для определе­ния акустической эмиссии (104 — 105 одиночных импульсов за 1 с-1), возни­кает возможность анализа механизмов разрушения на атомном уровне. Энергия сигналов акустической эмиссии мала.

Можно отметить следующие зави­симости параметров акустической эмиссии:

при возникновении участков пла­стической деформации объемом Vр

N=dVp

где N — общее число импульсов акустический эмиссии; d — константа;

при возникновении и скачкообраз­ном развитии в образце трещины

N=dkq

где k — коэффициент интенсивности напряже­ний в устье трещины; d и q — константы.

Уравнения подтверждают, что ме­тод акустической эмиссии можно применять не только для обнаруже­ния, но и для слежения за образовав­шейся микротрещиной, а также для оценки момента ее субкритического роста. Причем, если сигналы акусти­ческой эмиссии принимаются одно­временно двумя или несколькими датчиками в результате измерения разности во времени прихода волн на­пряжений, можно определить коор­динаты источника акустической эмиссии.

Аппаратура для неразрушающего контроля эмиссионным методом со­держит чувствительные высокоча­стотные преобразователи, фильтры для устранения фоновых посторон­них шумов, усилители с высоким ко­эффициентом усиления и малым уровнем собственных шумов, выход­ные устройства (регистраторы, счет­но-решающие устройства и т. п.).

Магнитные методы неразрушаю­щего контроля. Эти методы основаны на принципе "магнитного рассея­ния". Основные виды магнитных ме­тодов НК: магнитопорошковый, магниторезисторный (магнитоферрозондовый), магнитографический. В усло­виях авторемонтного производства наибольшее применение получил магнитопорошковый метод.

Магнитопорошковый метод (метод магнитных частиц) основан на обнаружении магнитных полей рассеяния при помощи ферромагнитных порош­ков. Он широко используется на авто­ремонтных предприятиях для обна­ружения дефектов в виде нарушения сплошности на ферромагнитных де­талях как выходящих на поверхность (видимых), так и лежащих на неболь­шой глубине под поверхностью (до 3 мм в зависимости от характера де­фекта, режима и способа контроля). Магнитопорошковым методом наи­более просто определяют закалоч­ные, термические, шлифовочные, усталостные и усадочные трещины, неметаллические включения, ковочные дефекты и т. п. в виде нарушения сплошности с шириной раскрытия 0,001—0,03 мм и глубиной 0,01 — 0,04 мм. При контроле используют как обычные, или окрашенные, фер­ромагнитные порошки, так и магни­толюминесцентные — для контроля деталей, имеющих темную, а также блестящую поверхность.

Магнитопорошковый метод вклю­чает в себя три основных этапа: на­магничивание материала, нанесение магнитных частиц и размагничива­ние. Магнитные частицы (индикатор­ная среда) могут использоваться ли­бо взвешенными в воздухе (сухими), либо взвешенными в жидкости. Взвесь порошка в жидкости называ­ется магнитной суспензией и исполь­зуется чаще.

Если дефект поверхностный или расположен близко к поверхности, то на его месте при намагничивании воз­никает пара магнитных полюсов, удерживающих на поверхности нане­сенные магнитные частицы (поро­шок). В результате образуется изо­бражение контура дефекта, опреде­ляющее его расположение и протя­женность. Состояние поверхности контролируемого изделия сущест­венно влияет на обнаружение дефек­тов Магнитопорошковым методом (особенно это относится к подповерх­ностным дефектам). Поверхность должна быть чистой, сухой и свобод­ной от коррозии.

Магнитопорошковый метод допускает контроль деталей после окси­дирования, окраски или нанесения металлического покрытия (цинкова­ние, кадмирование, хромирование). Если толщина покрытия более 30 м к м, при контроле могут быть вы­явлены только грубые дефекты. По­верхностные дефекты, как правило, вызывают образование порошковых рисунков с резкими очертаниями, подповерхностным дефектам обычно соответствуют рисунки с менее рез­кими очертаниями.

Напряженность поля рассеяния от дефектов определяется различными факторами: величиной намагничива­ния, магнитной проницаемостью ма­териала и формой изделия, формой, размером, расположением и ориен­тацией дефектов.

После магнитного контроля необ­ходимо снять остаточное намагничи­вание (магнитное поле может вы­звать ошибки в показаниях компаса и других чувствительных электриче­ских приборов, а также интенсифици­ровать процессы поверхностного раз­рушения контактирующих деталей). Для этого изделие подвергают дейст­вию переменного магнитного Поля, непрерывно уменьшающегося по ве­личине.

Применяют три способа намагни­чивания детали.

1. Циркулярное намагничивание (рис. 2.11, а), когда через деталь или

проводник, на который надета испы­туемая деталь, пропускают ток. При этом создается магнитное циркуляр­ное поле, плоскость которого перпен­дикулярна направлению тока, проте­кающего по детали или проводнику. Метод удобен при контроле деталей малого диаметра и большой длине с продольными дефектами.

