Популярные услуги

Курсовой проект по деталям машин под ключ
ДЗ по ТММ в бауманке
Все лабораторные под ключ! КМ-1. Комбинационные логические схемы + КМ-2. Комбинационные функциональные узлы и устройства + КМ-3. Проектирование схем
КМ-3. Типовое задание к теме прямые измерения. Контрольная работа (ИЗ1) - любой вариант!
Любая лабораторная в течение 3 суток! КМ-1. Комбинационные логические схемы / КМ-2. Комбинационные функциональные узлы и устройства / КМ-3. Проектирование схем
КМ-2. Выпрямители. Письменная работа (Электроника семинары)
Допуски и посадки и Сборочная размерная цепь + Подетальная размерная цепь
Курсовой проект по деталям машин под ключ в бауманке
ДЗ по матведу любого варианта за 7 суток
Задача по гидравлике/МЖГ
Главная » Лекции » Инженерия » Математическое моделирование процессов » Нелинейные детерминированные модели

Нелинейные детерминированные модели

2021-03-09СтудИзба

2.4. Нелинейные детерминированные модели

Нелинейные детерминированные модели обладают бóльшей точностью и гибкостью. Они могут быть заданы в виде нелинейной функции одной или нескольких переменных или в виде дифференциальных уравнений (обыкновенных или в частных производных). Наиболее распространенными среди нелинейных моделей при описании ДУ и ДЛА являются:

– полиномиальные функции;

– позиномные функции;

– тригонометрические функции;

– экспоненциальные функции;

– обыкновенные дифференциальные уравнения;

– дифференциальные уравнения в частных производных др.

Нелинейные модели могут быть записаны в виде функционала, зависящего от управляющих переменных х и некоторых функций f(x) всех или части этих переменных:
W = W(x,f(x)). При этом функции f(x) могут представлять собой функционалы, зависящие от промежуточных функций f*(x) и т.д. На класс функций f(x), f*(x) не накладывается никаких ограничений, однако предполагается возможность однозначного перехода от вектора управляющих параметров х к общей характеристике модели W.

Область определения модели может быть ограничена с помощью равенств или неравенств:

Рекомендуемые материалы

xi = ci ,           i = 1,…, m;

f(x) = cj ,         j = 1,…, l;

xi min £ xi £ xi max , i = 1,…, k;

fj(x) £ cj ,        j = 1,…, n.

По существу под определение нелинейной модели подпадает любое математическое описание ДУ и ДЛА, не укладывающееся в рамки более простых моделей.

2.4.1. Полиномиальные модели

Полиномиальные модели основаны на идее приближенного представления модели конечным числом членов ряда Тейлора:

 .

Наиболее простой из моделей этого класса является квадратичная модель:

при ограничениях

          

Квадратичные модели широко используются для представления экспериментальных данных при идентификации ДЛА и их элементов.

Квадратичные модели используются для аппроксимации отдельных участков поверхности отклика, когда линейное приближение оказывается недостаточным, например, в окрестности экстремума, и лежит в основе нелинейных методов оптимизации. Если квадратичная модель также оказывается недостаточно точной, то используются полиномиальные модели более высоких порядков.

Исследование полиномиальных моделей частично можно осуществить аналитическими методами. Например, аналитически можно определить степень влияния отдельных переменных на характеристики модели.

2.4.2. позиномные модели

Позиномные модели основаны на представлении модели в виде суммы произведений степенных функций:

,                               (2.14)

где xi – управляющие переменные, aij – произвольные положительные числа, cj ³ 0 – обеспечивает выпуклость модели.

Величины aij, сj рассчитываются на основе статистических данных, отражающих опыт производства соответствующих узлов и систем.

Позиномные модели можно использовать для описания стоимости сложных систем.

К позиномным моделям сводится задача выбора геометрических характеристик ряда технических устройств, в том числе элементов ДЛА, например, электромагнитов, силовых ферм и т.д.

Исследование позиномных моделей сложнее, чем моделей полиномиального типа, и осуществляется в основном численными методами. Однако, при m = 1 и x1 > 0, x2 > 0,…, xk > 0 в формуле (2.4) существует способ приведения позинома к линейному виду.

В этом частном случае модель (2.4) будет выглядеть в следующем виде:

.

Прологарифмируем обе части этого равенства, получим

.                                 (2.15)

Введем обозначения логарифмов переменных W, x1, x2,…,xk и константы с:

Выражение (2.5) примет линейный вид

Y(X1, X2,…, Xk)  = C + a1x1 + a2x2 + +akxk.

Для поиска оптимальных решений на основе позиномных моделей разработан специальный аппарат – так называемое геометрическое программирование.

