Задача 4
1. Задача 1.4
2. Вариант 17
3. Условие:
Цилиндрический бесконечно длинный конденсатор заряжен до разности потенциалов U и имеет радиусы внешней и внутренней обкладок R0 и R соответственно. Величина диэлектрической проницаемости между обкладками меняется по закону ε(r)=f(r). Построить графически распределение модулей векторов электрического поля E, поляризованности Р и электрического смещения D между обкладками конденсатора. Определить поверхностную плотность зарядов на внутренней и внешней поверхностях диэлектриков, распределение объёмной плотности связанных зарядов ρ’(r), максимальную напряжённость электрического поля Е и ёмкость конденсатора.
R0/R=2/1, n=2.
По результатам вычислений построить графически зависимости D(r)/D(R), E(r)/E(R), P(r)/P(R), ρ’(r)/ρ’(R) в интервале значений r от R до R0.
4. Решение:
. Определим диэлектрическую проницаемость, как функцию радиуса
Рекомендуемые материалы
По теореме Гаусса
и не зависит от диэлектрической проницаемости ε.
Т.к. , то
. Поэтому
Т.к. , а
, то
, поэтому
Определим поверхностную плотность связанных зарядов
, где
- косинус угла между нормалью между рассматриваемой поверхностью и поляризованностью, для внутренней поверхности
, а для внешней поверхности
. Тогда
.
Поэтому , а
.
Объёмная плотность связанных зарядов , для полярных координат
,поэтому
Для определения ёмкости вычислим напряжение на его обкладках
.
Поэтому .
5. Вариант 18
6. Условие:
Цилиндрический бесконечно длинный конденсатор заряжен до разности потенциалов U и имеет радиусы внешней и внутренней обкладок R0 и R соответственно. Величина диэлектрической проницаемости между обкладками меняется по закону ε(r)=f(r). Построить графически распределение модулей векторов электрического поля E, поляризованности Р и электрического смещения D между обкладками конденсатора. Определить поверхностную плотность зарядов на внутренней и внешней поверхностях диэлектриков, распределение объёмной плотности связанных зарядов ρ’(r), максимальную напряжённость электрического поля Е и ёмкость конденсатора.
R0/R=2/1, n=3/2.
По результатам вычислений построить графически зависимости D(r)/D(R), E(r)/E(R), P(r)/P(R), ρ’(r)/ρ’(R) в интервале значений r от R до R0.
7. Решение:
. Определим диэлектрическую проницаемость, как функцию радиуса
По теореме Гаусса
и не зависит от диэлектрической проницаемости ε.
Т.к. , то
. Поэтому
.
Т.к. , а
, то
, поэтому
.
Определим поверхностную плотность связанных зарядов
, где
- косинус угла между нормалью между рассматриваемой поверхностью и поляризованностью, для внутренней поверхности
, а для внешней поверхности
. Тогда
.
Поэтому , а
Объёмная плотность связанных зарядов , для полярных координат
,
поэтому
Для определения ёмкости вычислим напряжение на его обкладках
Поэтому .
8. Вариант 19
9. Условие:
Цилиндрический бесконечно длинный конденсатор заряжен до разности потенциалов U и имеет радиусы внешней и внутренней обкладок R0 и R соответственно. Величина диэлектрической проницаемости между обкладками меняется по закону ε(r)=f(r). Построить графически распределение модулей векторов электрического поля E, поляризованности Р и электрического смещения D между обкладками конденсатора. Определить поверхностную плотность зарядов на внутренней и внешней поверхностях диэлектриков, распределение объёмной плотности связанных зарядов ρ’(r), максимальную напряжённость электрического поля Е и ёмкость конденсатора.
R0/R=3/1, n=2.
По результатам вычислений построить графически зависимости D(r)/D(R), E(r)/E(R), P(r)/P(R), ρ’(r)/ρ’(R) в интервале значений r от R до R0.
10. Решение:
. Определим диэлектрическую проницаемость, как функцию радиуса
По теореме Гаусса
и не зависит от диэлектрической проницаемости ε.
Т.к. , то
. Поэтому
.
Т.к. , а
, то
, поэтому
.
Определим поверхностную плотность связанных зарядов
, где
- косинус угла между нормалью между рассматриваемой поверхностью и поляризованностью, для внутренней поверхности
, а для внешней поверхности
.
Тогда .
Поэтому , а
Объёмная плотность связанных зарядов , для полярных координат
,
Поэтому
Для определения ёмкости вычислим напряжение на его обкладках
Поэтому .
11. Вариант 20
12. Условие:
Цилиндрический бесконечно длинный конденсатор заряжен до разности потенциалов U и имеет радиусы внешней и внутренней обкладок R0 и R соответственно. Величина диэлектрической проницаемости между обкладками меняется по закону ε(r)=f(r). Построить графически распределение модулей векторов электрического поля E, поляризованности Р и электрического смещения D между обкладками конденсатора. Определить поверхностную плотность зарядов на внутренней и внешней поверхностях диэлектриков, распределение объёмной плотности связанных зарядов ρ’(r), максимальную напряжённость электрического поля Е и ёмкость конденсатора.
R0/R=3/1, n=3/2.
По результатам вычислений построить графически зависимости D(r)/D(R), E(r)/E(R), P(r)/P(R), ρ’(r)/ρ’(R) в интервале значений r от R до R0.
13. Решение:
. Определим диэлектрическую проницаемость, как функцию радиуса
По теореме Гаусса
и не зависит от диэлектрической проницаемости ε.
Т.к. , то
. Поэтому
.
Т.к. , а
, то
, поэтому
.
Определим поверхностную плотность связанных зарядов , где
косинус угла между нормалью между рассматриваемой поверхностью и поляризованностью, для внутренней поверхности
, а для внешней поверхности
. Тогда
.
Поэтому , а
Рекомендация для Вас - Управление принятием решений.
Объёмная плотность связанных зарядов , для полярных координат
, Поэтому
Для определения ёмкости вычислим напряжение на его обкладках
Поэтому
.