Популярные услуги

Любое задание БЖД -Определить УЗД
Повышение уникальности твоей работе
Исследование опасности поражения электрическим током в трехфазных электрических сетях напряжением до 1 кВ
Реферат по БЖД для студентов 1 курса
Исследование методов обеспечения комфортного микроклимата
Исследование эффективности звукоизоляции и звукопоглощения
Исследование характеристик искусственного освещения
Любой реферат по безопасность жизнедеятельности (БЖД и ГРОБ или ОБЖ)
Главная » Лекции » Безопасность жизнедеятельности и охрана труда » Основы электробезопасности » Технические мероприятия по предупреждению электротравматизма

Технические мероприятия по предупреждению электротравматизма

2021-03-09СтудИзба

Технические мероприятия по предупреждению электротравматизма

К техническим мероприятиям по предупреждению электротравматизма относят:

- выбор типа сети электроснабжения;

- соответствующую изоляцию тоководящих частей электроустановок;

- ограждение неизолированных элементов электроустановок и его блокировку;

- применения малого напряжения;

- защитное заземление электрооборудования;

- зануление электрооборудования;

- защитное отключение электрооборудования при его неисправности;

Рекомендуемые материалы

- индивидуальные электротехнические защитные средства.

5.1. Выбор типа сети электроснабжения

Для снабжения электроэнергией промышленных, общественных и жилых зданий в основном применяют трехфазные сети переменного тока частотой 50 Гц. Наиболее широкое применение в промышленности нашли сети с изолированной нейтралью источника тока (рис. 5.1.) и с глухозаземленной нейтралью источника тока (рис. 5.2.)

Рис. 5.1. Трехфазная сеть с изолированной нейтралью

Рис. 5.2. Трехфазная сеть с глухозаземленной нейтралью и нулевым защитным проводником (Н.З.П)

Анализ этих сетей показывает, что при двухполюсном включении человека в сеть (рис. 5.1., а и рис. 5.2., а) независимо от режима нейтрали источника тока и сопротивления изоляции человек оказывается под линейным напряжением (Uл =  ∙ Vф) и через него будет протекать ток величиной Ih(II)=Vл/Rh = 380 / 1000 = 0,38 А = 380 мА, что, значительно выше (при  ≥ 1с) тока фибрилляционного допустимого (см. табл. 2). Следовательно при двухполюсном включении человека в сеть обе сети одинаково опасны.

При однополюсном включении человека в сеть небольшой протяженностью (при С = 0) (рис. 5.1, б) величины тока, протекающего через человека, значительно уменьшается вследствие того, что в электрическую цепь последовательно включается сопротивление изоляции (rи) других фаз относительно земли, Ih = Uф / (Rh +) = 220 | (1000 +) = 0,00131 А = 1,31 мА. Такая величина тока значительно ниже тока  неотпускающего допустимого (I н.д.= 6 мА) и находится на уровне тока ощутимого. В сетях с глухозаземленной нейтралью при однополюсном включении в сеть (рис. 5.2, а) величина тока, протекающего через человека, будет Ih(I) = Uф / Rh = 220 / 1000 = 0,22 А = 220 мА, что выше допустимого значения тока фибрилляционного. Следовательно сети с изолированной нейтралью небольшой протяженностью, когда их емкостью можно принебречь (С = 0), при однополюсном включении в сеть человека менее опасны, чем сети с глухозаземленной нейтралью источника тока.

Величина тока, проходящего через человека, при однополюсном включении в сеть с изолированной нейтралью и значительной емкостью (рис. 5.1, в), т.е. С ≠ 0, равна Ih = Uф / (Rh + (z/3))= 220 / (1000 +(10000/3)) = 0,0507 А = 50,7 мА. Такая величина тока превышает длительно (> 1с) допустимый ток фибрилляционный (см. табл. 2).

где Z – полное сопротивление изоляции сети относительно земли составляет обычно коло 10 кОм.

При аварийном режиме (когда одна из фаз сети замкнута на землю или оборудование) в сетях с изолированной нейтралью (рис. 5.1, г) при однополюсном включении в сеть человек оказывается практически под линейным напряжением и через него протекает ток, такой же величины, что и при двухполюсном включении в такую же сеть. Величина этого тока равна Ih =  ∙ Vф / (Rh + rз) =  ∙ 220 / (1000 + (20…30)) ≈ 0,3699 А = 369,9 мА, что значительно превышает длительно ( ≥ 1с) допустимый ток фибрилляционный (табл. 2).

где rз – сопротивление растеканию тока в месте замыкания фазы, обычно равно 20…30 Ом.

В сети с глухозаземленной нейтралью источника тока (рис. 5.2, б) при аварийном режиме и однополюсном включении человека в сеть он окажется под напряжением прикосновения (Uф < Uпр < Uл) больше фазного, но меньше линейного напряжения. При Uф = 220 В  достигнет величины Uпр = 240 – 260 В, а ток, проходящий через человека, величины Ih = 260 / (1000 + )) = 0,2591 А = 259,1 мА, что также значительно больше длительно ( ≥ 1с) допустимого тока фибрилляционного (табл. 2). Где R0 – сопротивление основного заземляющего устройства нейтрали источника тока, R0 = 4 0м.

Анализ сетей по опасности поражения человека током показал, что менее опасны сети с изолированной нейтралью небольшой протяженностью при нормальном режиме. Во всех других случаях сети с изолированной и глухозаземленой нейтралью источники тока практически одинаково опасны как при однополюсном, так и двухполюсном включении в электрическую сеть в нормальном и аварийном режимах работы.