2.4.3. Математическая модель кратчайшего пути

В качестве примера применения нелинейных статических моделей рассмотрим задачу описания двумерного движения точки по ограниченной области (рис. 2.8). Такая задача может возникнуть при определении координат опорных точек движения инструмента на станке с ЧПУ.

Найдем кратчайший путь от точки А с координатами (хА, уА) до точки В с координатами (хВ, уВ) на плоскости, из которой исключена область D, определенная неравенством   x2 + y2 £ R2 .

Кратчайшим расстоянием между двумя точками на плоскости является соединяющий их отрезок прямой.

Пусть расстояние между точками А и В равно р и центр окружности, ограничивающий область D, лежит посередине между точками А и В. Тогда

Рассмотрим путь АСВ, где точка С имеет координаты (0, уС), а уС – достаточно велико, чтобы отрезки АС и СВ не пересекались с областью D. Тогда по теореме Пифагора

.

Отсюда видно, что при убывании уС путь сокращается. Будем уменьшать уС до тех пор, пока АС не коснется окружности в точке Е1 (С ® С1). Этот путь является наилучшим среди путей, составленных из двух отрезков прямых линий.

Обозначим через a угол  ÐЕ10С1, тогда  E1C1 + C1F1 = 2Rtga;

Длина дуги E1F1 определяется по формуле  arcE1F1 = 2Ra .

Но tga > a для всех a Î .

Следовательно, путь, состоящий из отрезка АЕ1, дуги E1F1 и отрезка F1B, является более коротким, чем АС1В.

На этой стадии решения задачи мы выяснили, что кратчайший путь состоит их двух отрезков прямых линий и дуги окружности.

Для окончательного решения задачи рассмотрим путь АЕ2 , дуга E2F2 , F2B, где ÐА0Е2 = ÐВ0F2 = b.

Длину этого пути обозначим через S. Получим математическую модель пути:

.               (2.16)

,                                    (2.16')

где a – угол между прямой Е10 и осью 0Y.

Ограничение (2.16') вводится потому, что при  прямая АЕ1 пересечет область D, а этого не должно быть.

Задача заключается в определении угла b0, при котором путь S будет минимальным. Необходимым условием минимума функции S(b) является равенство нулю производной:

.                                                             (2.17)

Рассмотрим частный случай:

P = 4;  R = 1.

Тогда          .

Подставив значения p и R в математическую модель (2.6), получим

.

Произведя некоторые преобразования, получим

.

Возьмем производную по b от этого выражения и приравняем ее к нулю.

.

Получили уравнение, решив которое относительно b, найдем значение угла b0, при котором S минимально. Опустив промежуточные преобразования, получим cosb = 1/2.
То есть b = p/3.

Чтобы убедиться, что найденное значение является точкой минимума, необходимо исследовать вторую производную от (2.16). Если она больше нуля при b = b0, то S(b) действительно минимальна в этой точке.

Вторая производная от S(b) имеет вид

.

Подставив в нее найденное значение b0 = p/3, получим

.

Равенство нулю второй производной требует дополнительного исследования критической точки. Необходимо найти первую, не обращающуюся в нуль, производную. Если она нечетного порядка, функция не имеет в исследуемой точке ни максимума, ни минимума. Если она четного порядка и больше нуля, исследуемая точка является минимумом. Проверим третью производную от S(b) по b:

.

Отсюда имеем, что при b = p/3 функция S(b) не имеет ни максимума, ни минимума. Действительно, из графика функции S(b) (рис. 2.9) видно, что на отрезке (2.16') функция (2.16) монотонно убывает. В точке b0 = p/3, совпадающей с bогр, кривая имеет точку перегиба. Наименьшее в области определения значение находится на границе этой области. следовательно, путь AE1GF1B действительно кратчайший и его длина равна S(p/3) = 4,511.

Покажем, что математическая модель (2.6) для любых p и R  монотонно убывает на отрезке  и, следовательно, имеет наименьшее значение при . Для этого необходимо показать, что вторая производная от S(b) на интересующем нас отрезке не превышает нуля.

Вторая производная от функции (2.6) имеет вид

.

Покажем, что она не превышает нуля:

.

Разделив обе части неравенства на 2R и умножив на корень квадратный (это можно сделать, не нарушив неравенства, так как R > 0, а корень квадратный представляет собой длину отрезка, т. е. тоже больше нуля), получим

.

Возведя обе части в квадрат (на рассматриваемом отрезке sin(b) > 0) и произведя некоторые преобразования, получим

.

В левой части неравенства cos2(b) можно заменить его минимальным значением, т.е. нулем, а в правой части – максимальным значением, т.е. единицей. Тогда получим

0 ³ 4pR – 4R2   или     p ³ R.

Но p действительно больше R (см. рис. 2.5).

