Популярные услуги

Курсовой проект по деталям машин под ключ
ДЗ по ТММ в бауманке
Все лабораторные под ключ! КМ-1. Комбинационные логические схемы + КМ-2. Комбинационные функциональные узлы и устройства + КМ-3. Проектирование схем
КМ-3. Типовое задание к теме прямые измерения. Контрольная работа (ИЗ1) - любой вариант!
Любая лабораторная в течение 3 суток! КМ-1. Комбинационные логические схемы / КМ-2. Комбинационные функциональные узлы и устройства / КМ-3. Проектирование схем
КМ-2. Выпрямители. Письменная работа (Электроника семинары)
Допуски и посадки и Сборочная размерная цепь + Подетальная размерная цепь
ДЗ по матведу любого варианта за 7 суток
Курсовой проект по деталям машин под ключ в бауманке
Задача по гидравлике/МЖГ
Главная » Лекции » Инженерия » Металлургия стали » Непрерывная разливка стали

Непрерывная разливка стали

2021-03-09СтудИзба

8 Непрерывная разливка стали

8.1 Сущность непрерывной разливки

Способ непрерывной разливки заключается в том, что жидкую сталь заливают в интенсивно охлаждаемую сквозную форму — кристалли­затор. Частично затвердевший слиток непрерывно протягивают через него и дополнительно охлаждают в так называемой зоне вторичного охлаждения. В результате в процессе непрерывной заливки металла и его затвердевания образуется непрерывный слиток.

Агрегаты для разливки стали этим методом называют машинами непрерывного литья заготовок (МНЛЗ) или установками непрерыв­ной разливки стали (УНРС).

При использовании МНЛЗ (см. рисунок 25) сталь из сталеразливочного ковша поступает в промежуточный ковш, а из него в кристаллизатор. В кристаллизаторе образуется оболочка, заполненная жидкой сталью по форме и сечению, отвечающему готовой заготовке. Частично затвердевшая заготовка с помощью транспортирующей системы – тянущей клети поступает в зону вторичного охлаждения, где происходит полное затвердевание заготовок. Затвердевший слиток режется на мерные длины и готовые заготовки и с помощью рольганга или других транспортных средств направляются в прокатный цех или на склад.

1- промежуточный ковш;
2-кристаллизатор;
3-зона вторичного охлаждения;
4-тянущая клеть; 5-резка;
6-затравка;
7-закристаллизовавшийся металл

Рисунок 25 – Схемы разливки стали на МНЛЗ (а) и действие затравки (б)
Разливку ведут до израсходования металла в сталеразливочном ковше или же разливают без перерыва металл из нескольких ковшей (разливка методом «плавка на плавку»).

Основные преимущества непрерывной разливки по сравнению с разливкой в изложницы:

1) существенно повышается выход годного металла. Так, для спокойной стали получение слябов или блюмов путем непрерывной разливки вместо разливки в изложницы с последующей прокаткой обеспечивает повышение выхода годного на 10—15 % от массы раз­ливаемой стали. Объясняется это тем, что верхняя часть каждого слитка (13—20 %) идет при прокатке в обрезь из-за наличия усадоч­ной раковины и зоны обогащенной ливкатами, а при непрерывной разливке образуется одна усадоч­ная раковина в конце разливки плавки;

2) непрерывно литые слитки или заготовки про­катывают непосредственно на листовых или сортовых станах. Применение непрерывной разливки стали позволяет исключить из про­изводственного цикла операции по подготовке разливочного состава, стрипперованию слитков, прокатке на обжимных станах. Все это приводит к снижению капитальных затрат, устранению ряда трудоемких операций, сокращению длительности производственного цикла от выпуска стали до получения готового проката. То есть упрощается производство по заводу в целом и улучшаются его технико-экономические показатели, уменьшаются энергетические затраты, потребность в рабочей силе и площадь завода;

3) вследствие малых поперечных размеров слитка и высокой ско­рости кристаллизации стали ограничивается развитие ликвации, то есть повышается качество металла;

Рекомендуемые материалы

4) создаются широкие возможности для полной механизации и автоматизации разливки, повышения производительности и улуч­шения условий труда.

На МНЛЗ, в зависимости от назначения, отливают заготовки квадратного сечения размером до 350X350 мм, круглые диаметром до 600 мм, слябы толщиной до 350 мм и шириной до 2600 мм и более сложный сортамент (полые круглые заготовки для производства труб, заготовки двутаврового сечения и др).

Затвердевание непрерывного слитка

Примерный тепловой баланс непрерывного слитка: кристаллизатор – 16-20%; ЗВО – 23-28%; охлаждение на воздухе – 51-61%. В непрерывноотливаемом слитке можно выделить два участка активного охлаждения — кристаллизатор и зону вторичного охлаждения (ЗВО).

Заливаемый в кристаллизатор металл при контакте с его медными водоохлаждаемыми стенками переохлаждается и затвердевает, образуя корку слитка требуемой конфигурации. На расстоянии 200—600 мм от верха  кристаллизатора находится зона непосредственного контакта с коркой слитка, где теплоотвод максимальный (1,4—2,3 МВт/м2); ниже вследствие усадки корки между ней и стенками кристаллизатора возникает газовый зазор, резко снижающий теплоотвод (до 0,3—0,6 МВт/м2). В этой зоне вследствие возможной деформации непрочной корки и стенок кристаллизатора могут появляться участки плотного и неплотного контакта, в кото­рых из-за различия в теплоотводе температура и толщина затверде­вающей корки будут различаться. Эта неоднородность способствует возникновению дефектов — в местах уменьшенной толщины корки вследствие термических напряжений могут возникать продольные наружные трещины, а в переохлажденных участках плотного кон­такта — паукообразные или сетчатые поверхностные трещины. Толщина корки на выходе из кристаллизатора должна быть достаточной, чтобы выдержать усилие вытягивания и давление жидкой стали. Эта толщина тем больше, чем больше время пребывания корки кристаллизаторе и обычно составляет 10—25 мм, а температура поверхности слитка на выходе из кристаллизатора 900—1250 °С.

В зоне вторичного охлаждения на поверхность движущегося слитка подают распыленную воду и устанавливают опорные устройства (например, ролики), которые предотвращают возможное  выпучивание  корки  слитка  под воздействием  давления столба жидкой стали.  Выбор способа охлаждения в этой зоне базировался на опыте, который показал, что при слиш­ком интенсивной подаче охладителя (например, подаче воды струями) из-за переохлаждения по­верхности слитка и возникающих при этом тер­мических напряжений в слитке образуются внут­ренние и сетчатые поверхностные трещины. Поэтому применяют распыленную воду («мягкое охлажде­ние»). Расход воды уменьшается по мере отдаления от кристаллизатора; его рассчитывают так, чтобы отводилось тепло, выделяющееся при кристалли­зации стали, а температура корки во избежа­ние образования трещин снижалась бы от исход­ной (900—1250 °С в начале зоны) не более, чем до 800—1000 °С в конце, причем в тем меньшей степени, чем выше склонность стали к трещинообразованию.