Сети с изолированной нейтралью применяют в тех случаях, когда можно поддерживать сопротивление изоляции на высоком уровне и когда емкость сети относительно земли незначительна (сети небольшой протяженности – до 1 – 1,5 км). Их применяют в опасных и особо опасных производствах по поражению электрическим током (шахты, рудники, взрывоопасные помещения), а также когда при аварийном режиме нельзя отключить потребителя( I категория).

Во всех других случаях предпочтение отдают сетям с глухозаземленной  нейтралью, в которых можно применять оборудование на два напряжения (на 220 и 380 В) без дополнительных понижающих устройств, а защита осуществляется путем его селективного автоматического отключения при авариях или неисправностях.

Сети при напряжении выше 1000 В представляют повышенную опасность независимо от режима нейтрали, режима работы или вида включения в электрическую сеть (однополюсное или двухполюсное включение). Во всех случаях величина тока, протекающего через человека, будет значительно (в несколько раз, а иногда и на несколько порядков) превышает допустимые значения.

5.2.Сопротивление изоляции токоведущих частей

Состояние изоляции в значительной мере определяет степень безопасности эксплуатации электроустановок. Сопротивление изоляции в сетях с изолированной нейтралью определяет ток через человека (см.  рис 5.1). В сетях с заземленной нейтралью ток через человека не зависит от сопротивления изоляции (рис. 5.2), но при плохом ее состоянии часто происходит ее повреждение, что приводит к коротким замыканиям на землю (корпус), а это представляет опасность поражения людей током, прикоснувшимся к корпусу оборудования или появлению шагового напряжения на территории электроустановки.

Сопротивление изоляции в установках напряжением до 1000 В регламентировано ПУЭ, ПТЭ и ПТБ электроустановок потребителей и должно быть не менее 0,5 МОм в условиях с нормальными параметрами окружающей среды. При повышенной влажности окружающей среды или при  агрессивных газах и парах (пары кислот и щелочей), сопротивление изоляции проводов и кабелей должны быть не менее 1,0 МОм. Для электрических печей – ванн с расплавленными средами сопротивление изоляции этих объектов в холодном состоянии должно быть не ниже 0,5 МОм. Необходимое сопротивление изоляции электродвигателей, трансформаторов и другого электрооборудования рассчитывается по специальным формулам, приведенным в ПТЭ и ПТБ электроустановок потребителей.

Регламентируется сопротивление изоляции только отдельных участков сети, находящихся между двумя разъединителями (рис. 5.3.) или двумя предохранителями. Нормируется сопротивление между  фазами, а также между каждой фазой и землей. В установках напряжением до 1000 В сопротивление изоляции измеряют не реже одного раза в год при помощи мегаомметра (МОм) на напряжение 1000 В. (см. рис. 5.3).

В электроустановках напряжением выше 1000 В сопротивление изоляции испытывают повышенным выпрямленным напряжением величиной Uис = (2 - 6) ∙ Uн в течение 5…15 мин в зависимости от номинального напряжения (Uн) испытуемой сети. Если за время испытания не произошел пробой изоляции, то считается она выдержала испытание. После испытания повышенным напряжением обязательно нужно проверить целостность изоляции мегаомметром, т.к. в момент отключение от источника испытания мог произойти пробой и приборы его не зарегистрировали.

 На подстанциях напряжением выше 1000 В часто проводят постоянный контроль за сопротивлением изоляции при помощи специальных устройств и приборов.

Рис. 5.3. Схема измерения сопротивления изоляции мегаомметром

5.3. Ограждение и блокировка электрооборудования

Многие элементы электроустановок (контакты включателей, ножи рубильников, металлические нагреватели электропечей, металлические электроды печей-ванн с расплавленными средами, электроды ионного нагрева и электролитического травления, индукторы установок ТВЧ, троллеи для мостовых кранов и кранбалок и т.п.) по условиям работы не изолируются. Кроме того, часть элементов электроустановок находятся под высоким напряжением (повысительный трансформатор, колебательный контур анодного напряжения, высокочастотный закалочный трансформатор установок ТВЧ и др.), к которым приближаться на расстояние менее допустимого опасно.

Чтобы исключить возможность прикосновения к неизолированным элементам или опасного приближения к изолированным токоведущим частям высокого напряжения их ограждают или располагают на недоступной высоте либо в недоступном месте. При повышенной опасности ограждения блокируют с включателями электроустановок.

   В установках напряжением до 1000 В ограждения могут быть как сплошными, так и сетчатыми. Размер ячейки сетки не более 25 х 25 мм. Высота ограждений в помещениях должна быть не менее 1,8 м; расстояние от токоведущих частей до ограждений (в установках U ≤ 1000 В): при сплошном – не менее 95 мм, при сетчатом – не менее 165 мм.

Применяют в цехах два вида блокировок: механические и электрические. Механические блокировки применяют для блокирования кожухов рубильников, пускателей, выключателей с их включающим устройством (рис. 5.4). При включенном рубильнике (пускателе) механическое устройство не позволяет снять ограждающий кожух, а при снятом ограждающем кожухе механизм не позволяет включить рубильник (пускатель).

рис_1стр174

Рис. 5.4. Механическая блокировка рубильника

1 – рубильник; 2, 3 – выступы; препятствующие включению рубильника при снятом кожухе или снятию кожуха при включенном рубильнике

     Электрические блокировки в цехах применяют для блокирования с электромагнитными пускателями (контакторами) заслонок и крышек электрических нагревательных камерных и шахтных печей, ограждающие кожухи конденсаторных батарей машинных генераторов, дверцы металлических шкафов ламповых генераторов ТВЧ (анодный трансформатор, анодный выпрямитель, колебательный контур, высококачественный закалочный трансформатор и др.). При расположении машинных и ламповых генераторов ТВЧ в отдельных помещениях двери в них блокируют с пускателями установок.