2. Продольное намагничивание (рис. 2.11, б), когда деталь помещают между полюсами электромагнита или в поле соленоида. Метод эффек­тивен при контроле деталей из магнитотвердых материалов с коэрцитив­ной силой около 795 А/м.

3. Комбинированное намагничива­ние (продольное и циркулярное), что позволяет контролировать детали с любой ориентацией дефектов.

Применяют также намагничива­ние в приложенном магнитном поле (рис. 2.И, в), когда контроль осуще­ствляется без вынесения детали из поля электромагнита. Этот метод пригоден для контроля магнитомягких материалов. Для намагничива­ния используется постоянный, пере­менный, однополупериодный вы­прямленный и импульсный токи, при­чем интенсивность магнитного поля зависит от значения тока. Напряже­ние источника тока должно быть низ­ким в целях безопасности работы и сведения к минимуму возможности повреждения изделия.

Рис. 2.11. Способы намагничивания деталей:

а — циркулярное: 1 — магнитные силовые линии; 2 — продольная трещина (обнаруживается); 3 — трещина под углом 45° (обнаруживается); 4 — поперечная трещина (не обнаруживается);

6 — продольное; 1 — поперечная трещина (обнаруживается); 2 — магнитные силовые линии; 3 — соленоид; 4 — трещина под углом 45° (обнаруживается); 5 — продольная трещина (не обнаруживается);

а — приложенным магнитным полем: / — наконечник;2 — переходный фланец;3 — магнит;4 — соединитель­ная штанга; 5 — контролируемая цапфа

Постоянный ток создает магнитное поле, глубоко проникающее в ме­талл. Действие магнитного поля, со­здаваемого высокочастотным пере­менным током, ограничено в силу по­верхностного эффекта лишь наруж­ными слоями металла. Поэтому пере­менный ток находит наибольшее при­менение при выявлении поверхност­ных дефектов.

Напряженность намагничивающе­го поля подбирают такой, чтобы она соответствовала магнитным свойст­вам и размерам исследуемой детали. При циркулярном намагничивании напряженность на поверхности дета­лей различных конфигураций обычно составляет 75 — 130 Э, при продоль­ном намагничивании 140 — 200 Э, а при контроле в приложенном поле 20 — 40 Э.

Чаще всего используют циркуляр­ное намагничивание. При этом режи­мы намагничивания можно рассчи­тывать по следующим формулам:

при циркулярном намагничивании деталей цилиндрической формы ток в амперах

/ = HDД / 4 = 0,25 HDД.

где Н — напряженность магнитного поля на поверхности детали, Э; DД— диаметр детали, мм; 0,25 — переводной коэффициент;

при циркулярном намагничивании крупных деталей кольцевой или ци­линдрической формы с применением гибкой тороидной обмотки ток в ам­перах

/ = HDк / 4ω = (0,25/ ω) HDк.= (0,25

где Н — число витков обмотки; Dк — диаметр кольца, мм;

при циркулярном намагничивании деталей, имеющих вид тонких пла­стин или дисков, ток в амперах

I=HB/2π=0.16HB

где В — ширина пластин или диаметр диска, мм.

Индикаторная среда, используе­мая при "сухом" методе контроля, представляет собой размельченный ферромагнитный порошок, обладаю­щий высокой магнитной проницаемостью и малой коэрцитивностью. При приготовлении окрашенных магнит­ных порошков рекомендуется приме­нять мелкие железные порошки ПЖ10М —ПЖ50М. После нанесе­ния на поверхность лишний порошок удаляют слабой струей воздуха.

При "влажном" методе контроля индикаторной средой служат тонко ­размельченные частицы черной или красной окиси железа, взвешенные в легких маслах (или в керосино-масляных смесях) или в воде. В воду до­бавляют бихромат калия ( 5 г/л), кальцинированную соду( 10 г/л)и эмульгатор ОП-7 или ОП-10(5 г/л), Эту суспензию наносят на поверх­ность контролируемого изделия набрызгиванием либо погружением.

Иногда вместо обычного магнитно­го порошка используют магнитно-люминесцентные или флуоресцирующие порошки. Применение флуорес­цирующих магнитных порошков об­легчает контроль изделий и обеспечи­вает более высокую чувствитель­ность, особенно при выявлении под­поверхностных дефектов. Приготовленный магнитный порошок или суспензия подвергается контролю по специальной методике. Важным показателем качества магнитной суспензии является концентрация магнитного порошка (10 — 30 г/л).

Для проведения контроля деталей методом магнитного порошка могу! применяться различные дефектоскопы. Все они, как правило, содержа! устройства: для закрепления объекта испытания (или устройств для намагничивания), для намагничивания различных типов, для нанесения индикаторной среды (ванны для окунания, насосы, вместимости и т. д.), для размагничивания и обзора поверхности.

Например, в ремонтном производстве широко используют магнитные дефектоскопы типа УМДЭ различной мощности. Дефектоскопы этой серии позволяют осуществлять полный цикл магнитного контроля. Электронно-ионное управление дефектоскопов УМДЭ обеспечивает включение и выключение тока, главное его регулирование (намагничивающий ток может достигать 1700 А при максимальной напряженности магнит­ного поля до 7000 Э), выпрямление тока и ограничение времени его дей­ствия, гарантирует стабильность ос­таточной намагниченности.