Длина зоны вторичного охлаждения составляет 80 — 100 % глу­бины лунки жидкого металла в слитке.

Структурная и химическая неоднородность непрерывнолитой заготовки

Непрерывным способом разливают преимущественно спокойную сталь, поскольку при разливке кипящей стали не достигается суще­ственного увеличения выхода годного и трудно получить достаточ­ную толщину беспузыристой корки в слитке из-за большой скорости разливки и сложности обеспечения необходимой степени окисленности металла.

Образование структурных зон в непрерывном слитке, как и в слитке, отлитом в изложницу, определяется в основном составом и температурой стали, а также теплофизическими условиями затвер­девания. В непрерывном слитке спокойной стали также наблюдаются структурные зоны наружных мелкозернистых, столбчатых и различно ориентиро­ванных срединных кристаллов.

Химическая неоднородность в непрерывном слитке развивается в меньшей степени, чем в слитке, отлитом в изложницу. Это справед­ливо как для дендритной, так и для зональной ликвации. При повы­шенной скорости кристаллизации разделительная диффузия примеси проходит менее полно и соответственно меньшей сказывается и разница концентрации примеси в осях дендритов и межосных участках.

 Так же как и дендритная, зональная ликвация уменьшается с ростом скорости затвердевания. Установлено, что при скорости продвижения фронта затвердевания более  1,8 мм/мин зональная ликвация практически отсутствует. В непрерывном слитке даже большого сечения скорость  кристаллизации  превышает эту  критическую  величину, связи с этим в непрерывных слитках отсутствует значительная зональная ликвация.

Например, в осевой зоне непрерывных слитков сечением от 75x500 до 180х900 мм степень положительной ликвации примесей достигала  значений,   %:  для углерода 10—14, для серы 5—42 и для фосфора 10,5—47.

8.2 Классификация МНЛЗ

В настоящее время в эксплуатации находится большое разнообразие установок непрерывной разливки стали. Все эти разновидности установок классифицируются по следующим признаками.

По типу заготовки МНЛЗ различаются на слябовые, блюмовые и сортовые. Заготовки, отливаемые на слябовых машинах, имеют форму поперечного сечения в виде прямоугольника с соотношением длинной стороны к короткой > 3 …4. На блюмовых и сортовых МНЛЗ отливают заготовки в виде круга, квадрата или прямоугольника с меньшим отношением сторон. Заготовки с размером стороны  > 200мм обычно называются блюмами, с меньшим размером – сортовыми заготовками.

По принципу работы различают установки непрерывной разливки и полунепрерывного литья. На машинах непрерывной разливки слиток режется на заготовки мерной длины, что позволяет разливать плавки сериями методом плавки на плавку. При полунепреывной литье длина заготовки обусловлена конструктивными особенностями – ходом механизма вытягивания, который выбирается из соображения упрощения и удешевления машины в данных условиях производства.

По составу различают одно- и многоручьевые МНЛЗ. Увеличение производительности установки достигается разливкой металла из сталеразливочного ковша в несколько кристаллизаторов. Обычно сортовые машины образуются четырьмя – восемью ручьями, а слябовые – двумя. В последнее время изготавливаются слябовые машины с четырьмя ручьями.

По характеру движения кристаллизатора различаются следующие типы МНЛЗ:

Описание: Untitled-Scanned-02- с неподвижным кристаллизатором; к ним относится горизонтальная МНЛЗ (см. рисунок 26);

- с возвратно-поступательным движением; кристаллизатор, определенный период движется одновременно со слитками или, опережая его, а затем возвращается в начальное положение; к этому типу машин относится основное количество установок непрерывной разливки стали;

- с кристаллизатором, двигающимся со скоростью слитка; это обеспечивает отсутствие скольжения оболочки слитка относительно кристаллизатора и, следовательно, трения между ними, что снижает вероятность разрыва оболочки при высоких скоростях разливки; к этому типу МНЛЗ относится так называемая роторная (валковая) МНЛЗ.

а - вертикальная; б - вертикальная с изгибом;
в - радиальная; г - наклонно-радиальная;
д – горизонтальная; е – криволинейная с радиальным кристаллизатором;
ж - то же, с вертикальным кристаллизатором;
з – роторная (валковая) МНЛЗ

Рисунок 26 – Расположение технологических осей МНЛЗ
По расположению технологической оси установки непрерывной разливки стали делятся на машины с постоянной кривизной оси до окончания затвердевания слитка (см. рисунок 26, а-д) и машины с технологической осью на участке затвердевания слитка переменной кривизны (см. рисунок 26, е, ж).

Наибольшее распространение получили следующие виды МНЛЗ: верти­кальные, криволинейные и радиальные, с изгибом слитка и горизонтальные.

Вертикальные МНЛЗ

Технологическая ось вертикальной МНЛЗ расположена вертикально. Разливка, кристаллизация и охлаждение НЛЗ проводится по стандартной технологии.

 Основной недостаток вертикальных МНЛЗ - ограничение скорости разливки или сечения слитка а значит, и про­изводительности установки. Поскольку затверде­ние должно закончиться до входа слитка в тянущую клеть и зону резки, то увеличение глубины лунки жидкого металла при повышении скорости (или сечения) ведет к необходимости повышать металлургическую длину МНЛЗ — большая высота.

Современные машины вертикального типа достигают высоты 40—43 м. Их сооружение требует или большого заглубления — до 25—27 м ниже уровня пола цеха, или строи­тельства высоких зданий. И в том и в другом случае с увеличением высоты установки резко возрастают капитальные затраты, услож­няются их эксплуатация и технологический процесс разливки.

Опыт эксплуатации вертикальных МНЛЗ показывает, что их целесообразно применять при металлургической длине установки, не превышающей 12 … 14 м. Это, в свою очередь, означает, что на машинах вертикального типа нельзя разливать плавки с больше­грузных агрегатов, например конвертеров садкой 300—400 т. Размеры слитков, отливаемых на верти­кальных МНЛЗ, колеблются от 50x50 до 300x1850 мм2. Выход годных слитков достигает 95—98 % от жидкого металла.

Стремление снизить высоту привело к созданию машин с распо­ложением технологических узлов по криволинейной оси.

Криволинейные и радиальные МНЛЗ

В машинах этого типа в радиальном кристаллизаторе формируется изогнутый по определенному радиусу слиток. Важнейшим конструктивным параметром радиальной установки является радиус технологической оси. Его величина определяется так, чтобы обеспечить длину пути, достаточную для полного затвер­девания слитка к моменту разгибания при заданной линейной ско­рости вытягивания, и не превысить допустимую степень деформации при разгибании, что могло бы привести к образованию трещин и разрывов на слитке.

Чтобы при последу­ющем разгибании в слитке не образовывались трещины, радиус изгиба должен быть более чем в 25-раз больше толщины слитка. Обычно радиус изгиба выбирают в соответствии с соотношением R = (30-40) а, где а — толщина слитка, м.

