Популярные услуги

Технологические схемы стабилизации нефти

2021-03-09СтудИзба

15. Технологические схемы стабилизации нефти

Процессы подготовки нефти — это обезвоживание, обессоливание, а также стабилизация нефти. Сущность стабилизации нефти заключается в отделении от нее летучих углеводородов (пропан-бутановой фракции), а также растворимых в нефти сопутствующих газов, таких как сероводород, углекислый газ и азот, что сокращает потери нефти от испарения, снижает интенсивность процесса коррозии аппаратуры, оборудования и трубопроводов по пути движения нефти от месторождения до нефтеперерабагывающего завода, а также позволяет получать ценное сырье для нефтехимии.

Применяют следующие способы стабилизации нефти: горячую, или вакуумную, сепарацию и ректификацию.

При горячей, или вакуумной, сепарации от нефти отделяется широкая газовая фракция, в которой наряду с пропан-бутановой фракцией содержится большое количество более высокомолекулярных углеводородов, извлечение которых из нефти ухудшает ее качество. Для извлечения высокомолекулярных углеводородов из широкой газовой фракции и последующего возвращения их в стабильную нефть, используют следующие процессы:

1) однократную конденсацию с последующей компрессией, масляной абсорбцией или низкотемпературной конденсацией остаточных газов;

2) фракционированную конденсацию с последующей компрессией газового остатка;

3) абсорбцию или ректификацию.

При стабилизации нефти ректификацией всю нефть подвергают процессу ректификации, при этом обеспечивается четкое разделение углеводородов и достигается заданная глубина стабилизации нефти.

Подпись: 

Рис.40. Технологическая схема процесса стабилизации нефти горячей сепарацией и однократной конденсацией широкой газовой фракции


Технологическая схема процесса стабилизации нефти горячей cепарацией и однократной конденсацией широкой газовой фракции приведена на рис.40. Сырая нефть I  насосом 1 подается в теплообменник 3 и, пройдя блок обезвоживания и обессоливания 4, поступает на стабилизацию. При этом обезвоженная и обессоленная нефть нагревается в пароподогревателе 5 до температуры 80—120 °С и подвергается однократному испарению в сепараторе 6 при давлении 0,15—0,25 МПа, где от нее отделяется широкая газовая фракция. Снизу сепаратора 6 выводится стабильная нефть III, которая насосом 7 прокачивается через теплообменник 3, где отдает тепло сырой нефти, и направляется в резервуар 2 стабильной нефти, Широкая газовая фракция IV, отделяемая от нефти в

Рекомендуемые материалы

сепараторе 6, подвергается однократной конденсации, для чего охлаждается в холодильнике 8 до температуры 30 °С, при этом конденсируются высокомолекулярные (?) углеводороды II (бензин), которые отделяются от газа в сепараторе 9, собираются в емкости бензина 10 и насосом 11 возвращаются в стабильную нефть для восстановления ее бензинового потенциала. Газ, выходящий из сепаратора 9, поступает на прием компрессора 12, в котором повышается давление газа до 0,5—1,7 МПа, в зависимости от расстояния до газоперерабатывающего завода. После компрессора газ проходит маслоотделитель 13, где отделяется смазочное масло VII, уносимое газом из компрессора, конденсатор-холодильник 14 и сепаратор 15, в котором отделяется сконденсировавшийся в результате сжатия и охлаждения нестабильный конденсат VI. Нестабильный конденсат собирается в емкости 16, из которой насосом 17 перекачивается на газоперерабатывающий завод. Туда же направляется и газ V, выходящий из сепаратора 15.

Технологическая схема процесса стабилизации нефти горячей сепарацией и фракционированной конденсацией широкой газовой фракции приведена на рис.41.

Подпись: 

Рис.41. Технологическая схема процесса стабилизации нефти горячей сепарацией и фракционированной конденсацией широкой газовой фракции