Принципиальная схема электрической блокировки двери с электромагнитным пускателем приведена на рисунке 5.5.

рис_2_

Рис. 5.5. Схема электрической блокировки дверей

Принцип действия электрической блокировки состоит в том (рис. 5.5), что в цепь управления магнитного пускателя или контактора установлены специальные контакты БК, механически связанные с открывающимися устройствами в ограждениях. При открывании  дверей блокировочные контакты БК размыкают цепь катушки МП пускателя, что приводит к отключению электроустановки от электрической сети. При обрыве этой цепи электроустановка отключается так же, как и при открывании дверей. Это предотвращает возможность несчастного случая при неисправной цепи блокировки. Электроустановка не может быть включена при закрывании дверей, так как замыкание блокировочных контактов БК еще недостаточно: для включения электроустановки требуется обязательно нажать кнопку «Пуск».

Для обеспечения безопасности необходимо, чтобы блокировочные контакты размыкались уже при незначительном растворе дверей (100 – 150 мм), чтобы человек не мог проникнуть за ограждение при неразомкнувшихся контактах.

Электрические блокировки люков и дверей в ограждении грузоподъемных кранов должны автоматически отключать неизолированные троллейные шины при выходе персонала на галерею крана.

В производствах особо опасных по поражению электрическим током при напряжении переменного тока свыше 12 В, постоянного свыше 15 В; в производствах повышенной опасности – при напряжении переменного тока свыше 36 В и постоянного тока свыше 40 В при работе на электрооборудовании  электрические блокировки должны исключать прикосновение рабочего инструментом к токоведущим элементам и токопроводящим средам ванн. Для этого двери и другие открывающие устройства в ограждениях необходимо блокировать с магнитным пускателем установки.

5.4. Применение малого напряжения

В промышленности широкое применение нашел ручной переносной электрифицированный инструмент, а также стационарные электроустановки, при эксплуатации которых человек может прикоснуться к токоведущим частям, находящимся под напряжением (электрические печи сопротивления, гальванические ванны, электрические ванны с расплавленными средами, индукторы установок ТВЧ и т.п.). Для создания необходимого уровня электробезопасности при эксплуатации таких электроустановок применяют малое напряжение, такой величины, что при  прикосновении к элементам, находящимся под напряжением, напряжение прикосновения не превышает длительно допустимого значения.

Длительно допустимое напряжение прикосновения зависит от параметров помещений и окружающей среды в них.

По степени опасности поражения людей электрическим током ПУЭ делит помещения на три категории:

I – с повышенной опасностью, к которым относятся помещения сырые (относительная влажность воздуха длительно превышает 75 %); жаркие (температура длительно превышает 30°С); с токопроводящими полами; а также помещения, в которых возможно одновременное прикосновение человека к имеющим соединение с землей металлоконструкциям здания, технологическим аппаратом (механизмом и т.п.), с одной стороны, и к металлическим корпусам электрооборудования – с другой.

II. Особо опасные, к которым относятся помещения: особо сырые (относительная влажность близка к 100%); с химически активной средой; имеющие два или более признака помещений с повышенной опасностью.

III. Без повышенной опасности, в которых отсутствуют признаки помещений I и II категорий.

К работам в особо опасных условиях (II категория) относятся также работы с электрооборудованием вне помещений (выполняемые на открытом воздухе, в том числе под навесами).

В помещениях повышенной опасности поражения электрическим током для ручного электрифицированного инструмента и установок, в которых человек может прикоснуться к токоведущим элементам, находящимся под напряжением, допускается напряжение переменного тока не выше 36 В, а постоянного тока – не выше 40 В. В помещениях особо опасных по поражению электрическим током соответственно не выше 12 и 15 В.

Для понижения напряжения применяют только понижающие трансформаторы (рис.5.6, 5.7). С целью уменьшения опасности при переходе высшего напряжения на сторону вторичного малого напряжения вторичная обмотка трансформатора заземляется или зануляется.

рис_3_

Рис. 5.6.     Заземление понижающих трансформаторов в сети с изолированной нейтралью

рис_4_

Рис. 5.7.     Заземление понижающих трансформаторов в сети с заземленной нейтралью

Для III категории (без повышенной опасности) допускается напряжение U ≤ 220 В, но с обязательным заземлением или зануления корпуса оборудования или двойная изоляция, корпус электроприемника изготовляется из нетокопроводящего материала (пластмассы).

5.5. Защитное заземление электроустановок.

Защитное заземление (рис.5.8) – это преднамеренное соединение при помощи проводников 2 металлических нетоковедущих частей оборудования 1 с токопроводящими элементами 3, находящимися в земле и имеющими хороший контакт с грунтом.

рис 7

Рис. 5.8. Схема заземляющего устройства.

1 – корпус оборудования; 2 – заземляющая шина (проводник);

3 – заземлитель; ( 2 + 3 ) – заземляющее устройство или   защитное заземление.

Защитное заземление применяют в трехфазных трехпроводных сетях с изолированной нейтралью в установках напряжением до и выше 1000 В, а также в установках напряжением 110 кВ и выше с глухозаземленной нейтралью источника тока.

В соответствии с  требованием ПУЭ защитное заземление (зануление) электроустановок необходимо выполнить:

- при напряжении 380 В и выше переменного тока и 440 В и выше постоянного тока – во всех электроустановках;

- при номинальных напряжениях выше 42 В, но ниже 380 В переменного тока и выше 110 В, но ниже 440 В постоянного тока – только в помещениях с повышенной опасностью, особо опасных и в наружных установках;

-  в электросварочных установках независимо от величины напряжения, кроме заземления (зануления) корпусов и других нетоковедущих частей оборудования должно быть осуществлено заземление одного из зажимов (выводов) вторичной цепи источника сварочного тока.