Детали можно проверять, намаг­ничивая их раздельно ,или комбини­рованно. Возможен контроль в приложенном магнитном поле и на оста­точной намагниченности. Имеются приборы для измерения тока при циркулярном намагничивании и из­мерения напряженности при про­дольном намагничивании в соленои­де. После контроля детали размагни­чивают автоматически в контактном устройстве дефектоскопов.

Основанная на визуальном наблю­дении за концентрацией частиц маг­нитного порошка магнитопорошковая дефектоскопия имеет ряд недо­статков. К ним относятся: субъектив­ность, влияние конфигурации детали на результаты контроля и др.

Радиационные методы неразруша­ющего контроля. Эти методы основа­ны на регистрации и анализе прони­кающего ионизирующего излучения после взаимодействия с контролиру­емым объектом. По характеру взаи­модействия физических полей с конт­ролируемым объектом радиацион­ные методы НК классифицируют на методы прошедшего излучения, рас­сеянного излучения, активационного анализа, характеристического излу­чения и автоэмиссионный; по способу получения первичной информации — на сцинтилляционный, ионизацион­ный (радиометрический), вторичных электронов, радиографический и радиоскопический методы.

При помощи радиационных мето­дов выявляют: поверхностные и глу­бинные трещины, ориентированные вдоль направления луча; раковины; рыхлоты; ликвационные зоны; неме­таллические и шлаковые включения.

Чувствительность радиационных видов неразрушающего контроля ха­рактеризуется чувствительностью в

направлении просвечивания (контра­стная чувствительность) ,и в направ­лении, перпендикулярном к просвечиванию (разрешающая ' способ­ность, детальная чувствительность). В среднем радиационными методами выявляют дефекты протяженностью в направлении просвечивания от 2 (стали) до 10 % (легкие сплавы) от толщины изделия при ширине 0,025 мм.

При использовании радиометриче­ского метода выявляемость дефекта характеризуют чувствительностью по площади или по объему дефекта (объемная чувствительность). Наи­высшая чувствительность радиомет­рического метода при контроле изде­лий большой толщины составляет 0,3 — 0,5 %, что соответствует объемной чувствительности 0,3 — 0,7 см3.

Для оценки чувствительности ра­диационного контроля широко используют эталоны чувствительности, чаще всего стандартные эталоны — пластинки с канавками. В.зависимо­сти от ионизирующего излучения, ис­пользуемого при контроле, наиболь­шее применение в технике на шли рент­геновский и гамма-метод.

В рентгеновском методе для инди­кации внутренних дефектов в матери­алах и изделиях, их местонахожде­ния, формы и размеров используют рентгеновское тормозное, или харак­теристическое излучение, которым просвечивается объект контроля.

При ионизационном (радиометри­ческом) методе контроля объект про­свечивают узким пучком излучений, который последовательно перемеща­ется по контролируемым участкам (рис. 2.12). Излучение, прошедшее че­рез контролируемый участок, преоб­разуется детектором, на выходе кото­рого возникает электрический сиг­нал, пропорциональный интенсивно­сти излучения. Электрический сиг­нал через усилитель поступает на ре­гистрирующее устройство. Радио­метрический метод обладает высо­кой производительностью и может быть легко автоматизирован. Однако при помощи этого метода трудно судить о характере и форме дефектов, а также невозможно определить глу­бину их залегания.

В гаммадефектоскопии в качест­ве средства испытания использует­ся излучение радиоактивных изотопов.

Источник излучения выбирается в зависимости от материала объекта контроля и его толщины (табл. 2.4).

Основные разновидности метода (гаммаграфия, радиометрический и флуороскопический) аналогичны ме­тодам рентгенодефектоскопии. При нейтронном методе в качестве сред­ства испытаний используется нейт­ронное излучение. Обладая большой проникающей способностью нейт­ронное излучение позволяет просве­чивать большие толщины исследуе­мых материалов. Методы нейтронной дефектоскопии находятся пока в ста­дии разработки. В отдельную разно­видность выделились методы радиа­ционной толщинометрии. Для этой цели используют рентгеновское, γ и β-излучения.

Выбор оборудования для радиаци­онного контроля определяется: плот­ностью и толщиной материала конт­ролируемого изделия, скоростью проведения контроля, конфигура­цией контролируемой детали или из­делия, технологическими особенно­стями контроля.

Промышленность выпускает об­ширную номенклатуру средств ради­ационного контроля, имеющих самые различные характеристики. К наибо­лее универсальным относятся рент­геновские аппараты РАП 150/300 (стационарный), РИ-10Ф, РУП-100-10(передвижной), РИ-10ФП (полевой рентгеновский флюорограф) и др. В автоматическом рентгеновском флюорографе РИ-10ФП в качестве рент­геновского преобразователя исполь­зуется монокристаллический экран. Изображение контролируемого уча­стка автоматически регистрируется фотокамерой. Для γ -дефектоскопии используют аппараты типа РИД, ГУП, Гаммарид и др. Для просмотра промышленных рентгеновских негативов, рекомендуется использовать негатоскопы (например, ОД-10Н).