Сырую нефть I насосом 1 подают в теплообменник 3 и, пройдя блок обезвоживания и обессоливания 4, поступает на стабилизацию. Обезвоженная и обессоленная нефть нагревается в пароподогревателе 5 до температуры 80—120 °С и подвергается однократному испарению в сепараторе 6 при давлении 0,15—0,25 МПа, где от нее отделяется широкая газовая фракция. Снизу сепаратора 6 выводится стабильная нефть II, которая насосом 7 прокачивается через теплообменник 3, где отдает тепло сырой нефти, и направляется в резервуар 2 стабильной нефти. Широкая газовая фракция III, отделяемая от нефти в сепараторе 6, подвергается фракционированной конденсации в фракционирующем конденсаторе 8, который представляет собой вертикальный кожухотрубчатый теплообменный аппарат, в его межтрубном пространстве снизу вверх проходит широкая газовая фракция, а в трубном — сверху вниз — охлаждающая вода V. При охлаждении широкой газовой фракции образуется углеводородный конденсат, который, стекая вниз по поверхности трубок, вступает в контакт с газом, вновь поступающим в аппарат. Между этими встречными потоками газа и конденсата происходит тепло- и массообмен, при котором часть высокомолекулярных углеводородов из газа переходит в конденсат, а часть низкомолекулярных углеводородов из конденсата переходит в газ. Таким образом образуются конденсат с минимальным содержанием низкомолекулярных углеводородов (метан—бутан) и газ с минимальным содержанием высокомолекулярных углеводородов (C5+высшие). Конденсат IV направляется в стабильную нефть для пополнения ее бензинового потенциала. Газ, выходящий из фракционирующего конденсатора 8, проходит сепаратор 9, где отделяется уносимый им капельный конденсат, и поступает на прием компрессора 10 с соответствующим числом ступеней сжатия, в зависимости от удаленности объектов газопотребления или газоперерабатывающего завода. Скомпримированный до соответствующего давления газ проходит маслоотделитель 11, где отделяется смазочное масло VIII, захватываемое в цилиндрах компрессора, конденсатор-холодильник 12, где охлаждается до 30 °С, и поступает в сепаратор 13, где от газа отделяется сконденсировавшийся нестабильный конденсат VII. Нестабильный конденсат собирается в емкости 14, из которой насосом 15 перекачивается на газоперерабатывающий завод. Газ VI, выходящий из сепаратора 13, направляется потребителю или на газоперерабатывающий завод.

Технологическая схема процесса стабилизации нефти горячей сепарацией и абсорбцией широкой газовой фракции приведена на рис.42.

Подпись: 

Рис.42. Технологическая схема процесса стабилизации нефти горячей сепарацией и абсорбцией широкой газовой фракции


         Сырая нефть I подается насосом 1 в теплообменник 4, и, пройдя блок обезвоживания и обессоливания 5, насосом 7 прокачивается через трубчатую печь 8, где нагревается до температуры 100—110°С, и поступает в сепаратор 9, в котором от нефти отделяется широкая газовая фракция. Снизу сепаратора 9 выходит стабильная нефть II, которая, отдав тепло сырой нефти в теплообменнике 4, направляется в резервуар стабильной нефти 2. Широкая газовая фракция III, выходящая сверху сепаратора 9, насосом 11 подается в низ абсорбера 10, в котором в результате процесса абсорбции из нее извлекаются высокомолекулярные углеводороды (бензиновая фракция). Сущность процесса абсорбции состоит в избирательном поглощении высокомолекулярных углеводородов из газа жидкостью, называемой абсорбентом. Переход высокомолекулярных углеводородов из газа в жидкость обусловлен нарушением фазового равновесия при контакте газа с родственной жидкостью, в которой содержание поглощаемых компонентов мало.

В технологической схеме должен быть предусмотрен процесс десорбции абсорбента, т. е. обратного извлечения поглощенных им в абсорбере углеводородов. Абсорбент можно десорбировать либо ректификацией, либо выпаркой абсорбента. В рассматриваемой технологической схеме в качестве абсорбента используют стабильную нефть, которая насосом 3 прокачивается через холодильник 6 и подается на верх абсорбера 10. Таким образом, в абсорбере 10 происходит встречное днижение поднимающейся снизу вверх широкой газовой фракции и стекающей сверху вниз стабильной нефти (абсорбента). Для создания лучшего контакта встречных потоков жидкости и газа в абсорбере применяют различные специальные устройства — тарелки, насадки и др.

В результате абсорбции бензиновые углеводороды из широкой газовой фракции переходят в нефть, а легкие газообразные углеводороды IV (от метана до бутана) выходят сверху абсорбера и направляются на газоперерабатывающий завод. Процесс абсорбции (переход углеводородов из газообразного состояния в жидкое) происходит с выделением тепла, поэтому абсорбент, опускаясь вниз по абсорберу, разогревается, что приводит к снижению растворимости газов в нем. Для снижения температуры абсорбента проводят промежуточное его охлаждение. Для этого разогретый абсорбент забирается с определенного уровня абсорбера, прокачивается насосом 13 через холодильник 12, и охлажденный абсорбент V возвращается в абсорбер.

Технологическая схема стабилизации нефти ректификацией приведена на рис.43.