В радиальных МНЛЗ на выходе из кристаллизатора слиток дви­жется по дуге с постоянным радиусом. После прохождения нижней точки дуги полностью затвердевший слиток разгибают, переводя его в горизонтальное положение.

В криволинейных машинах слиток вначале движется по дуге, определяемой радиусом кривизны кристаллизатора, а затем еще в зоне вторичного охлаждения радиус кривизны дуги увеличивается, т. е. происходит постепенное разгибание слитка с жидкой сердце­виной с последующим переводом в горизонтальное положение. Рас­средоточение деформации имеет целью снизить возникающие при этом в корке слитка напряжения и вероятность возникновения трещин.

Основные преимущества этих машин по сравнению с вертикальными: меньшая высота, что снижает стоимость сооружения МНЛЗ и здания цеха; возможность повышения скорости разливки, поскольку газорезку можно установить далеко от кристаллизатора и благодаря этому допустимо существенное увеличение глубины лунки жидкого металла в слитке; возможность резки слитка на куски большой длины.

По этим причинам в последние голы почти отказались от сооружения вертикальных   МНЛЗ   и   строят   преимущественно криволинейные и радиальные.

МНЛЗ с изгибом слитка

Существуют машины этого типа двух разновидностей. Машины первой разновидности (см. рисунок 27, а) имеют вертикальный кристаллизатор и систему вторичного охлаждения с расположенной за ней тянущей  клетью,  которые  не отличаются  от  аналогичных  устройств машин  вертикального типа.  Далее  движущийся   слиток  изгибают, переводя в горизонтальное положение. Затем слиток  поступает в выпрямляющие валки, за которыми располагают газорезку. Подобные машины применяют  при  отливке  слитков  небольшой  толщины  (<150  мм), поскольку при большей толщине из-за необходимости иметь большой радиус изгиба не достигается заметного снижения высоты по сравне­нию с вертикальной МНЛЗ.

Рисунок 27 – Схема МНЛЗ с изгибом слитка (а) и вертикально-радиальной МНЛЗ (б)Машины второй разновидности, называемые иногда вертикально-радиальными, имеют (см. рисунок 27, б) вертикально расположенный кри­сталлизатор и небольшой по высоте (3 — 4 м) вертикальный участок с опорными роликами, за которыми расположена секция изгибающих роликов, изгибающих полузатвердевший слиток, и далее радиальная роликовая проводка. После прохождения нижней точки дуги слиток попадает в тянуще-правильные валки, которые переводят его в го­ризонтальное положение и режут на мерные длины.

Установки этого типа применяются реже, чем криволинейные из-за большей высоты. Основное их достоинство — более простые в изготовлении и обслуживании прямолинейный кристаллизатор и верх зоны вторичного охлаждения.

В целом МНЛЗ с криволинейной технологической осью обла­дает рядом существенных преимуществ по сравнению с вертикаль­ными: большая скорость разливки и возможность принимать больше­грузные плавки; меньшая в 3—4 раза высота установки; возмож­ность получения неограниченного по длине слитка; капитальные затраты на 30—50 % ниже при равной производительности; облег­чается обслуживание МНЛЗ, так как основное технологическое оборудование располагается над уровнем пола цеха; при горизон­тальной выдаче заготовок возможно осуществление прокатки непосредственно после отливки заготовок.

Недостат­ки: сложность конструкции криволинейной зоны вторичного охлаж­дения; необходимость иметь выпрямляющий механизм, а в случае установки с изгибом заготовки и тянуще-изгибающий механизм; трудности в обеспечении равномерного охлаждения слитка по грани большого и малого радиусов в зоне вторичного охлаждения, в ре­зультате чего возможно неоднородное строение слитка.

Поэтому при выборе типа машины в условиях высокопроизво­дительных цехов предпочтение следует отдать радиальным и криво­линейным МНЛЗ, а при отливке качественной стали особенно слож­ного профиля ряд преимуществ сохраняется за вертикальными МНЛЗ.

Установки рассмотренных выше типов трудно, а часто и невоз­можно разместить в существующих зданиях сталеплавильных цехов. Для отливки непрерывных сортовых заготовок малого сечения и широкого сортамента в цехах с агрегатами малой и средней емкости разработаны и внедряются горизонтальные МНЛЗ.

Горизонтальная МНЛЗ

Технологическая ось машин этого типа расположена горизон­тально или наклонена на угол до 15-20° к горизонтали. Схема горизонтальной МНЛЗ приведена на рисунке 28.

Машина имеет следующие основные технологиче­ские узлы: металлоприемник 1 — емкость, футерованную огнеупорным кирпичом; металлопровод 2 — узел, подающий металл в кристаллизатор, состоящий из металлического корпуса и огне­упорного стакана из нитрида бора, карбида кремния и т. п.; кристаллизатор 3 — медный или комбинированный (медь—графит) холодильник, охлаждаемый водой; зону вторичного охлаждения 4 в виде рольгангов; тянущее устройство 5, обеспечивающее периодическое вытягивание слитка; устройство для резки слитка 6.

Сталь из разли­вочного ковша поступает (см. рисунок 28) в футерованный металлоприемник, жестко соединенный с кристаллизатором посредством огнеупор­ного стакана.

Рисунок 28 – Схема горизонтальной МНЛЗ (обозначении в тексте)Зона вторичного охлаждения представляет собой роль­ганг с системой водяных форсунок. Далее расположен механизм периодического вытягивания слитка. Механизм перемещает слиток вперед на 20—50 мм, затем возвращается назад, после чего цикл повторяется; во время обратного движения механизма слиток остается неподвижным, либо несколько осаживается назад. Число циклов изменяется от 20 до 100 в минуту.

Периодическое вытягивание слитка заменяет качание кристаллизатора, используемое на верти­кальных и криволинейных машинах для предотвращения зависания и разрывов корки слитка в кристаллизаторе. За механизмом вытяги­вания расположена газорезка и рольганг с приводными роликами. Горизонтальные МНЛЗ применяют для отливки сортовых слит­ков небольшого сечения толщиной менее 150—200 мм; скорость разливки достигает 4 м/мин. Основные преимущества горизонталь­ных машин — малая высота, меньшее количество и масса оборудо­вания и, следовательно, меньшая стоимость их строительства.

8.3 Основные узлы МНЛЗ

Современная МНЛЗ состоит из следующих элементов и узлов: сталеразливочного стенда; промежуточного ковша; тележки или стенда для промежуточного ковша; кристаллизатора; механизма возвратно-поступального движения кристаллизатора; опорных элементов и устройств зоны вторичного охлаждения; устройства для транспортировки слитка; затравки; механизма для ввода и уборки затравки; устройств для резки непрерывнолитого слитка на заготовки мерной длины; устройства для уборки и транспортировки заготовок к прокатному цеху и в отделение отделки заготовок; устройства для подачи твердой или жидкой смазки; оборудования для подачи воды в кристаллизатор; зону вторичного охлаждения и на охлаждение элементов МНЛЗ; электрооборудования; средств контроля и автоматизации.