                                                                            1 — источник излучения; 2 и 4 — коллиматоры; 3 — контролируемый объект; 5 — сцинтилляционный чув­ствительный элемент; 6 — фотоумножитель; 7 — уси­литель; 8 — регистрирующее устройство
Рис. 2.12. Схема радиометрического метода контроля:

Значительные успехи достигну­ты в области создания рентгенотелевизионных интроскопов—приборов "внутривидения". В электронно-оп­тических рентгеновских интроскопах используется преобразование рент­геновского излучения, прошедшего через контролируемый объект, в оп­тическое изображение, наблюдаемое на выходном экране. В рентгенотелевизионных интроскопах это изобра­жение передается на телевизионный экран.

Дефектоскопическая чувствитель­ность таких приборов составляет обычно от 0,7 до 4 % (в зависимости от толщины контролируемого материа­ла и его марки), разрешение около 0,5 пар линий/мм, диаметр поля контро­ля от 40 до 200 мм.

Безопасность труда при радиаци­онной дефектоскопии должна отве­чать сложному комплексу требова­ний. Она включает в себя защиту оттока высокого напряжения, газов, ог­ня, ионизирующих излучений, в том числе от рассеянного излучения.

Таблица 2.4. Источники излучения в зави­симости от материала детали

Материал детали

Толщина детали, мм

Источник излучения

Сталь

1 — 15 15—40 40—80

Тулий-170 Иридий- 192 Цезий- 137

Алюминий и его сплавы

5—50

Тулий- 170

Магний    "   "       "

50—150

Иридий- 192

Титан        "   "       "

10—200

Тулий-170

2—30

Тулий-170

30—100

Иридий- 192

За­щита от ионизирующих излучений обеспечивается экранированием при помощи защитных материалов(свинца, свинцового стекла, свинцовой ре­зины, вольфрама, железа, барита), соблюдением безопасного расстоя­ния, предельно коротким временем пребывания в зоне излучений. Без­опасности труда при радиационном контроле уделяется особое внимание. Меры защиты и предупреждения по­ражения ионизирующими излучения­ми детально разработаны и должны неукоснительно соблюдаться.

Капиллярные методы неразруша­ющего контроля (методы проникаю­щих жидкостей). Эти методы основа­ны на капиллярном проникновении индикаторных жидкостей в полости поверхностных дефектов и регистра­ции индикаторного рисунка.

По способу получения первичной информации капиллярные методы делят на следующие:

цветной (хроматический) метод, ос­нованный на регистрации цветного контраста индикаторной жидкости или газа и фона поверхности контро­лируемого объекта;

люминесцентный метод, основан­ный на регистрации параметров флу­оресцирующей индикаторной жидко­сти, проникающей в полости дефек­тов при облучении ультрафиолетовы­ми лучами;

люминесцентно-цветной метод, ос­нованный на регистрации парамет­ров флуоресцирующей индикатор­ной жидкости, проникающей в поло­сти дефектов в видимом свете или при облучении ультрафиолетовыми лучами;

метод фильтрующихся частиц, ос­нованный на регистрации яркостного и цветового контрастов, скопления индикаторных частиц в зоне дефекта на поверхности контролируемого объекта;

яркостный (ахроматический) ме­тод, основанный на регистрации яркостного контраста индикаторной

жидкости или газа и фона поверхно­сти контролируемого объекта.

При ремонте наибольшее распро­странение получил и первые три мето­да, которые применяют для опреде­ления поверхностных дефектов типа трещин, пор, рыхлот, неспаев, волосо­вин и т. п. на поверхностях деталей. Выявляются трещины шириной рас­крытия 0,001 мм и более и глубиной 0,01 мм и более.

Сущность капиллярных методов заключается в следующем. На пред­варительно очищенную контролируе­мую поверхность детали наносят жидкость с большой смачивающей способностью и большим капилляр­ным давлением, которое заставляет жидкость проникать в мельчайшие поверхности трещины и поры (рис. 2.13). Скорость затекания жидкости в полость дефекта определяется по­верхностным натяжением, углом смачивания и вязкостью жидкости. Заполнение полостей дефектов мо­жет происходить при пониженном давлении в полостях (вакуумный ме­тод), при воздействии на проникаю­щую жидкость повышенного давле­ния или ультразвуковых колебаний (компрессионный и ультразвуковой методы), при статическом нагружении объекта контроля {в пределах уп­ругости) с целью раскрытия трещины (деформационный метод).