Защитное заземление защищает человека от поражения током при замыкании фазы на корпус оборудования или на землю путем снижения величины напряжения прикосновения (Uпр) и напряжения шага (Uш) до допустимых значений (табл. 2).

Напряжение прикосновения – это напряжение между двумя точками (А и В, рис. 5.9.) цепи тока, которых одновременно касается человек. Одной точкой (А) является корпус оборудования, на который замкнула фаза, другой - (В) основание. При растекании тока в земле на ее поверхности появляется напряжение, которое уменьшается в зависимости от увеличения расстояния (х) до места стекания тока в землю.

Напряжение прикосновения

Uпр   =  UAUB = U3 × a1 2                                                      (5.1)

где Uз = I3 × R3 – напряжение на заземлителе (то же самое и на корпусе оборудования);

a1 – коэффициент напряжения прикосновения, для полушаровых заземлителей a1 = (Х – Х3) / Х (Х3 – размер заземлителя,

 Х – расстояние от заземлителя).

При Х = Х3 коэффициент a1 = 0, т.е. Uпр = 0; при Х > Х3 коэффициент a1®1, следовательно Uпр ® U3. Другими словами: чем ближе человек находится к заземлителю, тем меньше будет напряжение прикосновение, чем дальше – тем больше. Это хорошо видно из схемы на рис. 5.9 и из формулы 5.1: напряжение в точке А остается постоянным, а в точке В изменяется от максимального значения до нуля.

Коэффициент a2 зависит от сопротивления человека (Rh), обуви (Ro)  и пола (Rп), то есть a2 = Rh  / (Rh + Ro + Rп ), следовательно, чем больше будет сопротивление обуви и основания, на котором стоит человек, тем меньше будет aи напряжение прикосновения (Uпр).

Напряжение шага – это напряжение между двумя точками  (С и Д, рис. 5.9) электрической цепи тока, находящимся одна от другой на расстоянии шага (а = 0,8 м, рис.5.9), на которых одновременно стоит человек.

                    

                                                                                       С       Д

Рис. 5.9. Напряжение прикосновения и шага

Uш  = UcUд   =   U3  ×b1 ×b2                                               (5.2)

где  b1 – коэффициент напряжения шага, зависит от заземлителя.

                                                                        (5.3)

Анализ уравнения (5.3) и схемы на рис. 5.9 показывает, что чем ближе к месту стекания тока в землю, тем больше коэффициент b1 и, следовательно, больше напряжение шага. С увеличением расстояния от места стекания тока коэффициент b1 уменьшается и снижается напряжение шага.

Коэффициент b2 равен коэффициенту a2 , т.е. b2 = a2 = Rh / (Rh + Ro + Rп ).

Для снижения напряжений прикосновения и шага (соответственно величины тока, протекающего через человека) необходимо уменьшить напряжение (U3) на заземляющем устройстве (формулы 5.1, 5.2) при замыкании на него фазы. Напряжение на корпус при замыкании на него фазы  Uк=Uз= Iз×Rз зависит от тока замыкания (I3) и сопротивления заземляющего устройства (R3). Величина тока замыкания зависит в основном от полного сопротивления изоляции фаз относительно земли = Uф / (Z / З).  Для ограничения тока замыкания () в первую очередь необходимо поддерживать сопротивление изоляции фаз сети на нормированном уровне. Сопротивление заземляющего устройства (R3) также не должно превышать допустимых нормируемых значений. Кроме того, необходимо уменьшать расстояние между элементами заземлителя для выравнивания потенциалов на поверхности основания, увеличивать удельное электрическое сопротивление обуви (Ro)  и основания (Rп). Данные мероприятия  позволяют снизить напряжение прикосновения и шага до допустимых величин.

Заземлители подразделяются на естественные, искусственные и комбинированные (естественные + искусственные).

В качестве естественных заземлителей разрешается использовать токопроводящие элементы, находящиеся в земле и имеющие хороший контакт с грунтом, кроме трубопроводов с горючими жидкостями, газами и парами. Когда сопротивление естественных заземлителей превышает нормируемое значение, то к ним дополнительно размещают искусственные. Искусственные заземлители могут быть в виде горизонтальных металлических полос толщиной не менее 4 мм и  вертикальных стержней из круглой стали диаметром не менее 10 мм, металлических уголков с толщиной полки не менее 3,5 мм, металлических труб с толщиной стенки не менее 3,5 мм и т.п. Все элементы заземляющего устройства между собой соединяются при помощи сварки (рис. 5.10), только к корпусам оборудования разрешено болтовое присоединение.

рис_7_

Рис. 5.10. Схемы присоединения элементов заземляющих шин

В качестве заземляющих проводников в цехах используют все металлические конструкции здания, а также подкрановые пути мостовых кранов и кранбалок, кроме трубопроводов с горючими жидкостями, газами, парами и свинцовых оболочек кабелей. Если металлические  конструкции имеют болтовое или заклепочное соединение, то их между собой соединяют стальными перемычками сечением не менее 100 мм2 при помощи сварки.