Описание: Untitled-Scanned-07Промежуточный ковш, снабженный одним (или не­сколькими) стаканом со стопором, обеспечивает постоянный по ходу разливки и небольшой напор струи металла, поступающего в кри­сталлизатор (за счет поддержания в ковше постоянного уровня металла высотой 0,6—1,2 м), регулирование стопором скорости по­дачи металла в кристаллизатор, подачу металла в несколько кри­сталлизаторов на многоручьевых МНЛЗ, разливку по методу «плавка на плавку».

1 – погружной стакан; 2 – стопор; 3 – промежуточный ковш; 4 – защитная труба; 5 – крышка; 6 – кристаллизатор; 7 – участок струи (бойное место); 8 – аварийный слив&#13;&#10;&#13;&#10;Рисунок 29 – Устройство промежуточного ковша&#13;&#10;Промежуточный ковш выполнятся сварным (см. рисунок 29) из стальных листов, футерованным огнеупорными материалами. Для уменьшения тепловых потерь он снабжен крышкой, футерованной кирпичом или набивной огнеупорной массой.

Для защиты металла от вторичного окисления используются погружные стаканы и защитные трубки (см. рисунок 29). Погружные стаканы предназначены для защиты металла на участке промежуточный ковш – кристаллизатор. Защитные трубы используются для защиты металла от контакта с воздухом на участке сталеразливочный ковш – промежуточный ковш и изготавливаются из шамотографита или плавленого кварца.

Кристаллизатор – медная полая водоохлаждаемая форма, в которой формируется профиль НЛЗ. Должен обеспечить быстрое формирование до­статочно толстой и прочной корки слитка без дефектов. Для обеспе­чения интенсивного теплоотвода стенки кристаллизаторов делают водоохлаждаемыми, а внутреннюю их часть, соприкасающуюся с жидким металлом, выполняют из высокотеплопроводной меди.

Внутренняя стенка кристаллизатора работает в тяжелых усло­виях (контакт с высокотемпературным расплавом, истирающее дей­ствие слитка, воздействие ферростатического давления и т. д.). С целью повышения температуры разупрочнения медь иногда легируют хромом или серебром, а для повышения износостойкости на рабочую поверхность наносят тонкий слой стойких к истиранию материалов. Во избежание выпадения в каналах нерастворимого осадка вода не должна нагре­ваться выше 40 °С, а чтобы обеспечить интенсивный теплоотвод, скорость потока воды должна быть равной 5—10 м/с. Расход воды составляет около 90 м3/ч на 1 м периметра полости кристаллизатора.

На МНЛЗ применяют кристаллизаторы трех типов: сборные, блочные и гильзовые. Все они в зависимости от формы технологической оси  МНЛЗ могут быть прямолинейными и радиальными. Наиболее широкое распространение получили сборные кристаллизаторы, состоящие из четырех медных рабочих стенок, каждая из которых крепится шпильками к жесткой стальной плите (см. рисунок 30). Рабочие стенки выполняют из толстых (50—70 мм) мед­ных пластин (при малой толщине 10—20 мм происходит их коробле­ние, приводящее к образованию продольных трещин в корке слитка). Стойкость кристаллизаторов (без износостойких покрытий) составляет 100—150 больше­грузных плавок.

Рисунок 30 – Схема сборного кристаллизатора (обозначения в тексте)

Характерной особенностью сборного кристаллизатора является возможность изменения ширины отливаемой заготовки. Это достигается перемещением узких стен, вставленных между широкими, с помощью различных механических или электромеханических приводов.

Блочные кристаллизаторы изготавливают из сплошной медной заготовки, гильзовые — из медных цельнотянутых труб. Те и дру­гие используют при отливке слитков небольшого сечения и прямо­линейной формы.

Качество слитка в значительной степени определяется прочностью первичной корочки. При слабой корочке возможен ее разрыв в ре­зультате трения о стенки кристаллизатора при вытягивании слитка или выпучивание в зоне вторичного охлаждения. Обычно ее тол­щина на выходе из кристаллизатора составляет 15—25 мм. Увели­чение толщины корочки может быть достигнуто уменьшением ско­рости вытягивания или увеличением высоты кристаллизатора. Однако в первом случае снижается производительность установки, а во втором увеличивается трение между слитком и стенками кри­сталлизатора, а также возрастает опасность коробления кристалли­затора. В зависимости от сечения заготовки длина кристаллизатора составляет 700—1100 мм. Чтобы слиток более длительное время соприкасался со стенками кристаллизатора, внутренний профиль кристаллизатора иногда выполняют с обратной конусностью (т. е. нижнее сечение несколько меньше верхнего).

Для уменьшения трения (и вторичного окисления в кристаллизаторе) между слитком и стенками кристалли­затора между ними подается смазка в виде разнообразных масел или парафина, либо подаются шлаковые смеси.

Опыт эксплуатации МНЛЗ показали, что в результате прилипания корочки слитка к стенке кристаллизатора, а также вследствие коробления возможно зависа­ние слитка в кристаллизаторе. При этом образуются разрывы ко­рочки, что не только ухудшает поверхность слитка, но и может быть причиной аварии при разливке. Чтобы предотвратить зависание слитка, облегчить попадание смазки между слитком и стенкой кри­сталлизатора, а главное, обеспечить сваривание (залечивание) раз­рывов корочки, кристаллизатору сообщается возвратно-поступа­тельное движение с помощью меха­низма качания кристаллизатора.

Механизм качания кристаллизатора сооб­щает ему возвратно-поступательное движение с целью предотвра­щения разрывов и зависания корки слитка на стенках кристалли­затора. Вращаемые электродвигателями эксцентрики или кулачки через систему рычагов обеспечивают качание рамы, на которую устанавливают кристаллизатор.

Скорость перемещения кристаллизатора вверх и вниз изменяется в следующей последователь­ности: вниз он опускается со скоростью движения слитка, а вверх — с втрое большей скоростью. Амплитуда качания изменяется в пределах от 1 до 40 мм, частота — от 10 до 600 циклов в минуту.

Затравка предназначена для вытягивания первых метров отливаемого слитка. На вертикальных и горизонтальных машинах затравка представляет собой металлическую штангу, а на машинах с криволинейной осью она выполнена из шарнирно соединенных звеньев. Затравка снабжена головкой, в которой имеется углубление в виде «ласточкиного хвоста» или Г-образной формы (см. рисунок 31); сечение головки затравки соответствует сечению отливаемого слитка. Перед началом разливки затравку вводят в кристаллизатор и ее головка образует временное дно, а низ затравки находится в тяну­щих валках. Заливаемый в кристаллизатор металл застывает в углуб­лении головки, обеспечивая сцепление затравки со слитком. При включении тянущих валков затравка начинает двигаться вниз и тянет за собой слиток. После выхода затравки из тянущих валков ее отделяют от слитка.