В проникающую жидкость в каче­стве индикатора добавляют либо краситель (при цветном методе), ли­бо люминесцирующую добавку — люминофор (при люминесцентном методе). После проникновения жид­кости в капиллярные дефекты {для чего деталь выдерживают в проника­ющей среде некоторое время) избы­ток жидкости, остающийся на повер­хности, удаляют. Какая-то часть про­никающей жидкости с введенным в нее красителем или люминофором остается в дефекте. Далее на поверх­ность детали наносят проявляющий слой (проявитель), например поро­шок с большой абсорбирующей спо­собностью. Нанесенное на поверх­ность вещество абсорбирует оставшуюся в дефекте жидкость и при этом либо окрашивается в яркий цвет кра­сителя в месте расположения дефек­та (при цветном методе), либо смачи­вается жидкостью с люминесцирующей добавкой, которая при облуче­нии ультрафиолетовыми лучами на­чинает флуоресцировать.

Чувствительность капиллярных методов дефектоскопии зависит от следующих факторов: выбора краси­телей или люминофора, смачиваю­щей способности основного компо­нента, свойств абсорбирующего ве­щества и качества подготовки повер­хности детали. Методики цветного, люминесцентного и люминесцентно-цветного контроля отличаются неко­торыми особенностями.

При цветном контроле деталь или часть ее поверхности перед началом обработки проникающей жидкостью очищают от лакокрасочных покры­тий, масла, стружки и других загряз­нений. Применять механические ме­тоды очистки не следует, так как при этом в результате контактных дефор­маций поверхностного слоя вскрытие дефектов может существенно умень­шиться. Проникающая жидкость с добавкой красителя (индикаторная краска) наносится на поверхность де­тали кисточкой или погружением де­тали в жидкость. После выдержки в течение 5 — 10 мин жидкость удаля­ют с поверхности водой либо раство­рителем в зависимости от применяе­мых дефектоскопических материа­лов.

После очистки поверхности детали на нее напылением или мягкой кис­точкой наносят слой белой проявляю­щей смеси. Через 15 — 20 мин на бе­лом фоне в местах расположения де­фектов появляются характерные яр­кие полоски или пятна. Трещины об­наруживаются в виде тонких линий, степень яркости которых зависит от глубины трещин. Поры проявляются в виде точек различной величины, а межкристаллитная коррозия — в ви­де тонкой сетки. Очень мелкие дефек­ты можно наблюдать через лупу или в бинокулярный микроскоп. По окончании контроля проявляющую смесь удаляют с поверхности, протирая де­таль ветошью, смоченной в раствори­теле, затем просушивают.


Рис. 2.13. Схема капиллярной дефектоскопии: а. — нанесение индикаторной жидкости; б — удаление излишков жидкости; в — нанесение проявляюще смеси; г — наблюдение индикаторного рисунка

Дефектоскопические материалы применяют комплектно. В комплект входят индикаторная (проникающая) жидкость, очищающая жидкость, про­являющая краска (проявитель). При­меняют следующие комплекты (пер­вая буква — марка проникающей жидкости, вторая — проявителя):

Д — М и Д — В — для контроля деталей при температуре от +5 °С и выше;

Е — Г — для контроля деталей при температуре от + 5 до — 40 °С;

К — М — для контроля деталей при температуре от +50 до — 50 "С.

Дефектоскопические материалы мо­гут находиться в обычной посуде, а так­же в аэрозольных флаконах, что делает их использование особенно удобным.

При люминесцентном контроле по­сле очистки на поверхность детали наносят флуоресцирующую проника­ющую жидкость, для чего деталь по­гружают в резервуар. После нанесе­ния жидкости детали выдерживают на воздухе 5 — 10 мин, чтобы раствор мог проникнуть в микроскопические дефекты на ее поверхности. Удаляют раствор, обдувая деталь сжатым воз­духом, промывая струей воды или об­тирая ветошью, смоченной в раство­рителе. После промывки деталь про­сушивают при температуре 50 °С. Для ускорения выхода из плоскости дефекта на поверхность флуоресци­рующей жидкости поверхность опы­ляют дисперсным порошком, облада­ющим абсорбирующими свойствами (сухой проявитель), либо погружают в ванну с "мокрым" проявителем.

При использовании сухого прояви­теля обычно применяют окись маг­ния, силикагель или тальк. Опылен­ную деталь выдерживают в течение 8 — 10 мин. Продолжительность вы­держки зависит от качества адсорби­рующего порошка и характера (глу­бины) трещины. После этой операции излишки порошка удаляют. Адсорби­рующий порошок, пропитанный флу­оресцирующей жидкостью, остается лишь в местах расположения дефек­тов/Облучая деталь ультрафиолето­выми лучами, уточняют расположе­ние дефекта на темной поверхности детали в виде яркого свечения раз­личных цветов и оттенков (например, темно-зеленого, зелено-голубого в зависимости от применяемых люмино­форов).

Дефектоскопические материалы для люминесцентной дефектоскопии также применяют комплектно. Они включают проникающую индикатор­ную (люминесцентную) жидкость, очищающую жидкость и проявитель. Так, комплект "Люм-1 водосмываемый" предназначен для выявления главным образом тонких несплошностей при высокой производительно­сти труда, обеспечиваемой водоемываемостью материала. Комплект "Люм-2 с последующей эмульсификацией" предназначен для выявле­ния микроскопических и более круп­ных раскрытых на поверхности несплошностей при индивидуальном контроле деталей. Этим комплектом могут быть выявлены слабо замет­ные неровности (царапины, следы об­работки режущими инструментами и т. п.), благодаря высокой липкости люминесцирующего раствора.