Таким образом, аналитическую модель пути (формула (2.6)) мы использовали для доказательства того, что при b = p/2 – a путь является кратчайшим. Зная это, можно определить координаты опорных точек движения инструмента на станке с ЧПУ при любых значениях величин  p и R:

А(–р/2, 0); Е1(–Rsin(a), Rcos(a)); F1(Rsin(a), Rcos(a)); B(p/2, 0),

где a = .

Контрольные вопросы к лекции 4

1. Какие виды нелинейных математических моделей Вы знаете?

Лекция "1 Общество, политическая власть, государство" также может быть Вам полезна.

2. Приведите общий вид квадратичного полинома.

3. Приведите формулу позинома.

4. Как привести позином к линейному виду (при каком условии)?

5. К какому типу можно отнести модель кратчайшего расстояния между двумя точками?

6. Является ли найденное значение угла b точкой минимума пути?

7. Является ли путь S при найденном значении угла b кратчайшим?

Свежие статьи
Популярно сейчас
Зачем заказывать выполнение своего задания, если оно уже было выполнено много много раз? Его можно просто купить или даже скачать бесплатно на СтудИзбе. Найдите нужный учебный материал у нас!
Ответы на популярные вопросы
Да! Наши авторы собирают и выкладывают те работы, которые сдаются в Вашем учебном заведении ежегодно и уже проверены преподавателями.
Да! У нас любой человек может выложить любую учебную работу и зарабатывать на её продажах! Но каждый учебный материал публикуется только после тщательной проверки администрацией.
Вернём деньги! А если быть более точными, то автору даётся немного времени на исправление, а если не исправит или выйдет время, то вернём деньги в полном объёме!
Да! На равне с готовыми студенческими работами у нас продаются услуги. Цены на услуги видны сразу, то есть Вам нужно только указать параметры и сразу можно оплачивать.
Отзывы студентов
Ставлю 10/10
Все нравится, очень удобный сайт, помогает в учебе. Кроме этого, можно заработать самому, выставляя готовые учебные материалы на продажу здесь. Рейтинги и отзывы на преподавателей очень помогают сориентироваться в начале нового семестра. Спасибо за такую функцию. Ставлю максимальную оценку.
Лучшая платформа для успешной сдачи сессии
Познакомился со СтудИзбой благодаря своему другу, очень нравится интерфейс, количество доступных файлов, цена, в общем, все прекрасно. Даже сам продаю какие-то свои работы.
Студизба ван лав ❤
Очень офигенный сайт для студентов. Много полезных учебных материалов. Пользуюсь студизбой с октября 2021 года. Серьёзных нареканий нет. Хотелось бы, что бы ввели подписочную модель и сделали материалы дешевле 300 рублей в рамках подписки бесплатными.
Отличный сайт
Лично меня всё устраивает - и покупка, и продажа; и цены, и возможность предпросмотра куска файла, и обилие бесплатных файлов (в подборках по авторам, читай, ВУЗам и факультетам). Есть определённые баги, но всё решаемо, да и администраторы реагируют в течение суток.
Маленький отзыв о большом помощнике!
Студизба спасает в те моменты, когда сроки горят, а работ накопилось достаточно. Довольно удобный сайт с простой навигацией и огромным количеством материалов.
Студ. Изба как крупнейший сборник работ для студентов
Тут дофига бывает всего полезного. Печально, что бывают предметы по которым даже одного бесплатного решения нет, но это скорее вопрос к студентам. В остальном всё здорово.
Спасательный островок
Если уже не успеваешь разобраться или застрял на каком-то задание поможет тебе быстро и недорого решить твою проблему.
Всё и так отлично
Всё очень удобно. Особенно круто, что есть система бонусов и можно выводить остатки денег. Очень много качественных бесплатных файлов.
Отзыв о системе "Студизба"
Отличная платформа для распространения работ, востребованных студентами. Хорошо налаженная и качественная работа сайта, огромная база заданий и аудитория.
Отличный помощник
Отличный сайт с кучей полезных файлов, позволяющий найти много методичек / учебников / отзывов о вузах и преподователях.
Отлично помогает студентам в любой момент для решения трудных и незамедлительных задач
Хотелось бы больше конкретной информации о преподавателях. А так в принципе хороший сайт, всегда им пользуюсь и ни разу не было желания прекратить. Хороший сайт для помощи студентам, удобный и приятный интерфейс. Из недостатков можно выделить только отсутствия небольшого количества файлов.
Спасибо за шикарный сайт
Великолепный сайт на котором студент за не большие деньги может найти помощь с дз, проектами курсовыми, лабораторными, а также узнать отзывы на преподавателей и бесплатно скачать пособия.
Популярные преподаватели
Добавляйте материалы
и зарабатывайте!
Продажи идут автоматически
5168
Авторов
на СтудИзбе
438
Средний доход
с одного платного файла
Обучение Подробнее