1 — затравка;&#13;&#10;2 — головка за¬травки;&#13;&#10;3 — кристаллизатор&#13;&#10;&#13;&#10;Рисунок 31 – Затравка в кристаллизаторе перед началом разливки: а — с головкой типа «ла¬сточкин хвост»;&#13;&#10;б — с Г-образной го¬ловкой&#13;&#10;


 

Вторичное охлаждение. Основной технологической функцией зоны вторичного охлаждения (ЗВО) является создание оптимальных условий для полного затвердевания отливаемого слитка, обеспечивающих требуемого качества металла.  Протяженность жидкой фазы в слитке на современных машинах непрерывной разливки в зависимости от сечения заготовки и скорости литья составляет 15 … 40 м.  На всем этом участке одновременно с затвердеванием металла происходит воздействие на него многочисленных силовых факторов: термическое напряжения, зависящие от условий охлаждения; растягивающие напряжения, определяемые трением и усилиями вытягивания; напряжения, возникающие под действием ферростатического давления жидкого расплава, которые вызывают выпучивание корки слитка.

Зону вторичное охлаждение наиболее часто выполняют в виде системы форсунок, подающих на поверхность слитка распылен­ную воду, и поддерживающих роликов.

Форсунки располагают между опорными роликами (см. рисунок 32) или брусьями в один, два или три ряда вдоль направления движения слитка в зависимости от его ширины. При отливке плоских слитков охлаждают широкие грани; у узких граней форсунки устанавливают лишь под кристаллизатором.

1 — слиток;&#13;&#10;2 — опорный ролик;&#13;&#10;3 — фор¬сунка;&#13;&#10;4 — трубчатый коллектор;&#13;&#10;5 — задвижка&#13;&#10;&#13;&#10;Рисунок 32 – Секция вторичного охлаждения криволинейной МНЛЗ&#13;&#10;Интенсивность охлаждения должна уменьшаться по мере удале­ния слитка от кристаллизатора. С тем, чтобы обеспечить постепенное снижение расхода воды, зону вторичного охлаждения делят по длине на несколько (до восьми) секций, объединяющих группу фор­сунок и имеющих самостоятельный подвод воды.

Интенсивность вторичного охлаждения зависит от свойств разливаемой стали (склонности к образованию трещин) и от скорости разливки, при росте которой интенсивность подачи воды увеличивают. Общий расход воды на вторич­ное охлаждение при разливке спокойной стали составляет 0,4—1,0 м3/т при скорости вытягивания крупных слитков 1,0—1,4 м/мин. Протяженность зоны непосредственного охлаждения водой на слиток может составлять до 10—12 м.

Охлаждение слитка в зоне вторичного охлаждения МНЛЗ. Режим охлаждения слитка в ЗВО должен обеспечить минимальную продолжительность полного затвердевания непрерывного слитка и отсутствие поверхностных и внутренних дефектов. Экспериментальные и теоретические исследования по влиянию режимов охлаждения на качество непрерывного слитка позволили определить следующие требования к системе вторичного охлаждения и охлаждению непрерывнолитого слитка:

- монотонное снижение температуры поверхности заготовки до полного затвердевания слитка;

- на всем протяжении ЗВО температура поверхности слитка должны находиться в области температур пластической деформации данной стали;

- равномерное распределение температуры по поверхности слитка;

- возможность регулирования интенсивности охлаждения и протяженности зоны вторичного водяного охлаждения в зависимости, от марок разливаемой стали, скорости разливки и глубины жидкой фазы;

- надежность работы системы в течение длительного времени.

Поддерживающие устройства. В зоне вторичного охлаждения на корочку слитка действует ферростатическое давление столба жидкого металла, в результате чего воз­можно раздутие (выпучивание) по граням слитка. Для предотвра­щения этого в зоне вторичного охлаждения устанавливают рамы с поддерживающими роликами (рисунок 32).

В машинах для отливки слит­ков квадратного или близкого к квадрату прямоугольного сечения опорные устройства расположены со всех четырех сторон слитка; при отливке плоских слитков — вдоль двух широких граней слитка. Для удобства замены при ремонтах группы со­седних верхних и нижних роликов объединены в отдельные секции, где в общем каркасе смонтировано от 2 до 7 пар роликов. В связи с тем, что по мере увеличения толщины затвердевающей корки жесткость слитка возрастает, диаметр роликов по мере отдаления от кристал­лизатора увеличивается. Так при отливке слитков толщиной 300 мм диаметр роликов от 150—200 мм у кристаллизатора возрастает до 480—600 мм на горизонтальном участке.

Устройство для резки слитка на куски опре­деленной длины (заготовки) устанавливаются в конце технологической линии МНЛЗ на ее горизонтальном (вертикальном) участке. Обычно применяются газокислородные резаки или гидравлические ножницы. Вне зависимости от способа резания, устройство снабжено механизмом передвижения, позволяющим осуществлять резку в процессе движения слитка.

Рисунок 33 – Стенд подъемно-поворотный (обозначения в тексте)Оборудование для быстрой смены ков­шей. Современные МНЛЗ оборудуют поворотными и иногда пере­движными стендами, которые обеспечивают подачу  ковшей с металлом к машине, взвешивание и установку ковша со скоростями, позволяющими вести разливку методом «плавка на плавку». По конструкции и принципу работы сталеразливочные стенды делятся на два типа – мостовые и поворотные. Все они рассчитаны на установку двух ковшей. Наиболее современный подъемно-поворот­ный стенд (см. рисунок 33) имеет располагаемую на основании 1 поворот­ную платформу 2, на которую через ось 6 опирается консоль 7. В подвесках 4 консоли можно установить два ковша (5а и б); вертикальное перемещение ковша достигают качанием консоли, при этом тяга 3 обеспечивает плоскопараллельное движение подвесок и ковшей.

8.4 Технология непрерывной разливки

Для уменьшения величины осевой пористости, степени осевой ликвации, пораженности слитка трещинами, размеров зоны столбчатых кристаллов с пониженной прочностью и пластичностью, а так же с целью уменьшения размывания огнеупоров (стаканов, стопоров) перегрев металла, подаваемого в кристаллизатор, над температурой ликвидус должен быть минимальным. Оптимальны следующие температурные условия перегрева:

— температура металла в промежуточном ковше на 20-30 °С выше температуры ликвидуса;

— перепад температур металла в промежуточном ковше в пределах +15 и -10°С;

— перегрев в сталеразливочном ковше выше температуры в промковше на 40 — 45 °С.