Кроме того, в цехах прокладывают магистральные заземляющие шины по стенам здания на высоте 400 – 600 мм от пола. В сухих помещениях шины крепят к стене, (рис. 5.11, а), а в сырых помещениях и с агрессивной средой – на кронштейнах (рис.5.11, б). Минимальные размеры заземляющих шин, проложенных в помещении цеха: круглые из оцинкованной проволоки – диаметр не менее 5 мм, прямоугольные сечением 4 х 6 мм площадью не менее 24 мм2, металлический уголок с толщиной полки не менее 2,5 мм,  металлические трубы с толщиной стенки не менее 2,5 мм. Соединяют элементы заземляющих шин при помощи сварки в нахлестку  (рис. 5.10). Внутри цеха заземляющие шины образуют контур, который не менее чем в двух местах соединяется при помощи сварки с заземлителем, расположенным снаружи цеха. Внутри цеха заземляющие шины окрашивают в черный цвет. Внутренние заземляющие шины дверные проемы обходят по верху. В исключительных случаях заземляющие шины прокладывают в металлических трубах в полу при обходе дверных проемов.

Корпуса оборудования к магистральным заземляющим шинам присоединяют при помощи специальных заземляющих шин или используют для этого металлические трубы, в которых прокладывают провода или кабели для подвода электроэнергии к электроприемнику.

Корпуса оборудования к магистральным заземляющим шинам разрешается присоединять только параллельно (рис. 5.12).

Искусственные заземлители подразделяются на контурные и выносные (рис.5.12).

Контурные искусственные заземлители (рис. 5.12) располагают снаружи по периметру здания на расстоянии 1 – 1,5 м от отмостки стены здания. Для этого роют траншею глубиной 0,5 – 1,0 м, в которую забивают вертикальные стержни длиной 1,5 – 3 м и соединяют их металлической полосой при помощи сварки. Затем эту полосу соединяют проводником не менее чем в двух местах с магистральной заземляющей шиной цеха с помощью сварки. Измеряют сопротивление заземлителя и  заземляющего устройства и засыпают траншею землей.

рис_6а

рис_6б

1 – прямоугольного сечения;

2 – круглого сечения

Рис. 5.11. Крепление заземляющих шин к стене здания:

а – в сухих помещениях; б – в сырых помещениях и в помещениях с агрессивной средой

Когда удельное электрическое сопротивление грунта вокруг здания высокое (r > 1000 Ом×м) или разместить заземлитель по техническим причинам невозможно, то заземлитель располагают вдали от здания (рис. 5.12).

Рис. 5.12. Схемы искусственных заземляющих устройств.

При одинаковых условиях уровень электробезопасности при контурном заземляющем устройстве выше, чем при выносном. При контурном заземлителе напряжение прикосновения внутри контура Uпр = I3 Rз a1× a2 = ,

где  a1 » 0,15…0,4, а при выносном – внутри помещения Uпр = I3 ×R3× a1× a2  где   a1 » 1, т.е. при выносном заземлителе создавать необходимый уровень электробезопасности в основном можно только за счет снижения сопротивления заземлителя (R3).

Сопротивление заземляющих устройств регламентировано ПУЭ и ПТБ электроустановок потребителей. В установках U до 1000 В с изолированной нейтралью сопротивление заземляющего устройства должно быть не более 4 Ом. При мощности трансформаторов или генераторов 100 кВ×А и менее допускается сопротивление заземляющего устройства не более 10 Ом.

В установках U > 1000 В с изолированной нейтралью сопротивление заземляющего устройства должно быть не более:

- при использовании заземляющего устройства одновременно и для установок до 1000 В

R3 = 125 / I3 £ 10 Ом

где   I3 – расчетный ток замыкания на землю, А;

- при использовании заземляющего устройства только для электроустановок выше 1000 В

R3 = 250 / I3 £ 10 Ом;

- если I3 > 500 А, то R3 £ 0,5 Ом.

Сопротивление заземлителей как естественных, так и искусственных рассчитывают. При совместном использовании естественных и искусственных заземлителей сначала рассчитывают сопротивление естественных заземлителей, а затем определяют какую величину сопротивления должен иметь  искусственный заземлитель (Rи).

, Ом

где   Rн – нормируемое сопротивление заземлителя, Ом;

         Rе -  сопротивление естественных заземлителей, Ом.

 Методика расчета искусственных заземлителей.

1) Рассчитывают сопротивление стекания тока с вертикального стержня

2) Определяют необходимое количество вертикальных стержней

N = Rе (Rн × hc),  шт.

3)Рассчитывают сопротивление стеканию тока с соединительной полосы 

, Ом

4) Определяют общее сопротивление заземлителя

, Ом

5) Сравнивают с нормируемым

Rк £  Rн

6) Если  Rк > Rн   - увеличивают количество элементов искусственного заемлителя и расчет проводят до тех пор, пока  Rк £  Rн

где  r - удельное сопротивление грунта, Ом×м;

       ℓ – длина стержня, м;

       d -  диаметр стержня, м;

       H – расстояние от поверхности земли до середины стержня, м;

       L  – длина соединительной полосы, м;

        В – ширина соединительной полосы, м;

        h – расстояние от поверхности земли до соединительной полосы;  

        hс, hп – коэффициенты экранирования (значения табличные).

Сопротивление цеховых заземлителей необходимо измерять не реже 1-го раза в год. Измеряют сопротивление заземлителей прибором ЭКО – 200 или мостом МС – 08. затем сравнивают с допустимым, т.е. Rиз£Rн 

Выборочное вскрытие грунта для осмотра заземлителей в наиболее опасных местах проводят не реже 1 раза в 10 лет.

5.6. Зануление электрооборудования

Зануление применяется для защиты людей от поражения электрическим током при замыкании фазы на корпус в 3-х фазных 4-х проводных сетях с глухозаземленной нейтралью источника тока напряжением до 1000 В.

