Популярные услуги

Курсовой проект по деталям машин под ключ
ДЗ по ТММ в бауманке
Все лабораторные под ключ! КМ-1. Комбинационные логические схемы + КМ-2. Комбинационные функциональные узлы и устройства + КМ-3. Проектирование схем
КМ-3. Типовое задание к теме прямые измерения. Контрольная работа (ИЗ1) - любой вариант!
Любая лабораторная в течение 3 суток! КМ-1. Комбинационные логические схемы / КМ-2. Комбинационные функциональные узлы и устройства / КМ-3. Проектирование схем
КМ-2. Выпрямители. Письменная работа (Электроника семинары)
Допуски и посадки и Сборочная размерная цепь + Подетальная размерная цепь
ДЗ по матведу любого варианта за 7 суток
Курсовой проект по деталям машин под ключ в бауманке
Задача по гидравлике/МЖГ
Главная » Лекции » Инженерия » Металлургия стали » Основные реакции сталеплавильных процессов

Основные реакции сталеплавильных процессов

2021-03-09СтудИзба

2 Основные реакции сталеплавильных процессов

Поскольку сталь получают обычно из чугуна и лома в результате окисления и удаления содержащихся в них примесей (кремния, марганца, фосфора и др.), особое значение в сталеплавильной прак­тике имеют реакции окисления. Кислород для протекания этих реакций поступает или из атмосферы, или из железной руды, или из других окислителей, или при продувке ванны газообразным кислородом.

2.1 Окисление углерода

Углерод в стали - это ее самая распространенная полезная примесь. Содержание углерода как полезной примеси в стали обычно изменяется от 0,05-0,10 до 1,0-1,2%.

Углерод в твердом железе способен образовать пересыщенный раствор, т.е. оставаться в растворе в количествах, значительно превышающих растворимость. В результате атомы углерода занимают некоторые узлы в кристаллической решетке железа (феррита), что вызывает ее искажение и приводит к возникновению в ней напряжений, способствующих повышению прочности и твердости железа.

Углерод, содержащийся в исходной металлошихте, в основном в чугуне, оказывает решающее положительное влияние на ход и результаты окислительного рафинирования металла в любом аг­регате. Это связано прежде всего с тем, что в течение всего этого периода углерод окисляется.

Во-первых, при окислении углерода выделяются газы СО и СО2. Это газовыделение обеспечивает интенсивное перемешивание ванны (металла и шлака), без которого сталеплавильные процес­сы в существующих вариантах нереализуемы. Кроме того, пузыри СО, проходя через жидкий металл, способствуют удалению из него газов и неметаллических включений.

Во-вторых, процесс окисления углерода газообразным кисло­родом протекает с выделением тепла, которое используется для нагрева ванны.

В-третьих, реакция окисления углерода [C]+(FeO)={CO}+[Fe] защищает железо от чрезмерного окисления во время его окисли­тельного рафинирования, т.е. способствует уменьшению неизбеж­ных потерь железа из-за его окисления.

В-четвертых, содержание углерода в металле и непрерывное его окисление являются основными факторами, определяющими содержание кислорода в металле, от которого зависит содержание оксидных неметаллических включений в готовой стали, т.е. ее качество.

Рекомендуемые материалы

Поведение углерода

Окисление углерода в сталеплавильных процессах в основном (на 85-90 %) протекает до {СО}. Сопутствующая ей реакция окисления углерода с образованием СО2 имеет второстепенное значение. Содержание CO2 не превышает 10-15 %.

Возможные реакции окисления углерода, растворенного в металле:

  1. [С] + 1/2О2 = СОгаз; ΔG° = -152570 - 33,8Т; - идет с выделением тепла.
  2. [С ] + (FeO) = Fe + СОгаз; ΔG° = +85 373 – 83,8Т; - протекает с поглощением тепла.
  3. [С] + [О] = СОгаз; ΔG° = —35 630—31 Т; - с выделением тепла.

Если проанализировать изменение величины ΔG° при изменении температуры, то окажется, что во всех случаях значение ΔG° с повы­шением температуры уменьшается, т. е. ее повышение благоприят­ствует протеканию реакции окисления углерода.