После окончания разливки предыдущей плавки (или серии пла­вок при разливке методом «плавка на плавку») МНЛЗ готовят к сле­дующей разливке. В эту подготовку входят следующие операции: выведение из машины конца отливавшегося слитка; проверка стенок кристаллизатора и его положения относительно оси МНЛЗ; про­верка форсунок вторичного охлаждения и расстояния между роликами и брусьями зоны вторичного охлаждения и тянущих устройств, осмотр прочего оборудования; введение затравки в кристаллизатор и заделка зазора между головкой затравки и кристаллизатором (асбе­стом, глиной); покрытие внутренней поверхности стенок кристаллизатора тонким слоем смазки (солидолом, парафиновой, графитовой смазкой).

Перед началом разливки устанавливают нагретый до 1000-12000С промежуточ­ный ковш в заданное положение над кристаллизатором, осуществ­ляют подачу воды на кристаллизатор и ЗВО. Промежуточный ковш наполняют металлом на высоту 0,4—0,6 м и затем, открывая стопор, начинают подавать металл в кристалли­затор. Длительность заполнения кристаллизатора до начала вытягивания слитка должна обеспечить образование достаточно толстой корки затвердевшего металла и ее прочное сцепление с затравкой; для слитков среднего и крупного сечений это время составляет 0,5— 2,0 мин.

По истечении заданного времени при неполностью заполненном кристаллизаторе, включают механизм вытягивания слитка; одно­временно автоматически включается механизм качания кристалли­затора. В течение 1—2 мин скорость вытягивания слитка повышают до заданного значения; в дальнейшем ее стараются поддерживать по­стоянной во избежание образования дефектов в слитке. Скорость разливки подбирают опытным путем, учитывая, что при ее увели­чении возрастает производительность установки, но уменьшается толщина корки слитка па выходе из кристаллизатора Скорость разливки зависит от сечения слитка, марки разливаемой стали, состояния оборудования МНЛЗ, обычно понижаясь при увеличении сечения слитка и степени легированности стали. Для слитков тол­щиной более 150 мм скорость разливки находится в пределах 0,4— 2,0 м/мин, для более мелких слитков достигает 4—8 м/мин,

Рисунок 34 – Способы подачи металла в кристаллизаторМеталл в кристаллизатор подают либо открытой струей (см. рисунок 34, а), либо «под уровень» с помощью удлиненных составных стаканов, конец которых погружен в металл на глубину 50—100 мм (рисунок 34, б, в). По­дачу «под уровень» осуществляют вертикальной (рисунок 34, б), либо горизонтальными или наклонными струями (рисунок 34, в). Разливка под уровень предотвращает окисление и разбрызгивание струи ме­талла и уменьшает его охлаждение, снижает пораженность слитка поверхностными продольными трещинами. Подачу вертикальными струями применяют при отливке слитков, близких по сечению к кругу или квадрату; подачу через погружаемые стаканы с боковыми отвер­стиями — для  плоских слитков.

При разливке без подачи в кристаллизатор шлаковых смесей на его стенки подают смазку, которая уменьшает трение слитка о стенки, способствуя предотвращению зависания и разрывов корки слитка. В качестве смазки часто используют парафин и рапсовое масло, рас­ход парафина составляет 0,2—0,7 кг/т стали.

При разливке через погружаемые стаканы поверхность металла в кристаллизаторе защищают от охлаждения, окисления и возмож­ного образования заворотов окисленной корки шлаковыми покры­тиями, для чего в кристаллизатор вводят шлаковые смеси, которые, сопри­касаясь с жидким металлом, расплавляются, образуя слой жидкого шлака. Состав смесей отличается разнообразием, в них могут вхо­дить CaO, SiО2, A12О3, Na2O, K2O, СаР2, MgO, иногда 20—30 % порошкообразного графита. При разливке со шлаковым покрытием смазку в кристаллизатор не подают; роль смазки выполняет тонкий слой шлака, налипающего на стенки кристаллизатора.

При подаче металла в кристаллизатор нельзя допускать переры­вов струи и резкого изменения количества подаваемого металла. Перерыв струи ведет к образованию спаев (поясов) на слитке. Изме­нение расхода металла вызывает колебания уровня металла в кри­сталлизаторе и появление ужимин на поверхности слитка. Постоянство уровня металла в кристаллизаторе на большинстве УНРС обеспечивают, регулируя подачу металла из промежуточного ковша с помощью стопора.

8.5 Качество непрерывнолитого слитка

Кристаллическая структура непрерывнолитого слитка схожа со структурой слитков, полученных разливкой в изложницы – наружная корка из мелких неориентированных кристаллов (ее толщина 10-20 мм), далее столбчатые кристаллы и в осевой части слитка различно ориентированные равноосные кристаллы; в слитках мелкого сечения зона столбчатых кристаллов может простираться до центра слитка.

Непрерывный слиток благодаря малой толщине и быстрому вследствие этого затвердеванию отличается меньшим развитием химической неоднородности, более равномерным распределением не­металлических включений. От слитков, разливаемых в изложницы, он отличается также более чистой и гладкой поверхностью.

Ниже перечислены основные дефекты слитков, получаемых непрерывной разливкой.

Сильно развита в них осевая пористость, что объясняется наличием в кристаллизующемся слитке очень глубокой и узкой лунки жидкого металла. Осевая пористость заметно усиливается при увеличении перегрева металла и повышенной скорости разливки, иногда переходя в осевые усадочные пустоты. Заметно выражена в непрерывных слитках осевая ликвация, при этом по длине слитка располагаются отдельные участки увеличенной ликвации.

В слитках криволинейных и особенно горизонтальных УНРС наблюдается некоторая несимметричность структуры и распределения составляющих стали, поскольку зона затвердевания последних порций металла, а следовательно, и усадочная пористость, и скопление ликвидирующих примесей смещены к верхней грани слитка; у верхней грани наблюдается также повышенное содержание неметаллических включений вследствие их всплывания.

Иногда наблюдается искажение формы слитка. Для слитков квадратного сечения характерна ромбичность – искажения профиля слитка в кристаллизаторе, когда квадратное сечение деформируется в ромбическое. Причины: перекос слитка в кристаллизаторе под воздействием несоосно расположенных с ним опорных роликов, неравномерное охлаждение различных граней слитка в кристаллизаторе. Раздутие слитка (выпуклость его поперечного сечения) возникает под воздействием ферростатического давления столба жидкой стали в слитке; возникновению дефекта способствуют повышенные скорости разливки и температура металла, что уменьшает толщину затвердевшей корки; недостаточная интенсивность вторичного охлаждения; отклонения в настройке опорных роликов; увеличенное расстояние между опорными роликами.

Распространенным дефектом являются трещины – поверхностные и внутренние. Продольные поверхностные трещины на гранях слитка имеют длину до 1-1,5 м и более и глубину до 10-15мм. Эти трещины (рисунок 35, 5) являются результатом усадочных напряжений и образуются при неравномерном прилегании формирующейся корки к стенкам кристаллизатора в местах уменьшенной ее толщины, которые возникают из-за снижения теплоотвода там, где корка отходит от стенок (например в результате деформации слитка или коробления стенок кристаллизатора). Действенным средством борьбы с этим дефектом является разливка с защитным шлаковым покрытием, поскольку образующаяся между коркой и стенками кристаллизатора тонкая шлаковая прослойка существенно снижает неравномерность теплоотвода.

