Разрешение изображения и его размер
Лекция 3
Основные понятия КГ
Разрешение изображения и его размер
Следует четко различать разрешение экрана, разрешение печатающего устройства и разрешение изображения. Все эти понятия относятся к разным объектам. Друг с другом эти виды разрешения никак не связаны, пока не потребуется узнать, какой физический размер будет иметь картинка на экране монитора, отпечаток на бумаге или файл на жестком диске.
Разрешение экрана – свойство компьютерной видеосистемы (зависит от параметров монитора и видеокарты) и операционной системы (зависит от настроек Windows). Разрешение экрана измеряется в пикселах на дюйм (ppi - pixel per inch) и определяет размер изображения, которое может быть размещено на экране целиком.
Разрешение принтера – свойство принтера, выражающее количество отдельных точек, которые могут быть напечатаны на участке единичной длины. Оно измеряется в единицах dpi (dots per inch – точки на дюйм) и определяет размер изображения при заданном качестве или, наоборот, качество изображения при заданном размере.
Разрешение изображения – свойство самого изображения. Оно измеряется в точках на дюйм (dpi) и задается при создании изображения в графическом редакторе или с помощью сканера. Значение разрешения изображения хранится в файле изображения и неразрывно связано с другим свойством изображения – его физическим размером.
Физический размер изображения. Может измеряться как в пикселах, так и в единицах длины (миллиметрах, сантиметрах, дюймах). Он задается при создании изображения и хранится вместе с файлом.
Если изображение готовят для демонстрации на экране, то его ширину и высоту задают в пикселах, чтобы знать, какую часть экрана оно занимает. Если изображение готовят для печати, то его размер задают в единицах длины, чтобы знать, какую часть листа бумаги оно займет. Нетрудно пересчитать размер изображения из пикселов в единицы длины и наоборот, если известно разрешение изображения (см. таблицу).
Рекомендуемые материалы
Связь между размером иллюстрации (в пикселах) и размером
отпечатка (в мм) при разных разрешениях отпечатка
Размер | Размер отпечатка, мм при разрешениях | |||
75 dpi | 150 dpi | 300 dpi | 600 dpi | |
640х480 | 212х163 | 108х81 | 55х40 | 28х20 |
800х600 | 271х203 | 136х102 | 68х51 | 34х26 |
1024х768 | 344х260 | 173х130 | 88х66 | 44х33 |
1152х864 | 390х292 | 195х146 | 98х73 | 49х37 |
1600х1200 | 542х406 | 271х203 | 136х102 | 68х51 |
Понятие растра
Появление и широкое использование растра основано на свойстве человеческого зрения воспринимать изображение, состоящее из отдельных точек, как единое целое. Эту особенность зрения с давних пор использовали художники. На ней основана и технология полиграфической печати.
Изображение проецируется на светочувствительную пластину через стекло, на которое равномерно нанесена непрозрачная растровая решетка. В результате непрерывное полутоновое изображение оказывается разбитым на отдельные ячейки, которые называются элементами растра. Растр получил широкое распространение при изготовлении различного рода печатной продукции: газет, журналов, книг.
Понятие непрерывного полутонового изображения пришло из фотографии. На самом деле фотографический отпечаток при просмотре его через оптический прибор с очень большим увеличением тоже состоит из отдельных элементарных точек. Однако они настолько малы, что неразличимы невооруженным глазом.
Другие методы представления изображений: полиграфия, распечатка на принтере, вывод на монитор – используют сравнительно большие по размеру элементы растра.
Методы растрирования
В полиграфии плотность заполнения элемента растра черной краской определяет восприятие данной точки на отпечатке как более светлой или темной. Таким образом, интенсивность тона регулируют изменением размера растровой точки: чем темнее точка на отпечатке, тем больше степень заполнения черной краской ячейки растра. Такой метод называют растрированием с амплитудной модуляцией.
Интенсивность тона можно регулировать за счет изменения числа черных точек одинакового размера, размещаемых в растровой ячейке. Такой метод называют растрированием с частотной модуляцией.
Если черные точки расположены внутри растровой ячейки случайным образом, метод называют стохастическим растрированием.
Интенсивность тона (светлоту) принято подразделять на 256 уровней, т.е. для воспроизведения всего полутонового диапазона достаточно, чтобы размер растровой ячейки составил 16х16 точек. Таких ячеек, накладываемых на изображение, должно быть столько, чтобы не пропали какие-то мелкие детали изображения. Следовательно, чем больше ячеек растра содержится в каждой строке, тем более высокое качество мы получим при печати изображения.
Расстояние между центрами растровых ячеек одинаково, их число на единицу длины называется линиатурой растра и измеряется в линиях на дюйм (lpi - lines per inch). Чем выше значение lpi растра, тем более четким выглядит изображение, так как мелкие детали попадают в несколько ячеек растра. Современное качественное полиграфическое оборудование может иметь линиатуру растра до 300 lpi. При печати на принтере линиатура растра составляет порядка 65-90 lpi.
