Популярные услуги

Курсовой проект по деталям машин под ключ
Все лабораторные под ключ! КМ-1. Комбинационные логические схемы + КМ-2. Комбинационные функциональные узлы и устройства + КМ-3. Проектирование схем
ДЗ по ТММ в бауманке
КМ-3. Типовое задание к теме прямые измерения. Контрольная работа (ИЗ1) - любой вариант!
Любая лабораторная в течение 3 суток! КМ-1. Комбинационные логические схемы / КМ-2. Комбинационные функциональные узлы и устройства / КМ-3. Проектирование схем
КМ-2. Выпрямители. Письменная работа (Электроника семинары)
Допуски и посадки и Сборочная размерная цепь + Подетальная размерная цепь
КМ-3. Задание по Matlab/Scilab. Контрольная работа - любой вариант за 3 суток!
ДЗ по матведу любого варианта за 7 суток
Задача по гидравлике/МЖГ

Диодные ключи

2021-03-09СтудИзба

4.2 Диодные ключи

В диодных электронных ключах преимущественно используют полупроводниковые диоды трех типов: точечные, плоскостные сплавные и плоскостные диффузионные.

Точечные диоды (например, Д18, Д101) имеют малую барьерную емкость (СБАР = 1 ... 2 пФ) и сравнительно низкое допустимое обратное напряжение (UД.ОБР ≤ 20 В).

Плоскостные сплавные диоды, например Д219, обладают большой барьерной емкостью (СБАР = 10 ... 20 пФ), но могут работать при значительных обратных напряжениях (UД.ОБР ≈ 70 В). Разброс их параметров значительно меньше, чем у точечных диодов. Плоскостные диффузионные диоды (например, меза-диоды Д312) сочетают в себе лучшие качества точечных и плоскостных сплавных диодов. Их барьерная емкость СБАР ≤ 1 ...3 пФ, допустимое обратное напряжение порядка 70 ... 100 В, поэтому они находят наиболее широкое применение в ключах различного назначения.

Основные схемы диодных ключей, наиболее широко используемых в импульсной технике, представлены на рисунке 4.2.1.

Схема (рис. 4.2.1- а) является основой для реализации логической функции И, схема рис. 4.2.1-б) - для реализации логической функции ИЛИ.

Рассмотрим статический режим работы этих схем.


Схема рис. 4.2.1- а с учетом того, что RВХ ≈ 0, может быть приведена к базовой схеме рис. 4.2.2- а, где

                                                           (4.2.1)

Рекомендуемые материалы

В статическом режиме диод может быть в двух состояниях: смещен в прямом направлении и смещен в обратном направлении.

В прямом направлении диод открыт и его для инженерных расчетов представляют активным сопротивлением RПР, характеризующим средний наклон вольт-амперной характеристики.

При смещении в обратном направлении ток через диод состоит из двух составляющих: тока утечки IУ = f1(UОБР) и теплового тока IДО = f2 (t°С). Первая составляющая прямо пропорциональна величине обратного напряжения, а вторая не зависит от напряжения, постоянна при данной температуре и удваивается при увеличении ее на каждые 10 °С.

Если линеаризовать обратную характеристику диода, то можно записать

                                                                       (4.2.2)

где RОБР величина обратного сопротивления диода.

В соответствии с уравнением (4.2.2) эквивалентная схема обратно смещенного диода представлена на рис. 4.2.2 - б.

Запертое или открытое состояние диода зависит от соотношения напряжения UВХ и EЭ. Можно выделить три случая соотношений этих величин, при которых диодный ключ (рис. 4.2..2- а) работает в разных режимах.

1. В режиме А UВХ > EЭ и диод заперт. Эквивалентная схема ключа принимает вид рис. 4.2.2-в. Напряжение на выходе

               (4.2.3)

При RЭ << RОБР UВЫХ = EЭ + IДОRЭ т. е. величина UВЫХ зависит от температуры. Для уменьшения этого влияния следует выбирать RЭ из условия IДО max RЭ << EЭ или использовать кремниевые диоды, имеющие существенно меньшую тепловую составляющую тока. Тогда можно записать

                                                                                 (4.2.4)

2. В режиме В UВХ < EЭ, диод открыт и на выходе схемы напряжение

                                                           (4.2.5)

При RЭ>> RПР, UВХ ≈UВЫХ.

3. В режиме С UВЫХ = EЭ, при этом ток через диод равен нулю и, т. е. UВХ = UВЫХ соответствует режиму В.