Продольные трещины по ребрам (углам) (см. рисунок 35, 7) образуются в квадратных слитках при искажении профиля в кристаллизаторе. В слябах такие трещины возникают на расстоянии ~350 мм от уровня металла в кристаллизаторе в случае отхода корки слитка от узкой стенки кристаллизатора вследствие ее износа или изменения угла ее наклона (неправильная установка кристаллизатора).

Поперечные поверхностные трещины (см. рисунок 35, 10) (надрывы корки) возникают в кристаллизаторе вследствие усиленного трения при недостаточной смазке стенок и вследствие зависания корки при наличии на стенках кристаллизатора царапин, вмятин. Такие трещины могут возникать при изгибании или выпрямлении слитка на УНРС с криволинейной осью. Поперечные трещины в углах слитка (рисунок 35, 9) могут также образовываться в результате слишком интенсивного вторичного охлаждения.

1 – центральная трещина; 2 – диагональные трещины; 3 – осевые; 4 – внутренние трещины перпендикулярные широким граням слитка;&#13;&#10;5 – продольные поверхностные трещины на гранях слитка;&#13;&#10;6 – трещины, перпендикулярные узким граням слитка; 7 – продольные трещины по ребрам (углам);&#13;&#10;8 – паукообразные и сетчатые трещины;&#13;&#10;9 – поперечные трещины в углах слитка;&#13;&#10;10 – поперечные поверхностные трещины (надрывы корки)&#13;&#10;&#13;&#10;Рисунок 35 – Основные виды трещин в вытягиваемом из кристаллизатора МНЛЗ слитка&#13;&#10;
Описание: Untitled-Scanned-02


Паукообразные и сетчатые трещины (см. рисунок 35, 8) схожи, каждая трещина распространяется из одного центра в нескольких направлениях. Паукообразные трещины возникают в кристаллизаторе при неравномерном прилегании корки к его стенкам в местах плотного прилегания, т. е в участках наиболее сильного охлаждения. Пораженность этими трещинами снижается при разливке со шлаковым покрытием в кристаллизаторе. Сетчатые трещины образуются в зоне вторичного охлаждения при температурах 700-9000С в результате чередования нагревов и охлаждений поверхности слитка (охлаждение у форсунок и разогрев за счет внутреннего тепла слитка при его движении между форсунками). Количество этих трещин сильно снижается при переходе от водяного к более мягкому водовоздушному вторичному охлаждению.

Многообразные внутренние трещины образуются в результате совместного воздействия термических напряжений в охлаждаемом слитке и механических усилий от опорных, тянущих и изгибающих роликов. Распространены внутренние трещины, перпендикулярные широким граням слитка (см. рисунок 35, 4); основной причиной их возникновения считают механическое воздействие роликов на затвердевающую корочку слитка и средством борьбы с ними – правильную настройку роликовой проводки и сохранение постоянства расстояния между роликами. Такие трещины могут также возникать из-за термических напряжений при неравномерном вторичном охлаждении.

Гнездообразные трещины (см. рисунок 35, 4а) – скопления мелких, схожих с трещинами типа 4 и располагающихся ближе них к центру слитка образуются при разгибании слитка с жидкой сердцевиной.

Осевые трещины (см. рисунок 35, 3)  в слябах располагаются по их большой оси в зоне смыкания фронтов кристаллизации. Считают, что эти трещины образуются в результате усадки стали, если она не компенсируется сжимающим усилием опорных роликов; особенно они проявляются при выпучивании широких граней слитка, когда сжимающие усилия явно недостаточны. В слитках квадратного сечения, где усадка сконцентрирована в центре слитка, форма осевых трещин иная (см. рисунок 35, 1).

Трещины,  перпендикулярные узким граням (см. рисунок 35, 6) и расположенные вблизи от них, возникают при выпучивании широких граней слитка, т. е при недостаточном поддержании оболочки слитка опорными устройствами.

 Диагональные трещины (см. рисунок 35, 2)  на стыке кристаллов, растущих от двух смежных граней, встречаются преимущественно в слитках квадратного сечения при искажении профиля в тупых углах.

Газовые пузыри в корковом слое слитка возникают при достаточно раскисленном металле, высоком содержании в нем водорода, повышенном содержании влаги в защитной шлаковой смеси, вводимой в кристаллизатор. Ряд поверхностных дефектов слитка связан с неудовлетворительной организацией разливки. Шлаковые включения на поверхности возникают при заливке жидким металлом прилипающих к стенкам кристаллизатора частиц шлака или размытых огнеупоров. Ужимины (поперечные углубления на поверхности слитка) возникают в результате резкого изменения напора струи и колебаний уровня металла в кристаллизаторе, при местном размывании корки струей металла и в участках неплотного прилегания корки к стенкам кристаллизатора.

8.6 Литейно-прокатные комплексы

При сооружении этих установок используется принцип со­вмещенных процессов отливки и прокатки листовых заготовок большой длины, т.е. двух технологий — непрерывного литья заготовки, поперечное сечение которой приближается по пара­метрам к размерам готового изделия, и непосредственного со­вмещения процесса разливки с прокаткой тонкой полосы. Схе­матически это можно представить следующим образом: непрерывное литье тонких заготовок - разделение полосы - подогрев, выравнивание температуры - горячая прокатка - охлаждение, смотка

Литейно-прокатные комплексы с тонкослябовыми (с толщиной заготовки до 100 мм) МНЛЗ начали сооружать в начале 90-х годов и в настоящее время их количество составляет более 1000 шт.

Другим вариантом получения листового проката являются установки непрерывной отливки полосы. Патент на прямую отливку полосы с подачей металла в за­зор между двумя вращающимися валками получен в 1866 г. Генри Бессемером.

Технология прямой отливки полосы обладает многими пре­имуществами, но прежде всего она исключает такие операции традиционного процесса, как отливка и зачистка слябов, по­вторный нагрев и горячая прокатка. В результате значитель­но сокращаются капитальные вложения, связанные с оборудо­ванием, и уменьшаются примерно на 85% энергозатраты по сравнению с традиционной технологией.

Из всех валковых машин в настоящее время находятся в эксплуатации только двухвалковые машины (рисунок 36). В этих установках кристаллизатор состоит из двух валков, расположенных непосредственно под промежуточным ковшом и вращающихся в противоположных направлениях. Жидкая сталь поступает в пространство между валками и при контак­те с поверхностью валков кристаллизуется, образуя корочки, которые двигаются вместе с поверхностью и выходят из вал­ков в форме листа, толщина которого определяется расстоя­нием между валками, а ширина — боковыми стенками крис­таллизатора.