Константа равновесия реакции [С] + [О] = {СО} в общем случае определяется выражением Кс = Pco/(a[c]a[o]). При концентрациях углерода до 1%, а кислорода до 0,08% коэффициенты их активности примерно равны единице, поэтому Кс=Рсо/([С]·[О]).

Поскольку значение теплового эффекта реакции мало, им мож­но пренебречь. Тогда для любой температуры Рсо/([C]-[О])=const.

В конце сталеплавильного процесса при температуре 1600 0С для открытых агрегатов (Рсо= 1 кг/см2), можно считать, что Кс = 402, тогда

[C]∙[О]=Рсо/Кс=Рсо/402=0,0025Рсо=0,0025.

Это означает, что в рассматриваемых условиях равновесное остаточное содержание углерода в металле зависит только от концентрации кислорода, причем чтобы получить [С]min, необходи­мо обеспечить [О]max.

Теоретически возможное максимальное содержание кислорода (см. рисунок 3) при температурах конца сталеплавильных процессов [О]= 0,20-0,25%. Приняв среднее значение [О]= 0,23% и под­ставив его в уравнение, получим [С]min= 0,0025/0,23 = 0,01%, т. е. в открытом сталеплавильном агрегате невозможно получить содержание углерода < 0,01%.

В реальной сталеплавильной ванне в конце плавки очень труд­но получить шлак, содержащий > 50% оксидов железа, поэтому максимальное содержание кислорода в металле составляет 0,10-0,12% и минимальное остаточное содержание углерода не быва­ет меньше 0,02%. Получение такого низкого содержания углерода в металле является нежелательным, так как приводит к резкому снижению выхода годного ввиду чрезмерного окисления железа и повышенному износу футеровки агрегата.

Рисунок 3 – Взаимосвязь содержания кислорода и углерода в стали: А — равновесное для реакции обезуглеро-живания при 1600° С; Б — фактиче¬ское в стали; В — равновесное по отношению к сталеплавильным шлакамВ современной практике производство стали с содержанием < 0,02% С получает большое развитие. В этих случаях в открытых агрегатах обычно достигают остаточного содержания углерода 0,025-0,040%. Дальнейшее снижение содержания углерода в ме­талле достигают обработкой жидкой стали вакуумом и нейтральным газом.

Общие принципы достижения заданного содержания углерода в готовой стали.

1 Неизбежное непре­рывное окисление этой примеси в течение всего периода окисли­тельного рафинирования.

2 Для достижения заданного содержания уг­лерода в готовом металле необходимо иметь определенный запас углерода в исходной шихте (превышение исходного содержания над конечным) и рационально расходовать этот запас в период окислительного рафинирования.

3 Плавка должна быть проведена так, чтобы имеющийся запас углерода был израсходован точно в течение того времени, которое требуется для решения других задач, кроме окисления углерода: нагрева, дефосфорации и десульфурации металла и т.п.

Основы синхронизации процессов обезуглероживания и нагрева металла

При управлении плавкой важно не просто окисление углерода и получение заданного содержания его в конечном металле, но и проведение этого процесса синхронно с процессом нагрева ванны.

В идеальных условиях, когда ванна не обменивается теплом с окружающей средой и в ней не протекают никакие другие процессы, кроме окисления углерода, относитель­ное изменение температуры ванны при окислении углерода Δt[c] можно определить по формуле

Δt[c] =Qt/(100×Cм+gшл×Cшл),

где Qt - тепловой эффект реакции окисления углерода при данных условиях, кДж/кг;

gшл - количество шлака, кг/100кг металла;

С - удельные теплоемкости металла и шлака, Дж/(кг К).

Поскольку См=0,84 кДж/(кг-К) и Сшл= 2,09 кДж/(кг-К), а количество шлака обычно составляет 10-15%, то уравнение примет вид: Δt[c] =0,009Qt.

Это означает, что синхронизация процессов обезуглероживания и нагрева металла в идеальных условиях возможна лишь из­менением теплового эффекта реакции окисления углерода.