Подпись: 

Рис.43. Технологическая схема стабилизации нефти ректификацией



Сырая нефть I насосом 1 прокачивается через теплообменник 3, после чего проходит блок обезвоживания и обессоливания 4 и поступает на стабилизацию. Обезвоженная и обессоленная нефть нагревается в теплообменнике 5 до температуры 150—200 °С за счет тепла отходящего потока стабильной нефти, при этом частично испаряется и в двухфазном парожидком состоянии поступает в питательную секцию ректификационной колонны 6. Ректификация — это процесс многократного испарения и конденсации углеводородов, происходящий на специальных устройствах — ректификационных тарелках. Для его осуществления необходимо, чтобы в колонне было два встречных потока — жидкий и паровой и чтобы имелась разность температур при переходе от одной тарелки к другой. Жидкий поток стекает сверху вниз ректификационной колонны в результате подачи на верхнюю тарелку так называемого холодного орошения. В качестве холодного орошения используется часть сконденсированного верхнего продукта, выходящего сверху ректификационной колонны и являющегося равновесным по составу с верхним продуктом. Для этого нефтяные пары, выходящие сверху ректификационной колонны 6, охлаждаются в холодильнике 7, и в сепараторе 8, от них отделяется углеводородный конденсат III, который собирается в сборнике конденсата 9, а затем насосом II подается на верх ректификационной колонны 6. Паровой поток снизу вверх создается так называемым паровым орошением IV, вводимым в низ ректификационной колонны под нижнюю тарелку и являющимся равновесным по составу с нижним продуктом. В качестве парового орошения используют часть превращенного в парообразное состояние нижнего продукта. Для этого часть стабильной нефти, выходящей снизу ректификационной колонны 6, насосом 13 прокачивают через трубчатую печь 12, в которой нагревают до такой температуры, чтобы произошло превращение нефти в парообразное состояние, и эти пары подаются под нижнюю тарелку. В результате того, что на верх колонны подается холодное орошение, а вниз — паровое орошение, по высоте ректификационной колонны устанавливается необходимая разность температур: внизу колонны 230—280 °С, а вверху колонны 65—96 оС. На каждой тарелке поднимающиеся снизу пары встречаются со стекающей с верхней тарелки более холодной жидкостью. Конструкция тарелки обеспечивает необходимый контакт встречающихся потоков пара и жидкости, так что между ними происходит тепло- и массообмен. Пары охлаждаются, при этом часть высокомолекулярных углеводородов из паров конденсируется и переходит в жидкость. Жидкость, наоборот, нагревается, при этом часть низкомолекулярных углеводородов испаряется и переходит в пар. Этот процесс повторяется многократно, так как ректификационная колонна имеет достаточно много тарелок. В результате поднимающиеся пары при переходе от одной тарелки к другой обогащаются низкомолекулярными углеводородами, а жидкостьвысокомолекулярными углеводородами. Тем самым достигается требуемая четкость разделения с заданной глубиной извлечения того или иного компонента (пропана, бутана или метана). Отделившиеся легкие углеводороды в газообразном V и жидком VI состоянии насосом 10 направляются на химический комбинат. Стабильная нефть II, с высокой температурой выходящая снизу ректификационной колонны, проходит теплообменники 5 и 3, где отдает свое тепло поступающей нефти, охлаждаясь при этом до температуры 40—45 °С, и направляется в резервуар стабильной нефти 2.

Для интенсификации процесса стабилизации нефти предложено использовать центробежные силы. Скорость выделения легкой фазы в гидроциклоне, как показали расчеты, в 500 раз выше, чем скорость гравитационного разделения. Никаких дополнительных контактных устройств  для стабилизации нефти в гидроциклоне не требуется, в отличие от ректификационной колонны. Продуктами процесса стабилизации являются: стабильная нефть и легкие углеводороды в виде сухого газа и нестабильного бензина.

В ИПТЭР разработана конструкция гидроциклона ГУД-1 (табл.12).

В корпусе аппарата ГУД-1 расположено шесть сепарирующих элементов, каждый из которых снабжен вводным устройством, обеспечивающим тангенциальный ввод смеси и интенсивную крутку потока, сливной камерой с наконечником, конструкция которого обеспечивает пристенное пленочное течение жидкости и концентрирование легких углеводородов. Гидроциклон устанавливается на сборнике стабильной нефти (рис.44).

