Популярные услуги

Лекция 5

2021-03-09СтудИзба

ЛЕКЦИЯ № 5

МОДЕЛИ ОЦЕНКИ НАДЕЖНОСТИ ЭМС

Тема № 1. Распределение экстремальных значений

Пусть имеется случайная выборка объемом n, взятая из бесконечной совокупности, имеющей распределение F(x), где х– непрерывная случайная величина. Обозначим элементы выборки x1, x2. ..., хn. Введем случайную величину, называемую наименьшим значением:

                  (Л5.1)

Так как разрушение материала связано с существованием наиболее слабой точки, в работах по теории надежности рассматривается распределение экстремальных значений. Здесь будет рассмотрено распределение наименьших значений, однако этот подход может быть использован и при выводе распределений наибольших значений.

Функция распределения наименьших значений (функция распределения Yn) может быть представлена в виде

     (Л5.2)

Рекомендуемые материалы

Напомним, что знак  означает одновременность событий (т. е. «и» событие х1, «и» событие x2 и т. д.).

Поскольку выборка была случайной, события можно считать независимыми, а значит,

                       (Л5.3)

где P(y<xi) – дискретная функция.

Заменяя дискретную функцию на непрерывную F(y), получим

Тогда функция распределения случайной величины Yn будет иметь вид

                  (Л5.4)

Если начальное распределение функции является экспоненциальным, то

                        (Л5.5)

а плотность распределения наименьших значений

                                      (Л5.6)

В данном случае функцию распределения экстремальных значений можно рассматривать как экспоненциальную с параметром . Предельная форма этого распределения называется асимптотическим распределением наименьших значений типа III.

Если начальное, исходное распределение таково, что при  плотность распределения по экспоненте стремится к нулю, то такое предельное распределение наименьших значений называется асимптотическим распределением наименьших значений типа I. Например, это имеет место, когда исходное распределение является нормированным нормальным распределением. В этом случае предельное распределение наименьших значений имеет вид

                                      (Л5.7)

где >0, >0 – константы.

Асимптотическое распределение наибольших значений является зеркальным отражением асимптотического распределения наименьших значений.

Используем распределение экстремальных значений для построения одной из моделей надежности изоляции. Как известно, изоляция проводов имеет на внешней поверхности микроскопические дефекты, связанные с технологией производства. Под влиянием различных воздействующих факторов, таких, как температура, вибрация, влажность, электродинамические усилия и т. д., размеры дефектов увеличиваются и, в конечном счете, возникает сквозное повреждение. Если допустить, что время образования сквозного повреждения пропорционально разности между первоначальной толщиной изоляции и первоначальной глубиной микротрещины и эти значения имеют экспоненциальное распределение, то можно показать, что наработка до отказа (за отказ будем принимать образование сквозного повреждения) имеет распределение экстремальных значений.

Обозначим через В – толщину изоляции, bi – первоначальную глубину i-й трещины (i=l, 2,...,N). Тогда Bi означает случайную выборку из совокупности, имеющей усеченное экспоненциальное распределение

                             (Л5.8)

Обозначим через ti время развития i-й микротрещины до сквозного повреждения. На основании принятого допущения о линейном характере зависимости времени развития трещины в функции ее глубины можно записать ti = k(B-bi), где k-скорость развития трещины. Тогда при

        (Л5.9)

Если t – время безотказной работы изоляции, то t=min(ti), где i=l, 2, 3,... ,N. Так как за отказ было принято образование сквозного повреждения, то в соответствии с формулой (8.35) функция распределения случайной величины t имеет вид

Можно сделать некоторые упрощения. Если допустить, что число микротрещин достаточно велико, то при

                                          (Л5.10)

Подставив выражение (8.40), получим

Введем обозначение  и  тогда

Дифференцируя,

                                     (Л5.11)

Это выражение представляет собой плотность распределения экстремальных значений.

Тема №2. Модель «слабейшего звена»

Модель «слабейшего звена» нашла широкое применение при исследовании электрических машин на надежность, в частности при создании моделей надежности тех или иных узлов электрических машин.

Примером использования данного метода является модель надежности статорных обмоток асинхронных двигателей, разработанная О. Д. Гольдбергом. Модель «слабейшего звена» представляет собой систему с последовательным соединением элементов, в которой при отказе одного элемента выходит из строя вся цепь.

В самом общем случае проблема формулируется следующим образом: как определить вероятность безотказной работы элемента, блока, цепи или системы, когда приложенные напряжения превышают прочность. Принципиального различия нет: рассматриваются ли механические напряжения и прочность (при исследовании механических узлов) или электрические напряжения и диэлектрическая прочность (при исследовании изоляции обмоток электрических машин, коммутации коллектора и т. д.).