 Величина и знак теплового эффекта процесса окисления углерода могут изменяться в зависимости от источника кислорода. Основными источниками кислорода для окисления угле­рода являются: холодное дутье (кислородное или воздушное), окси­ды железа твердых окислителей (железной руды, агломерата, окаты­шей, окалины и т.п.), горячие печные газы:

Qt, кДж/кг [С]              Δt[c] ,°C/%[C]

Холодное дутье:

воздушное ....…………. +4450                            +40

кислородное ..... ……….+12500                         +115

Нагретая атмосфера печи . . . 15000                  +135

Холодный твердый окислитель –20000             -180

Окисление углерода газо­образным кислородом дутья или печных газов происходит с выделе­нием тепла, при этом чем выше температура нагрева кислорода, тем больше тепловой эффект реакции. Окисление углерода кислородом твердых окислителей является резко эндотермическим процессом

В реальных сталеплавильных процессах величина Δt[c] суще­ственно может отличаться от приведенных выше значений Δt[c] no ряду причин: происходит потеря тепла в окружающую ванну среду (нагрев футеровки, окружающего воздуха и т.п.), возможно проте­кание в ванне других экзотермических и эндотермических процес­сов, кроме окисления углерода.

2.2 Окисление и восстановление кремния

Кремний при производстве стали используется в качестве раскислителя и легирующего элемента. Сталь, легированная кремнием, об­ладает более высокими значениями предела текучести, упругости, ударного сопротивления, хорошей прокаливаемостью, жароупорностью, способностью в за­каленном состоянии сохранять твердость при относительно высо­ких температурах и др.

Кремний, содержащийся в металлической шихте, во время плавки окисляется и теряется практически полностью. На ход плавки наличие кремния в шихте как правило, влияет положительно:

1. Это выражается в улучшении теплового баланса плавки, поскольку среди обычных примесей металлической шихты кремний окисляется с выделени­ем наибольшего количества тепла.

2. Кремнезем, получающийся в результате окисле­ния кремния в ванне, активнее вносимого в готовом виде и уско­ряет процесс формирования шлака.

Однако кремнезем, образующийся при окислении кремния ме­талла, оказывает разрушающее действие на основную футеровку. Кроме того, при очень высоком содержании кремния образуется большое количество шлака, которое не всегда является желательным, поэтому обычно устанав­ливаются пределы содержания кремния в чугуне.

Кремний является обязательной примесью чугуна и в том или ином количестве содержится в ломе. Обычно содержание кремния в металлической шихте довольно высокое (0,5-1,0%).

Растворенный в ме­талле кремний может окисляться кислородом:

а) содержащимся в газовой фазе [Si ] + О2 газ = (SiO2); ΔG = -775670 + 198Т, Дж/моль;

б) содержащимся в окислах железа шлака [Si] + 2 (FeO) == (SiO2) + 2Fe; ΔG° = -300 000+98Т;

в) растворенным в металле [Si] + 2 [О] = SiO2; ΔG°  == -541 840 + 203Т.

Все эти реакции сопровождаются выделением очень большого количества тепла. Знак «плюс» перед энтропийными членами в уравнениях свободной энергии свидетель­ствует о том, что при повышении температуры могут создаваться благоприятные условия для восстановления кремния.

Полнота протекания реакции окисления кремния зависит от типа процесса, точнее, характера шлака, под которым проводится плавка.

В основных процессах кремнезем образует в шлаке прочные соединения: в начале плавки силикаты железа 2FeO∙SiO2 и каль­ция CaO∙SiO2, в дальнейшем двухкальцевый силикат кальция 2CaO∙SiO2 по реакции (SiO2) + 2(СаО) = 2СаО∙SiO2. Благодаря протеканию этой реакции активность SiO2 в шлаке становится очень низкой даже при высокой его концентрации и кремний в основных процессах окисляется практически полнос­тью еще в начале плавки, а по ходу плавки не восстанавливается, независимо от присутствия угле­рода и других обычных примесей чугуна и изменения температу­ры ванны.

В кислых процессах активность SiO2 в шлаке во много раз выше, чем в основных процессах, поэтому с повышением температуры ванны к концу плавки происходит восстановление кремния из шлака по реакции

[Si] + 2 (FeO) == (SiO2) + 2Fe,

в результате чегоостаточное содержание крем­ния в металле может достигать 0,3-0,4 %. Восстановителем кремния в кислых процессах может также являться углерод.