При занулении оборудования (рис. 5.13) корпус оборудования 1 при помощи токопровода 2 соединяют с нулевым защитным проводником 3 (Н.3.П)

рис 10

Рис. 5.13. Зануление электрооборудования

Защита от поражения током при занулении оборудования осуществляется в момент замыкания фазы на корпус одновременно двумя защитными действиями:

–  снижением напряжения на корпусе относительно земли (Uк.з.) в 4 раза, то есть напряжение прикосновения снижается в четыре раза, так как Uпр = Uк-з =  Uф / 4;

–   превращением тока однофазного замыкания () вследствие малого сопротивления нулевого защитного проводника (обычно ZH ≈ 0,1 – 0,2 Ом) в ток однофазного короткого замыкания (), который возрастает в несколько раз или на несколько порядков, что приводит к надежному срабатыванию максимальной токовой защиты (МТЗ) и отключению поврежденной установки за допустимое время (τ) в зависимости от величины напряжения прикосновения (см. табл. 2).

Кроме заземления нулевой точки источника питания нулевой защитный проводник заземляют повторно (Rп) через каждые 500 м (рис. 5.13), а также при вводе в производственные и общественные здания.

Корпуса оборудования соединяют с нулевым защитным проводником, расположенным в распределительных электрических щитах, при помощи специальных проводов (изолированных или голых), заземляющих жил кабелей или металлических труб, в которых находятся провода или кабеля для подвода энергии к электроустановке. Иногда в цехе прокладывают заземляющую магистральную шину (как при защитном заземление), которую в распределительном пункте присоединяют к нулевой точке источника и ее заземлителю. Корпуса оборудования к заземляющей шине присоединяют точно также, как при защитном заземлении.

При занулении оборудования с помощью проводников на их концы надевают (запрессовывают) наконечники из латунных гильз.

Наконечники проводников при помощи болтов с гайками и пружинными шайбами присоединяют к корпусу оборудования и нулевому проводнику (нулевой точке источника), находящемуся в электрическом распределительном пункте (РП) или щите (РЩ).

Минимальные размеры медных и алюминиевых проводников по механической прочности для зануления оборудования приведены в таблице 3.

Таблица 3

Минимальные размеры проводников для зануления оборудования

Виды проводника

Медные,

мм2

Алюминиевые, мм2

1

Голые проводники при открытой прокладке

4,0

6,0

2

Изолированные проводники

1,5

2,5

3

Заземляющие жилы кабелей или многожильные проводники в общей защитной оболочке с фазными жилами

1,0

1,5

Заземляющие проводники для присоединения повторных заземлителей к нулевому защитному проводнику нужно выбирать по условию длительного допустимого тока, но не менее чем для 25 А.

Проводимость нулевого защитного проводника должна быть не менее 0,5 проводимости фазного проводника. В нулевой защитный проводник запрещено устанавливать всякого рода предохранители, разъединители и тому подобное.

Сопротивление заземляющих устройств, к которым присоединены нейтрали трансформаторов или генераторов или выводы источников однофазного тока, в любое время года должно быть не более 2,4 и 8 Ом соответственно при Uл 660, 380 и 220 В источников 3-х фазного тока или 380, 220 и 127 В источников однофазного тока. Это сопротивление должно быть обеспечено с учетом использования естественных заземлителей. При этом сопротивление заземлителя, расположенного в непосредственной близости от нейтрали трансформатора или генератора или вывода источника однофазного тока, должно быть не более 15, 30 и 60 Ом соответственно при Uл 660, 380 и 220 В источника 3-х фазного тока или 380, 220 и 127 В источника однофазного тока.

Методика расчета зануления

1) Номинальный ток электроустановки , А;

2) Пусковой ток электроустановки , А;

3) Расчетный ток защиты , А;

4) По Iз.р выбирают токовую защиту для электроустановки IМТЗ;

5) Проверяют надежность срабатывания максимально токовой защиты ;

6) Рассчитывают ток однофазного короткого замыкания , А;

7) Если не выполняется условие  - уменьшают сопротивление Zф и Zн за счет увеличения площади поперечного сечения фазного и нулевого проводов, и снова производят расчет

где  Р – мощность электроустановки, кВт;

         Uл – линейное напряжение, В;

         Кп – коэффициент пуска;

         Кр – коэффициент режима работы электроустановки;

         Кз – коэффициент защиты, для плавких предохранителей в   нормальных условиях Кз ≥ 3, для взрывоопасных условий Кз ≥ 4. Для электромагнитных расцепителей Кз указан в паспорте автоматического выключателя;

         Zтр – сопротивление трансформатора, Ом.

Измерение параметров электросети (сопротивление петли фаза-нуль, напряжения в сети, тока однофазного короткого замыкания) для проверки надежности срабатывания максимально токовой защиты (МТЗ) проводят не реже 1-го раза в 5 лет не менее чем у 10 % оборудования.

Прибором ЭКО – 200 измеряют ток однофазного короткого замыкания () и проверяют надежность срабатывания МТЗ, то есть ≥ Кз · IМТЗ (К – коэффициент кратности: для плавких вставок К ≥ 3, для электромагнитных выключателей К ≥ 1,25 – 1,4).

Приборами ЕР – 180 измеряют сопротивление петли (Zп) фаза-нуль, напряжение фазы (Uф) и рассчитывают ток однофазного короткого замыкания () по формуле  = Uф/ Zп, а затем проверяют надежность срабатывания МТЗ, то есть ≥ Кз · IМТЗ.

5.7. Защитное отключение

Защитное отключение – система защиты, обеспечивающая автоматическое отключение электроустановки при возникновении в ней опасности поражения человека электрическим током. Такая опасность возникает при замыкании фазы на землю или корпус оборудования, снижении сопротивления изоляции, неисправности заземления или зануления и устройств защитного отключения. Чтобы обеспечить безопасность, защитное отключение должно осуществлять следующие виды защиты:

– защиту от глухих и от неполных замыканий на землю (корпус);

– защиту от утечек тока (контроль изоляции);

–автоматический контроль цепи заземления или зануления и самоконтроль.