Люминесцентно-цветной контроль является комбинированным мето­дом, который совмещает и расширяет возможность выявления поверхност­ных дефектов в дневном и невидимом ультрафиолетовом свете с наивыс­шей чувствительностью без примене­ния оптики (используют как исключе­ние). Этот метод позволяет усовершенствовать люминесцентный метод при помощи диффузионно-сорбционного пленочного проявления и приме­нения красной люминесценции, ис­пользовать водосмываемую индика­торную жидкость, снизить токсич­ность составов.

Люминесцентно-цветной метод об­ладает следующими особенностями:

дефекты выявляются либо по лю­минесцентному, либо по цветному способу, т. е. при ультрафиолетовом, дневном или смешанном освещении; выявляются весьма малые по рас­крытию на поверхности трещины (по­рядка 1 мкм); применяемая индика­торная жидкость сохраняет способ­ность флуоресцировать после высы­хания проявителя; смывающее веще­ство (очиститель) плохо смачивает металл, но является растворителем индикатора, что обеспечивает удале­ние последнего лишь с поверхности изделия; проявитель представляет собой нитроцеллюлозное, быстросох­нущее вещество, в которое при высы­хании переходит флуорокраситель индикаторной жидкости.

Флуорокраситель при этом сохра­няет способность люминесцировать, имеет достаточную адгезию. При на­несении пленки повышенной толщи­ны возможно ее отделение от контро­лируемой поверхности для докумен­тации результатов дефектоскопии.

Последовательность технологии контроля описываемым способом следующая:

обезжиривание поверхности рас­творителями;

нанесение проникающей индика­торной жидкости кистью или любым другим методом;

промывка детали проточной холод­ной водой с последующим притиранием марлевым тампоном, смоченным очищаемой жидкостью;

проявление дефектов нанесением ровного одинарного тонкого слоя про­явителя. Наиболее удобны для этой цели аэрозольные флаконы;

осмотр в видимом дневном свете (ДС) либо фильтрованном ультрафи­олетовом (УФС). При осмотре деталей в ДС дефекты представляются пурпурно-красны­ми следами на белом фоне. При ос­мотре в УФС дефекты имеют вид яр­ких оранжево-красных следов на тем­ном фиолетовом фоне. Наивысшая чувствительность достигается при осмотре в возможно более концентри­рованных пучках УФС (так называе­мая первая ступень чувствительно­сти). В комплект дефектоскопиче­ских люминесцентно-цветных мате­риалов входят: проникающая жид­кость, очищающая жидкость, прояв­ляющий лак. Комплекты дефекто­скопических материалов имеют сложный состав.

Все материалы для капиллярной дефектоскопии необходимо контро­лировать по специальным методи­кам. В частности, контролируется ка­чество люминесцирующих жидко­стей (интенсивность люминесценции концентрата, оценка цвета, смачива­ющая способность и критическая толщина слоя раствора, дающего лю­минесценцию), проверяется качество индикаторных жидкостей и проявля­ющих порошков. Кроме того, на ко­нечном этапе контроля необходимо проверять выявляемость эталонных дефектов. Необходимость контроля качества материалов для капилляр­ной дефектоскопии обусловлена оп­ределенной субъективностью метода, зависимостью выявляемости дефек­тов от цветного и светового контраста и даже от остроты зрения или психологического состояния наблюдателя-дефектовщика.

Вихретоковый неразрушающий контроль. Этот контроль основан на анализе взаимодействия поля вихретокового преобразователя с электро­магнитным полем вихревых токов, наводимых в контролируемом объек­те. По первичному информативному параметру методы делят на ампли­тудный, частотный, спектральный, многочастотный.

Методы, основанные на использо­вании вихревых токов, применяются для обнаружения нарушения сплош­ности, неоднородности структуры и отклонений химического состава в электропроводящих изделиях, в структуроскопии. Вихретоковые ме­тоды находят также применение при измерении толщин покрытий, листо­вых материалов и труб.

Сущность метода заключается в следующем. Когда к поверхности ме­таллического изделия подносят ка­тушку, по которой протекает пере­менный электрический ток, в металле наводятся вихревые токи (рис. 2.14). Значение наведенных вихревых токов зависит от величины и частоты пере­менного тока, электропроводности, магнитной проницаемости и формы изделия, относительного расположе­ния катушки и изделия, а также от наличия 8 изделии неоднородностей или несплошностей.

Электромагнитное поле вихревых токов по направлению противоположно наводящему.


Рис. 2.14. Схема электромагнитного неразрушающего контроля:

а — монолитный металл; б — металл с трещиной; Фв — возбуждающее электромагнитное поле; Фф — наведен­ное электромагнитное поле;Iф — вихревые тони; Д — глубина проникновения

В результате этого вихревые токи влияют на общее сопротивление (импеданс) катушки возбуждения, находящейся в непос­редственной близости к изделию. Оп­ределение величины и характера из­менений вносимых сопротивлений (активных и индуктивных) и является основой для обнаружения дефектов или различий в структуре материала. Зависимость сигналов преобразова­теля от параметров объекта и от ре­жима контроля выражается годогра­фами, так как сигналы представля­ются векторами на комплексной пло­скости напряжений. Годографы мо­гут быть получены теоретически или экспериментально.