На практике в таких ключах используют параллельное включение нескольких диодов, а входными сигналами UВХ служат два уровня напряжения U1ВХ, соответствующий высокому единичному уровню, и U0ВХ соответствующий низкому нулевому уровню. В этой схеме единичный уровень сигнала будет на выходе только тогда, когда все три входных сигнала равны U1ВХ. Если хотя бы один входной сигнал равен U0ВХ, то на выходе будет U0ВХ, т. е. такая схема реализует логическую функцию И.

В схеме рис. 4.2.1-б возможны два режима. UВХ > EСМ и UВХ <EСМ. Величину RH для упрощения принимаем равной нулю.

При UВХ > EСМ диод открыт и UВХ ≈UВЫХ.

При UВХ < EСМ диод закрыт и на выходе схемы напряжение

                                

Если RЭСМ << RH, то UВЫХ EСМ . Источник EСМ применяется при использовании диодного ключа в качестве ограничителя импульсных сигналов. В логических схемах EСМ = 0. Кроме того, для реализации функций с несколькими входами используется параллельное включение нескольких диодов . В случае, если входные сигналы U1ВХ будут на одном или нескольких входах, т. е. реализуется логическая функция ИЛИ.

Переходные процессы в диодном ключе при переходе его из одного статического состояния в другое обусловлены:

- инерционностью процессов, происходящих в самом р-п переходе и определяемых проходной емкостью СД и постоянной времени τД, равной времени жизни неосновных носителей;

- влиянием емкостей нагрузки СН и монтажа СМ, шунтирующих выходные зажимы ключа.

Для различных диодов характерны различные значения емкости СД и времени жизни носителей.

Постоянная времени τД определяет время установления прямого сопротивления диода при его включении, которое зависит от накопления избыточных носителей в базе диода. Величина времени установления tУСТ приблизительно может быть оценена соотношением tУСТД .

Процесс запирания диода обратным перепадом напряжения более инерционный и определяется рассасыванием избыточных носителей, накопленных в базе. Этот процесс длится до тех пор, пока заряд носителей в базе не уменьшится до уровня, соответствующего равновесному состоянию диода. Длительность рассасывания tР тем меньше, чем меньше постоянная времени τД и прямой ток IПР диода (при этом меньше избыточный заряд в базе) и чем больше запирающий ток IЗАП, который практически равен отношению обратного напряжения на диоде к сопротивлению в цепи диода, так как пока идет рассасывание избыточных носителей, переход смещен в прямом направлении и обратное сопротивление диода мало. Можно считать, что

                                                                    (4.2.7)

 После завершения рассасывания избыточных носителей начинается спад тока и в течение некоторого времени tC диод закрывается.

У современных импульсных диодов время установления прямого сопротивления (прямого тока) tУСТ и время восстановления обратного сопротивления (обратного тока) tВОСТ = tР + tC не превосходят десятых долей микросекунды. Поэтому во многих случаях при изучении переходных процессов в диодных ключах ограничиваются анализом переходных процессов во внешних элементах ключа, пренебрегая инерционностью самого диода.


На схеме рис. 4.2.3- а представлена эквивалентная схема диодного ключа, в которой через С0 обозначена суммарная шунтирующая емкость С0 = СМ + СН (предполагается, что СД << (СМ + СН).

Пусть в момент t1 на вход ключа от идеального генератора (RГ = 0) подается перепад напряжения U1ВХ > EЭ (режим А). Положим, что диод закрылся мгновенно, так что в момент t2 скачок напряжения на выходе отсутствует. Начинает заряжаться от источника EЭ конденсатор С0, формируя по экспоненциальному закону выходное напряжение UВЫХ(t) с постоянной времени τ1 = С0(RЭ|| RОБР)≈ С0RЭ.

Длительность фронта выходного импульса составляет

                                   

В момент t2 импульс заканчивается, диод открывается и емкость С0 разряжается с постоянной времени (рис. 4.2.3-б) τ0 = С0(RЭ|| RПР)≈ С0RПР и в течение короткого промежутка времени tФ ≈3τ0 = 0RЭ выходное напряжение практически достигает уровня U0ВЫХ ≈ 0.

В режиме В, когда U1ВХ < EЭ (рис. 4.2.3- в), процесс несколько отличается. На первом этапе (t1 - t2) в течение t+Ф диод закрыт, так как напряжение на конденсаторе С0 меньше U1ВХ. В момент t2 заряд на конденсаторе достигает значения U1ВХ и диод открывается, фиксируя выходное напряжение на этом уровне до момента времени t3. Процесс разряда конденсатора по окончании входного импульса аналогичен режиму А. Длительность фронта для этого случая

          

если

Обратите внимание на лекцию "8 Хирургическая операция".