При повреждении электроустановки изменяется ряд параметров в электрической сети, которые используются как входные сигналы для автоматического защитного устройства. Так при замыкании фазы на корпус оборудования последний оказывается под напряжением относительно земли (Uз). При разном сопротивлении изоляции фаз относительно земли возникает напряжение между нейтралью источника и землей U0 (напряжение нулевой последовательности) и тому подобное.

По принципу действия устройства защитного отключения подразделяются на следующие виды:

– на напряжении корпуса относительно земли;

– на токе замыкания на землю;

– на напряжении нулевой последовательности;

– на токе нулевой последовательности;

– на напряжении фазы относительно земли;

– вентильные;

– на переменном оперативном токе;

– на постоянном оперативном токе;

– комбинированные.

В электроустановках напряжением до 1000 В некоторые устройства защитного отключения (на токе нулевой последовательности, вентильные) при соответствующих установках тока обеспечивают безопасность при прикосновении человека к фазе (Iус ≤ 10 мА).

Защитное отключение как самостоятельная мера безопасности может применяться только при выполнении одновременно двух условий:

– защищать от поражения током при прикосновении человека к фазе, находящейся под напряжением;

– осуществлять самоконтроль.

Во всех других случаях защитное отключение применяться как дополнительное к другим видам защиты (защитное заземление, зануление и так далее).

В качестве примера рассмотрим принцип работы устройства защитного отключения на напряжении корпуса относительно земли (рис. 5.14)

Рис. 5.14. Схема защитного отключения на напряжении корпуса относительно земли

В схемах этого типа датчиком служит реле напряжения РЗ (рис. 5.14), включенное между корпусами и вспомогательным заземлителем Rв. При замыкании фазы на корпус через реле РЗ протекает ток и между корпусом и землей возникает напряжение (Uк-з).

При определенной величине напряжение Uк-з реле напряжения РЗ срабатывает и разрывает нормально замкнутые контакты в цепи котушки ОК или МП магнитного пускателя, что приводит к отключению поврежденной электроустановки от сети.

Напряжение срабатывание реле РЗ

, В

где    Z – полное сопротивление реле РЗ, ОМ;

         Rв – сопротивление вспомогательного заземлителя, Ом;

         Uпр.д.д – длительно допустимое напряжение прикосновения, В;

                α1 – коэффициент напряжения прикосновения.

Достоинством схемы на напряжении корпуса относительно земли является ее простота. Недостатки – необходимость применения вспомогательного заземлителя, не селективность при общем заземлении и отсутствие самоконтроля. Такие устройства могут применяться только совместно с заземлением или другими мерами защиты.

Эта схема может применяться в сетях любого напряжения, как с изолированной, так и заземленной нейтралью.

рис 12              рис 13

Рис. 5.15 Изолирующая                          Рис. 5.16 Схемы токоизмерительных

оперативная штанга                                                   клещей переменного тока

рис 13                     рис 14

Рис. 5.17 Общий вид (а) и              Рис 5.18 Схема действия однополюсного

принципиальная схема (б)                       токоскателя

указателя высокого напряжения

рис_8_                   рис_11_

Рис 5.19 Диэлектрические резиновые              Рис. 20 Инструмент слесарно –

перчатки, галоши, боты и коврик                    монтажный с изолирующими

                                                                           рукоятками

5.8 Электрозащитные средства и предохранительные приспособления

Для защиты людей, обслуживающих или работающих на электроустановках, от поражения током, ожогов и действий электрической дуги необходимо применять специальные защитные средства: изолирующие средства, указатели напряжений и тока, временные защитные заземления, переносные ограждения, защитные очки или маски, плакаты безопасности и так далее.

По степени надежности изолирующие защитные средства делятся на основные и дополнительные. Основными считаются те защитные средства, изоляция которых может выдержать рабочее напряжение установки и при помощи которых допускается непосредственное прикосновение к токоведущим частям, находящимся под напряжением. Дополнительными являются защитные средства, служащие для усиления действия основных средств.

К основным электрозащитным средствам, применяемым в электроустановках U до 1000 В, относятся:

изолирующая штанга (рис. 5.15)

электроизмерительные клещи (рис. 5.16)

указатели напряжения (рис. 5.17, 5.18)

диэлектрические перчатки (рис. 19,а)

слесарно-монтажный инструмент с изолирующими рукоятками (рис. 20)

К дополнительным электрозащитным средствам в электроустановках U до 1000 В относятся:

диэлектрические галоши, ковры (рис. 5.19, в, г);

переносные заземления;

изолирующие подставки (рис. 5.21);

накладки, колпаки (рис. 5.22);

оградительные устройства (рис. 5.23);

плакаты и знаки безопасности.

рис_9_                       рис 15

Рис. 5.21 Изолирующая подставка                           Рис. 5. 22 Изолирующий колпак

(а) и изолирующие накладки резиновая (б) и текстолитовая (в)

рис_10_                                               рис 16

Рис. 5.23 Щит для временного      Рис. 5.24Токоизмерительные клещи

ограждения частей установки,                переменного тока

находящихся под напряжением   

        

К основным электрозащитным средствам для работы в электроустановках U > 1000 В относятся:

изолирующие штанги (рис. 5.15, 5.25);

измерительные клещи (рис. 5.24 );

указатели напряжения (рис. 5.26) и другие.

К дополнительным средствам при U > 1000 В относятся: диэлектрические перчатки, боты, ковры, подставки, накладки, переносные заземления, оградительные устройства, плакаты и знаки безопасности.