Таким образом, ток, протекающий в катушке, несет информацию об из­делии, его размерах, механических и химических свойствах, а также о на­личии или отсутствии дефектов, т. е. происходит своеобразное отражение электромагнитной энергии. Харак­тер отраженного поля индуктирует в металле вихревые токи; возбуждаю­щее поле определяется в основном двумя явлениями, происходящими в испытуемом изделии: возбуждающее поле индуктирует в металле вих­ревые токи; возбуждающее поле из­меняет магнитную структуру испы­туемого изделия.

В неферромагнитных металлах происходит только первое явление, причем на результаты измерения преобладающим оказывается влия­ние второго явления.

В различных вихретоковых прибо­рах используется несколько способов возбуждения вихревых токов в объек­те: помещение объекта в катушке или катушки в объект (метод охватываю­щего или проходного преобразовате­ля), накладывание преобразователя на объект (так называемые накладные преобразователи) при помощи комби­нированных преобразователей. Кроме того, преобразователи делят на абсо­лютные и дифференциальные.

При использовании абсолютного преобразователя оценивается изме­нение полного сопротивления при

взаимодействии с конкретным участ­ком контролируемого объекта. При использовании дифференциальных преобразователей сравниваются электромагнитные характеристики двух сечений изделия или двух раз­личных изделий, одно из которых счи­тается бездефектным. Обычно преобразователи соединяют последова­тельно таким образом, чтобы при контроле бездефектного изделия вы­ходное напряжение было равно нулю. Дифференциальная схема не обладает большей чувствительностью, одна­ко позволяет отстроиться от мешаю­щих факторов, что увеличивает до­стоверность контроля.

Важной характеристикой детекти­руемых вихревых токов является глу­бина их проникновения и (рис. 2.15). Это такое расстояние от поверхности, на котором амплитуда падающей электромагнитной волны уменьшает­ся в определенное число раз (е). В со­ответствии с глубиной 6 будет изме­няться и контролируемая толщина материала изделия. Глубину проник­новения вихревых токов в зависимо­сти от частоты / катушки можно опре­делить по номограмме.

Особое внимание при контроле вихретоковым методом следует обра­тить на зазор между преобразовате­лем и образцом, наличие которого сказывается на результатах. Этот же фактор значительно ограничивает возможности метода для дефектации НК. деталей сложной конфигурации. Для уменьшения влияния зазора на показания прибора предусматрива­ются такие меры, как стабилизация зазора калиброванными прокладка­ми, использование автоматических корректирующих устройств и др. Од­нако часто и эти приемы не обеспечи­вают необходимой стабильности и до­стоверности результатов контроля. Это объективно обусловлено интегральностью выходного сигнала вихретокового преобразователя, несу­щего информацию и о электромагни­тах, и о геометрических, механиче­ских и других свойствах изделия, осо­бенно при контроле ферромагнитных сплавов. Поэтому в настоящее время разрабатывают специальные методы многопараметрового вихретокового контроля, позволяющие раздельно оценить как интересующие, так и ме­шающие факторы. К ним относятся метод измерения на нескольких час­тотах, метод гармонического анализа сигнала датчика и др.

Для проведения вихретокового контроля выпускается обширная но­менклатура приборов, например, де­фектоскопы ППД-1МУ, ВД-20Н-СТ, ВД-20Н-Д и др. Для измерения тол­щин различных покрытий использу­ются вихретоковые толщиномеры ВТ-40НЦ, ВТ-50Н в диапазоне от 0 до 10000 мкм. Помимо дефектоскопов широкого назначения, используют также специальные дефектоскопы, например ТВД ЭИТ-С1МА и некото­рые другие.

Для сортировки металлов по мар­кам, оценки качества термообработ­ки используют вихретоковые измери­тели электропроводимости (ВЭ-20И) и твердомеры (ВФ-10К).

В настоящее время промышлен­ность выпускает портативные вихре­токовые дефектоскопы или дефекто­скопические индикаторы. Масса при­боров — 150— 180 г, потребляемая мощность—120—180 мВт, источ­ник питания — батарея "Крона" или аккумуляторы типа 7Д-01. Индика­торы предназначены для оператив­ного выявления несплошностей (тре­щины протяженностью от 5 мм с ши­риной раскрытия от 0,02 мм и глуби­ной от 0,5 мм) и других дефектов в поверхностных слоях магнитных и не­магнитных металлов и сплавов. Рабо­тают приборы следующим образом (рис. 2.16). При установке датчика / на контролируемый объект в контур генератора 2 вносится дополнитель­ное комплексное сопротивление. Ре­жим работы высокочастотного (ВЧ) генератора 2 можно выбрать вблизи точки срыва генерации. Такой режим получают подбором значения обрат­ной связи в цепи генератора.