Обеспечение заданного содержания кремния в готовой стали

Как было показано выше, в основных процессах, имеющих в настоящее время решающее значение в производстве стали, ос­таточное содержание кремния в металле в конце окислительного рафинирования ничтожно мало (следы), поэтому кремний как по­лезная примесь в необходимом количестве вводится в металл после окончания окислительного рафинирования. Для этой цели обычно используют различные железокремнистые сплавы, называемые ферросилицием.

2.3 Окисление и восстановление марганца

Марганец в сталеплавильных процессах может образовывать различные химические соединения: наиболее важными из которых являются MnO, MnS и Мn3С. Мар­ганец в готовой стали в большинстве случаев является полезной примесью, служащей для раскисления и легирования.

Марганец как раскислитель в количестве 0,25-0,50% содер­жится в кипящей, полуспокойной и спокойной углеродистой стали.

Основное положительное влияние марганца на свойства стали состоит в уменьшении вредного влияния серы за счет связывания ее в сульфид MnS, который при кристаллизации металла выделяется в виде твердых, случайно расположенных включений, приносящих во много раз меньше вреда, чем FeS. Для выделения серы в виде менее вред­ных твердых включений необходимо иметь в стали следующее отношение содержания марганца и серы: [Mn]/[S]≥20-22.

Марганец как легирующий элемент.

Марганец резко уменьшает критическую скорость закалки, поэтому марганцовистая сталь прокаливается значительно глубже, чем простая углеродистая. Растворяясь в феррите, марганец по­вышает прочность стали, но несколько снижает пла­стичность стали (относительное удлинение и ударную вязкость). Марганец также повышает износостойкость и упругость стали.

Поведение марганца в сталеплавильных ваннах

Марганец вносится в сталеплавильную ванну в основном с чугуном и ломом. В зависимости от содержания марганца в чугуне и ломе и их соотношения содержание марганца в исходной шихте изменяется в широких пределах: от 0,3-0,5 до 1,0-1,5% и более.

 Марганец, растворенный в металле, окисляется кислородом;

а) содержащимся в газовой фазе:[Mn] + О2 газ = (МпО); ΔG° = -361 380 + 106Т;

б) содержащимся в окислах железа шлака: [Мп] + (FeO) = (МпО) + Fe; ΔG° = —124 000 + 56,4Т;

в) растворенным в металле: [Мп] + [О] = (МпО); ΔG°  = -245 000 + 109Т;

Возрастание величины ΔG° по мере повышения температуры свиде­тельствует о возможности протекания при высоких температурах - обратного процесса — восстановления марганца из оксида желе­зом: (МnО) + Fe = [Мn] + (FeO), а также углеродом и  кремнием: (МnО) + [C] = [Мn] + СОгаз; 2 (МnО) + [Si] = 2 [Mn] + SiO2.

Полнота протекания реакции окисления марганца зависит от характера шлака, под которым проводится плавка, окисленности шлака, и температурного уровня процессса.

В начале плавки марганец интенсивно окисляется до достижения равновесия реакции

(МnО) + Fe = [Мn] + (FeO)

 После достижения равновесия содержание марганца в металле по ходу процесса может оставаться неизменным при постоянстве внешних условий или изменяться в сторону увеличения или умень­шения в зависимости от характера изменения внешних условий - температуры, окисленности ванны, количества шлака и т.п.

В конце плавки возможны следующая динамика содержания марганца в металле:

1. при [С]>0,2-0,3% за счет повышения температуры при низкой окисленности шлака концентрация марганца в металле в конце плавки повышается.

2. при [С]< 0,05-0,07%), вследствие резкого повышения содержания FeO в шлаке концентра­ция марганца в металле снижается (несмотря на дополнительное повышение температуры).

На остаточное содержание марганца в металле влияет основность шлака: более глубокое окисление марганца в кис­лых процессах, чем в основных, объясняется тем, что МnО, обладая основными свойствами, в кислых шлаках в значительной степени вза­имодействует с SiО2 например, по реакции 2(MnO) + (SiO2) = (MnO)2-SiO2. Это приводит к снижению активности МnО в шлаке и смещению реакции вправо.