Подпись: 

Рис.44. Технологическая схема комплексной подготовки нефти с применением гидроциклона ГУД-1
1- сепаратор; 2-блок обезвоживания; 3-печь; 4-гидроциклон; 5-сборник стабильной нефти; 6-каплеуловитель; 7-теплообменник; 8-сборник легких углеводородов



Из ГУД-1 смесь парогаза с капельной жидкостью направляют в каплеуловитель, пустотелый аппарат, где под действием гравитационных сил происходит отделение капель нефти от парогазовой смеси легких углеводородов. Далее парогаз конденсируют при температуре 10-15 оС и разделяют в сепараторе на легколетучие газы и конденсат. Для получения качественного конденсата давление в сепараторе поддерживают в пределах 1,7-1,3 ати, что препятствует переходу в газовую фазу наиболее ценных бутановых фракций.

Установлено, что доля извлечения углеводородов С3 из нефти в гидроциклоне достигает 90%, С4 – 68%, С5 – 48%. Углеводороды С6 обнаружены в пределах до 20%, а  С8 – до 8%.

Таблица 12

Техническая характеристика гидроциклона ГУД-1

Показатель

Величина

Максимальная производительность,  м3/сут

1500

Диаметр,  мм

700

Высота,  мм

1000

Масса,  кг

300

Рабочее давление, Мпа (кгс/см2)

0,4-0,6  (4-6)

Гидроциклонная технология стабилизации нефти сокращает металлоемкость более, чем в 50 раз, а капитальные вложения – в 60 раз.

15.1. ОБОРУДОВАНИЕ УСТАНОВОК СТАБИЛИЗАЦИИ НЕФТИ

Подпись: 

Рис.45.Схема
устройства ректификационной колонны


Стабилизация нефти основана на сочетании процессов испарения и конденсации. Поэтому основное оборудование установок стабилизации нефти — это нагреватели и печи, теплообменники и конденсаторы-холодильники, сепараторы и колонные аппараты (абсорберы, ректификационные колонны и др.).

На рис.6 представлена схема устройства   ректификационной   колонны. Колонна состоит из вертикального цилиндрического корпуса 10 с опорой 12, которой она устанавливается на фундамент и закрепляется к нему   фундаментными болтами. Сверху и снизу корпус колонны закрыт   эллиптическими днищами. Колонна имеет люки 3. Внутри колонны смонтированы ректификационные тарелки 9, улитка 8, отбойник 5, гидравлический затвор 6, паровой маточник 11. Колонны снабжены штуцерами: ввода сырья 7, для отвода целевых паров 1 в конденсатор-холодильник, откачки стабильной нефти 13, ввода холодного орошения 2, отбора боковых погонов 4.

Основной элемент ректификационных колонн и тарельчатых абсорберов — это тарелки. Элементы контактных устройств барботажных тарелок колпачковых, клапанных, ситчатых  (отверстия в полотне тарелок) создают движение пара в слое жидкости почти в вертикальном направлении. Среди барботажных тарелок можно выделить тарелки со стесненным и свободным зеркалом барботажа. В тарелках со стесненным зеркалом барботажа часть поверхности жидкости (50—75%) занята устройствами для ввода пара в жидкость (колпачками).

В тарелках со свободным зеркалом барботажа устройства для ввода пара в жидкость размещены практически на одном уровне с полотном тарелки (отверстия, клапаны, язычки и т. п.). Поэтому площадь для выхода пара из жидкости составляет 70—90 % рабочей площади тарелки.

После прохождения процессов подготовки нефть должна удовлетворять следующим требованиям ГОСТа 9965-76 на качество (табл.13):

Таблица 13

Требования к качеству нефтей по ГОСТ 9965-76

Показатель

Группа нефти

I

II

III

1. Максимальное содержание воды, %

0,5

1,0

1,0

2. Максимальное содержание хлористых солей, мг/л

100

300

900

3. Максимальное содержание механических примесей, %

0,05

0,05

0,05

4. Максимальное давление насыщенных паров (ДНИ) при температуре 37,8 °С, кПа

66,67

66,67

66,67

Требования к подготовленному к транспорту газу следующие (табл.14):

Таблица 14

Требования к качеству газа по ОСТ 51.40-93

Параметр

Норма для климата

умеренного

холодного

с 01.05 по 30.09

с 01.10 по 30.04

с 01.05 по 30.09

с 01.10 по 30.04

1. Точка росы по влаге, не выше оС

-3

-5

-10

-20

2. Точка росы по углеводородам, не выше, оС

0

0

-5

-10

3. Масса сероводорода (г/м3)  не более

0,007

0,007

0,007

0,007

4. Масса меркаптановой серы ( г/м3) не более

0,016

0,016

0,016

0,016

5. Объемная доля кислорода (%)  не более

0,5

0,5

1,0

1,0

6. Теплота сгорания низшая МДж/м3 при 20 °С и 101,25 кПа, не менее

32,5

32,5

Люди также интересуются этой лекцией: 2.3 Заупокойный культ.