рис 17           рия 18

Рис. 5.25 Наложение временного                     Рис. 5.26 Указатель высокого

переменного заземления на шины напряжения

К средствам индивидуальной защиты относятся защитные очки, рукавицы, противогазы, респираторы, каски, предохранительные монтерские пояса и страховочные канаты.

Выбор необходимых электрозащитных средств регламентируется ПТЭ и ПТБ электроустановок потребителей, а также инструкциями предприятий, составленными на основании этих правил.

Электрозащитные средства должны периодически проходить испытания на диэлектрическую прочность (рис.5.27), а предохранительные монтерские пояса и страховочные канаты испытания на механическую прочность.

Электрозащитные средства следует использовать по их прямому назначению в электроустановках напряжением не выше того, на которое они рассчитаны.

Основные электрозащитные средства рассчитаны на применение в закрытых помещениях, а в открытых установках – только в сухую погоду.

В лекции "1.1 Расчёт пользовательский и машинных координат" также много полезной информации.

Перед применением средства защиты персонал обязан проверить его исправность, отсутствие внешних повреждений, очистить и обтереть от пыли, проверить по штампу срок годности.

У диэлектрических перчаток перед работой следует проверить наличие проколов путем скручивания их в сторону пальцев.

Пользоваться неисправными средствами защиты, а также если срок годности которых истек, запрещается.

рис 20

Рис. 5.27. Принципиальная схема испытания диэлектрических перчаток, бот и галош

1 – испытательный трансформатор; 2 – контакты переключателя П; 3 – шунтирующее сопротивление; 4 – газоразрадная лампа; 5 – дроссель; 6 – миллиамперметр; 7 – разрядник; 8 – ванна с водой.

Свежие статьи
Популярно сейчас
Зачем заказывать выполнение своего задания, если оно уже было выполнено много много раз? Его можно просто купить или даже скачать бесплатно на СтудИзбе. Найдите нужный учебный материал у нас!
Ответы на популярные вопросы
Да! Наши авторы собирают и выкладывают те работы, которые сдаются в Вашем учебном заведении ежегодно и уже проверены преподавателями.
Да! У нас любой человек может выложить любую учебную работу и зарабатывать на её продажах! Но каждый учебный материал публикуется только после тщательной проверки администрацией.
Вернём деньги! А если быть более точными, то автору даётся немного времени на исправление, а если не исправит или выйдет время, то вернём деньги в полном объёме!
Да! На равне с готовыми студенческими работами у нас продаются услуги. Цены на услуги видны сразу, то есть Вам нужно только указать параметры и сразу можно оплачивать.
Отзывы студентов
Ставлю 10/10
Все нравится, очень удобный сайт, помогает в учебе. Кроме этого, можно заработать самому, выставляя готовые учебные материалы на продажу здесь. Рейтинги и отзывы на преподавателей очень помогают сориентироваться в начале нового семестра. Спасибо за такую функцию. Ставлю максимальную оценку.
Лучшая платформа для успешной сдачи сессии
Познакомился со СтудИзбой благодаря своему другу, очень нравится интерфейс, количество доступных файлов, цена, в общем, все прекрасно. Даже сам продаю какие-то свои работы.
Студизба ван лав ❤
Очень офигенный сайт для студентов. Много полезных учебных материалов. Пользуюсь студизбой с октября 2021 года. Серьёзных нареканий нет. Хотелось бы, что бы ввели подписочную модель и сделали материалы дешевле 300 рублей в рамках подписки бесплатными.
Отличный сайт
Лично меня всё устраивает - и покупка, и продажа; и цены, и возможность предпросмотра куска файла, и обилие бесплатных файлов (в подборках по авторам, читай, ВУЗам и факультетам). Есть определённые баги, но всё решаемо, да и администраторы реагируют в течение суток.
Маленький отзыв о большом помощнике!
Студизба спасает в те моменты, когда сроки горят, а работ накопилось достаточно. Довольно удобный сайт с простой навигацией и огромным количеством материалов.
Студ. Изба как крупнейший сборник работ для студентов
Тут дофига бывает всего полезного. Печально, что бывают предметы по которым даже одного бесплатного решения нет, но это скорее вопрос к студентам. В остальном всё здорово.
Спасательный островок
Если уже не успеваешь разобраться или застрял на каком-то задание поможет тебе быстро и недорого решить твою проблему.
Всё и так отлично
Всё очень удобно. Особенно круто, что есть система бонусов и можно выводить остатки денег. Очень много качественных бесплатных файлов.
Отзыв о системе "Студизба"
Отличная платформа для распространения работ, востребованных студентами. Хорошо налаженная и качественная работа сайта, огромная база заданий и аудитория.
Отличный помощник
Отличный сайт с кучей полезных файлов, позволяющий найти много методичек / учебников / отзывов о вузах и преподователях.
Отлично помогает студентам в любой момент для решения трудных и незамедлительных задач
Хотелось бы больше конкретной информации о преподавателях. А так в принципе хороший сайт, всегда им пользуюсь и ни разу не было желания прекратить. Хороший сайт для помощи студентам, удобный и приятный интерфейс. Из недостатков можно выделить только отсутствия небольшого количества файлов.
Спасибо за шикарный сайт
Великолепный сайт на котором студент за не большие деньги может найти помощь с дз, проектами курсовыми, лабораторными, а также узнать отзывы на преподавателей и бесплатно скачать пособия.
Популярные преподаватели
Добавляйте материалы
и зарабатывайте!
Продажи идут автоматически
5167
Авторов
на СтудИзбе
438
Средний доход
с одного платного файла
Обучение Подробнее