К концу плавки ввиду повышения тем­пературы (1580-1620°С и более) и снижения содержания FeO в шлаке (8-12% при концентрации углерода в металле не менее 0,15-0,20%) значения Lmn снижаются до 10-20 и в металле остается 20-35 % марганца. Однако при выплавке стали с 0,05-0,07% С содержание FeO в шлаке в конце плавки снова повышается до 15-20% и более, что приводит к увеличению Lmn до 25-35 и выше и снижению остаточного содержания марганца до 15-20 %.

Обеспечение заданного содержания марганца в готовой стали

В большинстве случаев остаточное содержание марганца бывает значительно меньше заданного. Заданное содержание марганца в готовой стали обеспечивается введением его в металл в виде того или иного металлического марганецсодержащего ма­териала (ферромарганца, силикомарганца, металлического марган­ца и др.) в ковш при выпуске.

2.4 Окисление и восстановление фосфора

В рудах фосфор всегда сопутствует железу, часто в больших количествах. В процессе восстановительной плавки рудного мате­риала весь фосфор шихты пере­ходит в чугун. Минимальное содержание фосфора в чугуне состав­ляет 0,1-0,2%, максимальное 2-2,5%.

Повышенное содержание фосфора снижает пластичность металла (особенно ударную вязкость), также ухудшает прочность (предел прочности), пластичность и свариваемость нагретого металла.

В подавляющем большинстве случаев фосфор является вред­ной примесью стали, его содержание в металле особо ответ­ственного назначения должно составлять не более 0,005-0,010%.

В шихту сталеплавильных печей фосфор попадает в основном из чугуна. Некоторое количество фосфора может попасть в шихту из лома, а также из ферросплавов.

Растворенный в металле фосфор может окисляться кислородом:

а) содержащимся в газовой фазе: 4/5[P ] + О2 раз = 2/5 (P2O5); ΔG0 = -619 280 + 175Т;

б) содержащимся в окислах железа шлака: 4/5 [Р] + 2 [FeO] = 2/5(P2O5)+ 2Fe; ΔG0= -143 050 + 66Т;

в) растворенным в металле: 4/5 [Р] + 2 [O] == 2/5 (P2O5) ΔG° = -385 220 + 170Т.

Знак «плюс» перед энтропийными членами в уравнениях свобод­ной энергии свидетельствует о том, что при повышении температуры могут создаться благоприятные условия для восстановления фос­фора.

Одной из основных реакций дефосфорации металла в сталеплавильных процессах является образование пентаоксида фосфора главным образом по реакции: 2[Р] + 5(FeO) = (P2O5) + 5[Fe]. Однако P2O5 термически неустойчив и при температурах сталеплавильных ванн в свободном состоянии существовать не может. Для успешной дефосфорации металла дополнительно необходимо образование прочных фосфатов в шлаке.

В кислых шлаках вследствие избытка SiO2 образование фосфатов получает ограниченное развитие и в результате оказывается, что при работе под та­кими шлаками фосфор, перешедший в шлак при относительно низких температурах, при повышении температуры восста­навливается и при обычных температурах сталеварения (>1500°С) практически весь переходит обратно в металл. Коэффициент распределения фосфора между кислым шлаком и металлом Lp = (Р)/[Р] составляет всего 1-3, поэтому на практике считают, что в этих процессах удаления фосфора из металла не происходит.

В основных шлаках при низких температурах начала плавки могут образоваться трифосфаты железа в основном по реакции

(P2O5) + 3(FeO) = (3FeO. P2O5)

Однако при высоких температу­рах фосфаты железа непрочны и фосфор может перейти обратно в металл. Для того, чтобы удалить фосфор из металла и удержать его в шлаке, необходимо снижать активность P2O5 в шлаке. Этого достигают при наведении основного шлака с помощью добавок извести (или известняка). При этом основная составляющая извести—СаО реагирует с P2O5, образуя фосфаты кальция (СаО)n-(P2O5), который по сравнению с другими фосфатами кальция имеет наибольшую устойчивость и темпе­ратуру плавления. Поэтому на конечных стадиях плавки дополнительным условием обеспечения процесса дефосфорации металла является протекание реакции (P2O5) + 3(СаО) = (3СаО∙P2O5).