32,5

32,5

7. Температура газа, оС

Температура газа в самом газопроводе устанавливается проектом

8. Масса механических примесей и труднолетучих жидкостей

Условия оговариваются в соглашениях на поставку газа с ПХГ, ГПЗ и промыслов

Свежие статьи
Популярно сейчас
А знаете ли Вы, что из года в год задания практически не меняются? Математика, преподаваемая в учебных заведениях, никак не менялась минимум 30 лет. Найдите нужный учебный материал на СтудИзбе!
Ответы на популярные вопросы
Да! Наши авторы собирают и выкладывают те работы, которые сдаются в Вашем учебном заведении ежегодно и уже проверены преподавателями.
Да! У нас любой человек может выложить любую учебную работу и зарабатывать на её продажах! Но каждый учебный материал публикуется только после тщательной проверки администрацией.
Вернём деньги! А если быть более точными, то автору даётся немного времени на исправление, а если не исправит или выйдет время, то вернём деньги в полном объёме!
Да! На равне с готовыми студенческими работами у нас продаются услуги. Цены на услуги видны сразу, то есть Вам нужно только указать параметры и сразу можно оплачивать.
Отзывы студентов
Ставлю 10/10
Все нравится, очень удобный сайт, помогает в учебе. Кроме этого, можно заработать самому, выставляя готовые учебные материалы на продажу здесь. Рейтинги и отзывы на преподавателей очень помогают сориентироваться в начале нового семестра. Спасибо за такую функцию. Ставлю максимальную оценку.
Лучшая платформа для успешной сдачи сессии
Познакомился со СтудИзбой благодаря своему другу, очень нравится интерфейс, количество доступных файлов, цена, в общем, все прекрасно. Даже сам продаю какие-то свои работы.
Студизба ван лав ❤
Очень офигенный сайт для студентов. Много полезных учебных материалов. Пользуюсь студизбой с октября 2021 года. Серьёзных нареканий нет. Хотелось бы, что бы ввели подписочную модель и сделали материалы дешевле 300 рублей в рамках подписки бесплатными.
Отличный сайт
Лично меня всё устраивает - и покупка, и продажа; и цены, и возможность предпросмотра куска файла, и обилие бесплатных файлов (в подборках по авторам, читай, ВУЗам и факультетам). Есть определённые баги, но всё решаемо, да и администраторы реагируют в течение суток.
Маленький отзыв о большом помощнике!
Студизба спасает в те моменты, когда сроки горят, а работ накопилось достаточно. Довольно удобный сайт с простой навигацией и огромным количеством материалов.
Студ. Изба как крупнейший сборник работ для студентов
Тут дофига бывает всего полезного. Печально, что бывают предметы по которым даже одного бесплатного решения нет, но это скорее вопрос к студентам. В остальном всё здорово.
Спасательный островок
Если уже не успеваешь разобраться или застрял на каком-то задание поможет тебе быстро и недорого решить твою проблему.
Всё и так отлично
Всё очень удобно. Особенно круто, что есть система бонусов и можно выводить остатки денег. Очень много качественных бесплатных файлов.
Отзыв о системе "Студизба"
Отличная платформа для распространения работ, востребованных студентами. Хорошо налаженная и качественная работа сайта, огромная база заданий и аудитория.
Отличный помощник
Отличный сайт с кучей полезных файлов, позволяющий найти много методичек / учебников / отзывов о вузах и преподователях.
Отлично помогает студентам в любой момент для решения трудных и незамедлительных задач
Хотелось бы больше конкретной информации о преподавателях. А так в принципе хороший сайт, всегда им пользуюсь и ни разу не было желания прекратить. Хороший сайт для помощи студентам, удобный и приятный интерфейс. Из недостатков можно выделить только отсутствия небольшого количества файлов.
Спасибо за шикарный сайт
Великолепный сайт на котором студент за не большие деньги может найти помощь с дз, проектами курсовыми, лабораторными, а также узнать отзывы на преподавателей и бесплатно скачать пособия.
Популярные преподаватели
Добавляйте материалы
и зарабатывайте!
Продажи идут автоматически
5173
Авторов
на СтудИзбе
436
Средний доход
с одного платного файла
Обучение Подробнее