                                    <<1,

то

                                   

Легко заметить, что длительность фронта t+Ф в режиме В тем меньше, чем амплитуда входного сигнала U1ВХ UMAX.ВЫХ меньше напряжения EЭ. При конечной длительности фронтов tФ.ВХ поступающих на вход импульсов длительность фронта выходного импульса можно записать по приближенной формуле

                               

где t+Ф - длительность фронта выходного перепада напряжения для случая идеального прямоугольного импульса.

Свежие статьи
Популярно сейчас
Как Вы думаете, сколько людей до Вас делали точно такое же задание? 99% студентов выполняют точно такие же задания, как и их предшественники год назад. Найдите нужный учебный материал на СтудИзбе!
Ответы на популярные вопросы
Да! Наши авторы собирают и выкладывают те работы, которые сдаются в Вашем учебном заведении ежегодно и уже проверены преподавателями.
Да! У нас любой человек может выложить любую учебную работу и зарабатывать на её продажах! Но каждый учебный материал публикуется только после тщательной проверки администрацией.
Вернём деньги! А если быть более точными, то автору даётся немного времени на исправление, а если не исправит или выйдет время, то вернём деньги в полном объёме!
Да! На равне с готовыми студенческими работами у нас продаются услуги. Цены на услуги видны сразу, то есть Вам нужно только указать параметры и сразу можно оплачивать.
Отзывы студентов
Ставлю 10/10
Все нравится, очень удобный сайт, помогает в учебе. Кроме этого, можно заработать самому, выставляя готовые учебные материалы на продажу здесь. Рейтинги и отзывы на преподавателей очень помогают сориентироваться в начале нового семестра. Спасибо за такую функцию. Ставлю максимальную оценку.
Лучшая платформа для успешной сдачи сессии
Познакомился со СтудИзбой благодаря своему другу, очень нравится интерфейс, количество доступных файлов, цена, в общем, все прекрасно. Даже сам продаю какие-то свои работы.
Студизба ван лав ❤
Очень офигенный сайт для студентов. Много полезных учебных материалов. Пользуюсь студизбой с октября 2021 года. Серьёзных нареканий нет. Хотелось бы, что бы ввели подписочную модель и сделали материалы дешевле 300 рублей в рамках подписки бесплатными.
Отличный сайт
Лично меня всё устраивает - и покупка, и продажа; и цены, и возможность предпросмотра куска файла, и обилие бесплатных файлов (в подборках по авторам, читай, ВУЗам и факультетам). Есть определённые баги, но всё решаемо, да и администраторы реагируют в течение суток.
Маленький отзыв о большом помощнике!
Студизба спасает в те моменты, когда сроки горят, а работ накопилось достаточно. Довольно удобный сайт с простой навигацией и огромным количеством материалов.
Студ. Изба как крупнейший сборник работ для студентов
Тут дофига бывает всего полезного. Печально, что бывают предметы по которым даже одного бесплатного решения нет, но это скорее вопрос к студентам. В остальном всё здорово.
Спасательный островок
Если уже не успеваешь разобраться или застрял на каком-то задание поможет тебе быстро и недорого решить твою проблему.
Всё и так отлично
Всё очень удобно. Особенно круто, что есть система бонусов и можно выводить остатки денег. Очень много качественных бесплатных файлов.
Отзыв о системе "Студизба"
Отличная платформа для распространения работ, востребованных студентами. Хорошо налаженная и качественная работа сайта, огромная база заданий и аудитория.
Отличный помощник
Отличный сайт с кучей полезных файлов, позволяющий найти много методичек / учебников / отзывов о вузах и преподователях.
Отлично помогает студентам в любой момент для решения трудных и незамедлительных задач
Хотелось бы больше конкретной информации о преподавателях. А так в принципе хороший сайт, всегда им пользуюсь и ни разу не было желания прекратить. Хороший сайт для помощи студентам, удобный и приятный интерфейс. Из недостатков можно выделить только отсутствия небольшого количества файлов.
Спасибо за шикарный сайт
Великолепный сайт на котором студент за не большие деньги может найти помощь с дз, проектами курсовыми, лабораторными, а также узнать отзывы на преподавателей и бесплатно скачать пособия.
Популярные преподаватели
Добавляйте материалы
и зарабатывайте!
Продажи идут автоматически
5173
Авторов
на СтудИзбе
436
Средний доход
с одного платного файла
Обучение Подробнее