Комбинируя последнее уравнение с уравнением реакции образо­вания P2O5, получим уравнение суммарной реакции дефосфорации металла в конце основного процесса:

2[Р] + 5(FeO) +3(СаО) = (3СаО. P2O5) + 5[Fe] + Q.

Таким образом, можно сформулировать основные условия, со­блюдение которых позволяет удалять фосфор из металла:

1). наведение шлака высокой основности: для мартеновского процесса в пределах 2,5-2,8, а для кислородно-конвертерного процесса с верхней пода­чей дутья 3,0-3,5.

2). высокая окисленность шлака. Это связано с тем, что, во-первых, FeO принимает прямое участие в процессе дефосфо­рации (2[Р] + 5(FeO) = (P2O5) + 5[Fe]); во-вторых, FeO ускоряет растворе­ние извести в шлаке, т. е. облегчает получение гомогенного шлака.

3) наличия шлаков, содержащих мало фосфора, для чего при переделе фосфористых чугунов проводят смены (скачивания) шлака;

4) невысокая температура. Прямое влияние температуры связано со знаком теплового эффекта реак­ции.


2.5 Удаление серы (десульфурация металла)

Сера является самой вредной примесью, снижающей механи­ческую прочность и свариваемость стали, а также ухудшающей ее электротехнические, антикоррозионные и другие свойства.

Во время кристаллизации и при дальнейшем охлаждении металла весь избыток серы выше указанных пределов выделяется в виде сульфида железа FeS совместно с FeO. Чистый сульфид железа имеет температуру плавления 1190°С, а оксисуль-фидный расплав имеет эвтектику с температурой затвердевания ~985°С, т. е. значительно ниже температуры плавления металла (обычно ~1500°С). Это при кристаллизации металла приводит к выделению сульфида и оксисульфида железа в жидком виде. Выделяющиеся неметаллические включения располагаются по границам зерен в виде тонких пленок. Образование таких пленок резко снижает прочность металла при температурах (>1000°С), поскольку они при этих температурах, находясь в жидком или размягченном состоянии, ослабляют меж-зеренную связь в металле. Это явление называют красноломкос­тью стали. Красноломкость вызывает: 1) образование так называ­емых горячих трещин на слитках, литых заготовках и изделиях (деталях); 2) появление рванин, трещин и других поверхностных дефектов на прокате; 3) плохое сваривание внутренних усадочных пустот металла во время прокатки, вследствие чего головная обрезь от слитков возрастает при повышении содержания серы.

Не меньшее отрицательное влияние сера оказывает на служеб­ные, прежде всего на прочностные свойства стали, особенно при низких температурах < (-30°С). Следовательно, повышенное содер­жание серы вызывает и красноломкость, и хладноломкость ста­ли.

Сера является химически активным элементом и образует различные соединения, устойчивые при высоких температурах сталеплавильных процессов и способные переходить и в газовую, и в шлаковую фазы.

Обмен серы между газовой фазой и жидкой ванной

В процессе плавки сера можкт окисляться кислородом по реакциям:

1) [S]+2[О]={SO2} на границе газ-металл в пузырях СО, за счет кислорода металла

2) (S) + 2(FeO) = 2[Fe] +{SO2} на границе газ-шлак в пузырях СО, находящихся в объеме шлака;

3) на границе газ-металл, с участием кислорода газовой фазы [S]+{O2} ={SO2};

4) на границе газ-шлак, над ванной (S) + {O2}={SO2}

Таким образом, пузыри СО, проходящие через толщу металла, уносят некоторое количество серы. Это количество серы тем больше, чем выше содержание серы и кислорода в металле.

Результатом протекания реакции окисле­ния серы газообразным кислородом на границе шлак-газ является наблюдаемое на практике удаление серы из ванны в газовую фазу в количестве  5-10% от исходного содержания серы в шихте.