Люди также интересуются этой лекцией: Глобальная сеть Internet.

Рис. 2.15. Номограмма для определения глуби­ны б проникновения вихревых токов (по данным А. Л. Дорофеева):

/ — титановый сплав ВТЗ; 2 — нержавеющая сталь 1Х18Н9Т; 3 — АК6; 4 — медь; 5 — высоколе­гированная сталь

При прохождении датчика над тре­щиной в результате влияния вносимого сопротивления изменяется ком­плексное сопротивление, при этом уменьшается добротность контура и происходит срыв генерации. В этом случае от низкого уровня сигнала, по­ступившего через АМ-детсктор 3, срабатывает мультивибратор 4, ра­ботающий в ждущем режиме. Гене­рируемые мультивибратором им­пульсы поступают на вход индика­торного устройства, где они прослу­шиваются в головных телефонах 6. Одновременно загорается световой индикатор 5, который также сигнали­зирует о наличии дефекта.

Рис.2.16. Структурная схема вихретокового де­фектоскопического индикатора

Свежие статьи
Популярно сейчас
Почему делать на заказ в разы дороже, чем купить готовую учебную работу на СтудИзбе? Наши учебные работы продаются каждый год, тогда как большинство заказов выполняются с нуля. Найдите подходящий учебный материал на СтудИзбе!
Ответы на популярные вопросы
Да! Наши авторы собирают и выкладывают те работы, которые сдаются в Вашем учебном заведении ежегодно и уже проверены преподавателями.
Да! У нас любой человек может выложить любую учебную работу и зарабатывать на её продажах! Но каждый учебный материал публикуется только после тщательной проверки администрацией.
Вернём деньги! А если быть более точными, то автору даётся немного времени на исправление, а если не исправит или выйдет время, то вернём деньги в полном объёме!
Да! На равне с готовыми студенческими работами у нас продаются услуги. Цены на услуги видны сразу, то есть Вам нужно только указать параметры и сразу можно оплачивать.
Отзывы студентов
Ставлю 10/10
Все нравится, очень удобный сайт, помогает в учебе. Кроме этого, можно заработать самому, выставляя готовые учебные материалы на продажу здесь. Рейтинги и отзывы на преподавателей очень помогают сориентироваться в начале нового семестра. Спасибо за такую функцию. Ставлю максимальную оценку.
Лучшая платформа для успешной сдачи сессии
Познакомился со СтудИзбой благодаря своему другу, очень нравится интерфейс, количество доступных файлов, цена, в общем, все прекрасно. Даже сам продаю какие-то свои работы.
Студизба ван лав ❤
Очень офигенный сайт для студентов. Много полезных учебных материалов. Пользуюсь студизбой с октября 2021 года. Серьёзных нареканий нет. Хотелось бы, что бы ввели подписочную модель и сделали материалы дешевле 300 рублей в рамках подписки бесплатными.
Отличный сайт
Лично меня всё устраивает - и покупка, и продажа; и цены, и возможность предпросмотра куска файла, и обилие бесплатных файлов (в подборках по авторам, читай, ВУЗам и факультетам). Есть определённые баги, но всё решаемо, да и администраторы реагируют в течение суток.
Маленький отзыв о большом помощнике!
Студизба спасает в те моменты, когда сроки горят, а работ накопилось достаточно. Довольно удобный сайт с простой навигацией и огромным количеством материалов.
Студ. Изба как крупнейший сборник работ для студентов
Тут дофига бывает всего полезного. Печально, что бывают предметы по которым даже одного бесплатного решения нет, но это скорее вопрос к студентам. В остальном всё здорово.
Спасательный островок
Если уже не успеваешь разобраться или застрял на каком-то задание поможет тебе быстро и недорого решить твою проблему.
Всё и так отлично
Всё очень удобно. Особенно круто, что есть система бонусов и можно выводить остатки денег. Очень много качественных бесплатных файлов.
Отзыв о системе "Студизба"
Отличная платформа для распространения работ, востребованных студентами. Хорошо налаженная и качественная работа сайта, огромная база заданий и аудитория.
Отличный помощник
Отличный сайт с кучей полезных файлов, позволяющий найти много методичек / учебников / отзывов о вузах и преподователях.
Отлично помогает студентам в любой момент для решения трудных и незамедлительных задач
Хотелось бы больше конкретной информации о преподавателях. А так в принципе хороший сайт, всегда им пользуюсь и ни разу не было желания прекратить. Хороший сайт для помощи студентам, удобный и приятный интерфейс. Из недостатков можно выделить только отсутствия небольшого количества файлов.
Спасибо за шикарный сайт
Великолепный сайт на котором студент за не большие деньги может найти помощь с дз, проектами курсовыми, лабораторными, а также узнать отзывы на преподавателей и бесплатно скачать пособия.
Популярные преподаватели
Добавляйте материалы
и зарабатывайте!
Продажи идут автоматически
5173
Авторов
на СтудИзбе
436
Средний доход
с одного платного файла
Обучение Подробнее