Очень важная проблема — отвод тепла из зоны кристал­лизации, скорость потока которого составляет 102 —104 °С/с. Вначале валки изготавливали из стали, затем из меди, сейчас наиболее широко используют сплав меди с хромом, в некото­рых случаях с покрытием поверхности валка никелем, что обес­печивает высокую теплопроводность и достаточную механи­ческую прочность инструмента. Для отвода выделяющегося тепла валки охлаждают водой.

Если Вам понравилась эта лекция, то понравится и эта - 69 Оформление прав на изобретение, полезную модель, промышленный образец.

 Серьезную проблему представляет конструкция боковых стенок, которые должны удерживать жидкую сталь, предотв­ращая ее прорывы из кристаллизатора, и обеспечивать одина­ковую температуру металла около стенок и в средней части кристаллизатора, чтобы исключить деформацию кромок лис­та. В качестве материала боковых стенок используют нитрид бора или кремния.

Проводятся исследования по удержанию ванны жидкой стали с помощью электромагнитного поля.

1 — ковш; 2 — разли¬вочный узел;&#13;&#10;3 — погружной стакан; 4 — валки;&#13;&#10;5 — уплотнение; 6 — регулятор нагрузки; 7 — направляющий желоб;&#13;&#10;8 — прием¬ные валки; 9 — сматыватель&#13;&#10;&#13;&#10;Рисунок 36 - Схема двухвалковой МНЛЗ&#13;&#10;Еще одна важная задача — получить лист заданной толщи­ны. Расширение валков при нагреве приводит к уменьшению зазора. Если при отливке сляба толщиной 150 мм изменение ширины на 1 мм несущественно и при горячей прокатке испра­вимо, то при отливке 2-3мм листа оно недопустимо. Следует, безусловно, избегать образования трещин и морщин на поверх­ности листа, так как при отливке тонкого листа трещина глубиной 1 мм может оказаться сквозной.

Продолжительность непрерывной разливки зависит глав­ным образом от срока службы прижимных боковых плит-уплотнителей (ограничителей жидкой ванны). Последние из­готавливают из несмачиваемых сталью композитных материа­лов. Износ использованных на установке плит составлял 0,5 и 1,3 мм/км полосы при отливке соответственно тонкой (2,8 мм) и толстой (4,2 мм) полос. Максимальный срок соответственно 100 и 129 мин (при разливке 90-т плавки).

Расчетная стойкость никелевого покрытия роликов отве­чает разливке 3 — 7 тыс.т стали в зависимости от толщины от­ливаемой полосы.

Описание: Потребление энергии (МДж/т) при производстве тонкого листа по различным технологическим схемамРисунок 37 – Потребление энергии (МДж/т) при производстве тонкого листа по различным технологическим схемамТехнологическая схема получения тонкого листа с применением двухвалковых МНЛЗ позволяет в 8—10 раз снижать затраты энергетических ресурсов, в 40—50 раз сократить потери металла в окалину, в 5—10 раз повысить производительность труда, в 10—20 раз снизить выбросы парниковых газов при существенном уменьшении затрат на капитальное строительство, что обеспечивает экономическую мотивацию в части его дальнейшего развития и совершенствования. Сравнение энергозатрат при различных вариантах производства полосового проката приведено на рисунке 37.


Свежие статьи
Популярно сейчас
Как Вы думаете, сколько людей до Вас делали точно такое же задание? 99% студентов выполняют точно такие же задания, как и их предшественники год назад. Найдите нужный учебный материал на СтудИзбе!
Ответы на популярные вопросы
Да! Наши авторы собирают и выкладывают те работы, которые сдаются в Вашем учебном заведении ежегодно и уже проверены преподавателями.
Да! У нас любой человек может выложить любую учебную работу и зарабатывать на её продажах! Но каждый учебный материал публикуется только после тщательной проверки администрацией.
Вернём деньги! А если быть более точными, то автору даётся немного времени на исправление, а если не исправит или выйдет время, то вернём деньги в полном объёме!
Да! На равне с готовыми студенческими работами у нас продаются услуги. Цены на услуги видны сразу, то есть Вам нужно только указать параметры и сразу можно оплачивать.
Отзывы студентов
Ставлю 10/10
Все нравится, очень удобный сайт, помогает в учебе. Кроме этого, можно заработать самому, выставляя готовые учебные материалы на продажу здесь. Рейтинги и отзывы на преподавателей очень помогают сориентироваться в начале нового семестра. Спасибо за такую функцию. Ставлю максимальную оценку.
Лучшая платформа для успешной сдачи сессии
Познакомился со СтудИзбой благодаря своему другу, очень нравится интерфейс, количество доступных файлов, цена, в общем, все прекрасно. Даже сам продаю какие-то свои работы.
Студизба ван лав ❤
Очень офигенный сайт для студентов. Много полезных учебных материалов. Пользуюсь студизбой с октября 2021 года. Серьёзных нареканий нет. Хотелось бы, что бы ввели подписочную модель и сделали материалы дешевле 300 рублей в рамках подписки бесплатными.
Отличный сайт
Лично меня всё устраивает - и покупка, и продажа; и цены, и возможность предпросмотра куска файла, и обилие бесплатных файлов (в подборках по авторам, читай, ВУЗам и факультетам). Есть определённые баги, но всё решаемо, да и администраторы реагируют в течение суток.
Маленький отзыв о большом помощнике!
Студизба спасает в те моменты, когда сроки горят, а работ накопилось достаточно. Довольно удобный сайт с простой навигацией и огромным количеством материалов.
Студ. Изба как крупнейший сборник работ для студентов
Тут дофига бывает всего полезного. Печально, что бывают предметы по которым даже одного бесплатного решения нет, но это скорее вопрос к студентам. В остальном всё здорово.
Спасательный островок
Если уже не успеваешь разобраться или застрял на каком-то задание поможет тебе быстро и недорого решить твою проблему.
Всё и так отлично
Всё очень удобно. Особенно круто, что есть система бонусов и можно выводить остатки денег. Очень много качественных бесплатных файлов.
Отзыв о системе "Студизба"
Отличная платформа для распространения работ, востребованных студентами. Хорошо налаженная и качественная работа сайта, огромная база заданий и аудитория.
Отличный помощник
Отличный сайт с кучей полезных файлов, позволяющий найти много методичек / учебников / отзывов о вузах и преподователях.
Отлично помогает студентам в любой момент для решения трудных и незамедлительных задач
Хотелось бы больше конкретной информации о преподавателях. А так в принципе хороший сайт, всегда им пользуюсь и ни разу не было желания прекратить. Хороший сайт для помощи студентам, удобный и приятный интерфейс. Из недостатков можно выделить только отсутствия небольшого количества файлов.
Спасибо за шикарный сайт
Великолепный сайт на котором студент за не большие деньги может найти помощь с дз, проектами курсовыми, лабораторными, а также узнать отзывы на преподавателей и бесплатно скачать пособия.
Популярные преподаватели
Добавляйте материалы
и зарабатывайте!
Продажи идут автоматически
5167
Авторов
на СтудИзбе
437
Средний доход
с одного платного файла
Обучение Подробнее