Основная часть серы удаляется из металла окислительным шлаком

Традиционной является схема:

- сера, находящаяся в металле в виде сульфида железа, в соответ­ствии с законом распределения переходит в шлак, [FeS] = (FeS).

- в шлаке происходит образование более прочного и плохо ра­створимого в металле сульфида кальция по реакции (FeS) + (СаО) = (CaS) + (FeO).

- суммарная (об­щей) реакция десульфурации [FeS] + (СаО) = (CaS) + (FeO).

Из структуры последнего уравнения вытекает, что для улучше­ния десульфурации металла прежде всего необходимо в шлаке повышение содержания свободного СаО, которое возможно повы­шением основности шлака, и снижение содержания FeO, которое определяется в основном концентрацией углерода в металле.

Влияние температуры на коэффициент распределения серы может быть прямым и косвенным. Прямое влияние связано с тепловым эффектом процесса перехода серы из металла в шлак. Этот процесс является экзотермическим, поэтому при постоянстве других условий, чем выше температура, тем меньше Ls, но это влияние незначительно, так как тепловой эффект процесса неболь­шой: -42 кДж/моль.

Косвенное влияние температуры на Ls заключается в том, что при высокой температуре можно обеспечить повышенную основность шлака, которая способ­ствует увеличению Ls. Чем выше температура ванны, тем лучше десульфурация металла, если повышение температуры рационально используется для получения высокоосновного гомо­генного шлака. Кроме того с повышением температуры ускоряются диффузионные процессы.

Сера является поверхностно активным элементом. Высокая поверхностная активность серы приводит к тому, что на поверхности раздела фаз концентра­ция серы выше, чем в объеме раствора. Поэтому наибольший эффект дает при­менение таких методов ведения плавки, которые обеспечивают увеличение по­верхности контакта металла с десульфурирующей фазой (искусственное пере­мешивание металла со шлаком, вдувание в металл тонкоизмельченных порошко­образных реагентов и т. п.).

Однако основные возможности улучшения десульфу­рации металла заложены в изменении химического состава шлака.

Кислые шлаки об­ладают минимальной серопоглотительной способностью и обеспе­чивают L = 0,5-1,5. Это незначительное поглощение серы кислым шлаком происходит не в результате образования простых анионов S2-, а вследствие того, что сера частично замещает кислород в кремнекислородных анионах:

Основные окислительные шлаки обычного химического соста­ва (B > 2,0-2,5) обеспечивают Ls = 3-7, иногда до 10, т. е. в несколько раз выше, чем для кислых шлаков. Коэффициент распределения серы между основным окислительным шлаком и металлом в период окислительного рафинирования зависит в ос­новном от содержания в шлаке СаО и SiO2 или упрощен­но - от основности шлака. Для наведения высокоосновного шлака жидкоподвижного шлака в ванну осуществляют присадки извести (известняка) и осуществляют скачивание первичного шлака для удаления из печи кремнезема.

Влияние FeO двойственно.  С одной стороны, наличие FeO в шлаке ускоряется растворение СаО и получение гомогенного высокоосновного шлака (разжижает шлак), что улуч­шает десульфурацию. С другой стороны наличие в шлаке FeO смещает равновесие реакции десульфурации в обратную сторону.

В целом серопоглотительная способность основных шлаков остается низкой из-за высокой окисленности сталеплавильных шлаков. В лучшем случае коэффициент распределения серы Ls= (S)/[S] в лучшем случае достигает 10, а обычно изменяется в пределах 3-7. При этом в одношлаковом режиме степень десульфурации R=[S]н/[S]к может составить 1,5-2, т. е. обеспечивает снижение содержания серы в металле в 1,5-2 раза (на 40-50 %), что в современных условиях часто бывает недостаточным.

В настоящее время в связи с повышением требований к каче­ству стали и разливкой ее на МНЛЗ обязательным элементом сталеплавильной технологии становится ковшевая десульфурация металла.

"3 - Гидродинамика" - тут тоже много полезного для Вас.