В полиграфической печати растровую сетку принято поворачивать на угол 45˚ (для черной краски). Это связано с особенностью человеческого глаза фиксировать линии, близкие к вертикали или горизонтали. При использовании цветной печати угол поворота может быть иным, в зависимости от количества цветов.
Линиатуру растра необходимо учитывать при печати изображения на принтере. Для получения качественного изображения надо знать зависимость между линиатурой, разрешением и тоновым диапазоном.
В настоящий момент для ввода изображения используются, в основном, цифровые устройства (сканеры, фото- и видеокамеры). Эти устройства характеризуются постоянным размером пятна. Следовательно, чтобы заполнить растровую ячейку, попавшую в темную область изображения, в ней размещают много пятен одинакового размера. Такие пятна называют точками. Максимальное число точек одинакового размера, которые могут поместиться в отрезке фиксированной длины (по вертикали или горизонтали) отпечатка, называют разрешающей способностью печатающего устройства. В качестве единицы измерения используется dpi. Например, разрешение принтера 600x1200 dpi (разрешение по горизонтали – 600, по вертикали – 1200).
Тоновый диапазон, линиатура растра и разрешающая способность печатающего устройства связаны следующим соотношением:
![]() |
Основы теории цвета
При работе с цветом используют понятия цветовое разрешение (его еще называют глубиной цвета) и цветовая модель. Цветовое разрешение определяет метод кодирования цветовой информации, и от него зависит то, сколько цветов на экране может отображаться одновременно. Для кодирования двухцветного (черно-белого) изображения достаточно выделить по одному биту на представление цвета каждого пиксела. Выделение одного байта позволяет закодировать 256 различных цветовых оттенков. Два байта (16 битов) позволяют определить 65536 различных цветов. Этот режим называется High Color. Если для кодирования цвета используется три байта (24 бита), возможно одновременное отображение 16,5 млн цветов. Этот режим называется True Color.
Цвета в природе редко являются простыми. Большинство цветовых оттенков образуется смешением основных цветов. Способ разделения цветового оттенка на составляющие называется цветовой моделью. Существует много различных типов цветовых моделей, но в компьютерной графике, как правило, применяется не более трех. Эти модели известны под названиями RGB, CMYK и HSB.
Цвет – один из факторов нашего восприятия светового излучения. Для характеристики цвета используются следующие атрибуты.
Цветовой тон. Можно определить преобладающей длиной волны в спектре излучения. Цветовой тон позволяет отличить один цвет от другого, например, зеленый от красного, желтого и других.
Яркость. Определяется энергией, интенсивностью светового излучения. Выражает количество воспринимаемого света.
Насыщенность или чистота тона. Выражается долей присутствия белого цвета. В идеально чистом цвете примесь белого отсутствует. Если, например, к чистому красному цвету добавить в определенной пропорции белый цвет (у художников это называется разбелом), то получится светлый бледно-красный цвет.
Указанные три атрибута позволяют описать все цвета и оттенки. То, что атрибутов именно три, является одним из проявлений трехмерных свойств цвета.
Наука, которая изучает цвет и его измерения, называется колориметрией. Она описывает общие закономерности цветового восприятия света человеком.
Одними из основных законов колориметрии являются законы смешивания цветов. Эти законы в наиболее полном виде были сформулированы в 1853 г. немецким математиком Германом Грассманом:
1.Цвет трехмерен - для его описания необходимы три компоненты. Любые четыре цвета находятся в линейной зависимости, хотя существует неограниченное число линейно независимых совокупностей из трех цветов.
Иными словами, для любого заданного цвета (Ц) можно записать такое цветовое уравнение, выражающее линейную зависимость цветов:
Лекция "Лекция 9" также может быть Вам полезна.
Ц = к1 Ц1 + к2 Ц2 + к3 Ц3,
где Ц1, Ц2, Ц3 – некоторые базисные, линейно независимые цвета, коэффициенты к1, к2, и к3 – количество соответствующего смешиваемого цвета. Линейная независимость цветов Ц1, Ц2, Ц3 означает, что ни один из них не может быть выражен взвешенной суммой (линейной комбинацией) двух других.
Первый закон можно трактовать и в более широком смысле, а именно в смысле трехмерности цвета. Необязательно для описания цвета применять смесь других цветов, можно использовать и другие величины, но их обязательно должно быть три.
2.Если в смеси трех цветовых компонентов один меняется непрерывно, в то время как два других остаются постоянными, цвет смеси также изменяется непрерывно.
3.Цвет смеси зависит только от цветов смешиваемых компонентов и не зависит от их спектральных составов.
Смысл третьего закона становится более понятным, если учесть, что один и тот же цвет (в том числе и цвет смешиваемых компонентов) может быть получен различными способами. Например, смешиваемый компонент может быть получен, в свою очередь, смешиванием других компонентов.