Таким образом, удалению серы из металла (десульфурации ме­талла) способствуют:

1) наличие основных шлаков с высокой активностью CaO;

2) низкая окисленность металла шлака (минимум FeO);

3) низкая концентрация серы в шлаке (скачивание и наведение нового шлака);

4) перемешивание металла со шлаком и увеличение поверх­ности контакта;

5) повышение температуры ванны.

Свежие статьи
Популярно сейчас
А знаете ли Вы, что из года в год задания практически не меняются? Математика, преподаваемая в учебных заведениях, никак не менялась минимум 30 лет. Найдите нужный учебный материал на СтудИзбе!
Ответы на популярные вопросы
Да! Наши авторы собирают и выкладывают те работы, которые сдаются в Вашем учебном заведении ежегодно и уже проверены преподавателями.
Да! У нас любой человек может выложить любую учебную работу и зарабатывать на её продажах! Но каждый учебный материал публикуется только после тщательной проверки администрацией.
Вернём деньги! А если быть более точными, то автору даётся немного времени на исправление, а если не исправит или выйдет время, то вернём деньги в полном объёме!
Да! На равне с готовыми студенческими работами у нас продаются услуги. Цены на услуги видны сразу, то есть Вам нужно только указать параметры и сразу можно оплачивать.
Отзывы студентов
Ставлю 10/10
Все нравится, очень удобный сайт, помогает в учебе. Кроме этого, можно заработать самому, выставляя готовые учебные материалы на продажу здесь. Рейтинги и отзывы на преподавателей очень помогают сориентироваться в начале нового семестра. Спасибо за такую функцию. Ставлю максимальную оценку.
Лучшая платформа для успешной сдачи сессии
Познакомился со СтудИзбой благодаря своему другу, очень нравится интерфейс, количество доступных файлов, цена, в общем, все прекрасно. Даже сам продаю какие-то свои работы.
Студизба ван лав ❤
Очень офигенный сайт для студентов. Много полезных учебных материалов. Пользуюсь студизбой с октября 2021 года. Серьёзных нареканий нет. Хотелось бы, что бы ввели подписочную модель и сделали материалы дешевле 300 рублей в рамках подписки бесплатными.
Отличный сайт
Лично меня всё устраивает - и покупка, и продажа; и цены, и возможность предпросмотра куска файла, и обилие бесплатных файлов (в подборках по авторам, читай, ВУЗам и факультетам). Есть определённые баги, но всё решаемо, да и администраторы реагируют в течение суток.
Маленький отзыв о большом помощнике!
Студизба спасает в те моменты, когда сроки горят, а работ накопилось достаточно. Довольно удобный сайт с простой навигацией и огромным количеством материалов.
Студ. Изба как крупнейший сборник работ для студентов
Тут дофига бывает всего полезного. Печально, что бывают предметы по которым даже одного бесплатного решения нет, но это скорее вопрос к студентам. В остальном всё здорово.
Спасательный островок
Если уже не успеваешь разобраться или застрял на каком-то задание поможет тебе быстро и недорого решить твою проблему.
Всё и так отлично
Всё очень удобно. Особенно круто, что есть система бонусов и можно выводить остатки денег. Очень много качественных бесплатных файлов.
Отзыв о системе "Студизба"
Отличная платформа для распространения работ, востребованных студентами. Хорошо налаженная и качественная работа сайта, огромная база заданий и аудитория.
Отличный помощник
Отличный сайт с кучей полезных файлов, позволяющий найти много методичек / учебников / отзывов о вузах и преподователях.
Отлично помогает студентам в любой момент для решения трудных и незамедлительных задач
Хотелось бы больше конкретной информации о преподавателях. А так в принципе хороший сайт, всегда им пользуюсь и ни разу не было желания прекратить. Хороший сайт для помощи студентам, удобный и приятный интерфейс. Из недостатков можно выделить только отсутствия небольшого количества файлов.
Спасибо за шикарный сайт
Великолепный сайт на котором студент за не большие деньги может найти помощь с дз, проектами курсовыми, лабораторными, а также узнать отзывы на преподавателей и бесплатно скачать пособия.
Популярные преподаватели
Добавляйте материалы
и зарабатывайте!
Продажи идут автоматически
5167
Авторов
на СтудИзбе
437
Средний доход
с одного платного файла
Обучение Подробнее