Введем следующие обозначения: f(u) – плотность распределения напряжения u; f(U) – плотность распределения прочности (рис. Л5.1). Если U>u, то разрушения материала не произойдет. Вероятность безотказной работы элемента запишется так:

                                                           (Л5.12)

Область перекрытия кривых f(U) и f(u), показанная штриховкой на рисунке, характеризуется определенной вероятностью отказа. Рассмотрим небольшой интервал du в области перекрытия. Вероятность того, что некоторое значение напряжения находится в этом интервале, равно площади элемента du:

                           (Л5.13)

где u* – значение напряжения в середине интервала du.

Вероятность того, что прочность U превышает некоторое значение напряжения u*, записывается выражением

                                  (Л5.14)

Выражение для вероятности того, что значение напряжения заключено в интервале du, а прочность U превышает напряжение, задаваемое этим интервалом, записывается как произведение вероятностей, т. е.

                               (Л5.15)

Рисунок Л5.1

В этом случае вероятность безотказной работы есть вероятность того, что прочность U превышает напряжение и для всех возможных значений напряжения и, следовательно, записывается так:

                                    (Л5.16)

Выражение (Л5.16) характеризует наиболее общий случай. Перейдем к модели «слабейшего звена» – системы с последовательно соединенными элементами. Как пример возьмем обмотку электрической машины, представленную в виде цепи из n идентичных элементов. Изоляция этой обмотки подвергается воздействию приложенного напряжения (считаем, что отказом является пробой изоляции). В этом случае элемент цепи, имеющий наименьшую диэлектрическую прочность, выйдет из строя первым, и вероятность безотказной работы системы будет записана так:

где Рi – вероятность безотказной работы i-гo элемента.

Итак, имеет место ситуация, рассмотренная выше, а именно: система, состоящая из n элементов, выходит из строя, когда на одном из элементов приложенное напряжение превышает прочность. Вероятность безотказной работы любого элемента определится по формуле (5.16) или, если взять пределы интегрирования от 0 до ,

                               (Л5.17)

Лекция "1 Введение" также может быть Вам полезна.

Выражение (5.17) может быть записано с использованием интегральной функции распределения F(U):

                               (5.18)

В том случае, когда цепь состоит из n случайно выбранных элементов, это эквивалентно выбору n случайных значений прочности из совокупности с распределением f(U). Обозначим через Un случайную величину, показывающую прочность цепи, состоящей из n элементов, тогда Un=min(Ui), где Ui – прочность i-го элемента. В соответствии с распределением экстремальных значений имеем G(Un) = l-[1-F(Un)]n, где G(Un) – функция распределения прочности цепи.

Для этой модели «слабейшего звена» вероятность безотказной, работы системы имеет вид: Pn=P(Un>u). Используя выражение. (5.18), можно записать

                                               (5.19)

Полученная окончательная формула представляет собой вероятность безотказной работы всей системы, записанную через число элементов n, плотность распределения нагрузки f(u), действующей на систему, и распределение прочности F(U).

Свежие статьи
Популярно сейчас
Почему делать на заказ в разы дороже, чем купить готовую учебную работу на СтудИзбе? Наши учебные работы продаются каждый год, тогда как большинство заказов выполняются с нуля. Найдите подходящий учебный материал на СтудИзбе!
Ответы на популярные вопросы
Да! Наши авторы собирают и выкладывают те работы, которые сдаются в Вашем учебном заведении ежегодно и уже проверены преподавателями.
Да! У нас любой человек может выложить любую учебную работу и зарабатывать на её продажах! Но каждый учебный материал публикуется только после тщательной проверки администрацией.
Вернём деньги! А если быть более точными, то автору даётся немного времени на исправление, а если не исправит или выйдет время, то вернём деньги в полном объёме!
Да! На равне с готовыми студенческими работами у нас продаются услуги. Цены на услуги видны сразу, то есть Вам нужно только указать параметры и сразу можно оплачивать.
Отзывы студентов
Ставлю 10/10
Все нравится, очень удобный сайт, помогает в учебе. Кроме этого, можно заработать самому, выставляя готовые учебные материалы на продажу здесь. Рейтинги и отзывы на преподавателей очень помогают сориентироваться в начале нового семестра. Спасибо за такую функцию. Ставлю максимальную оценку.
Лучшая платформа для успешной сдачи сессии
Познакомился со СтудИзбой благодаря своему другу, очень нравится интерфейс, количество доступных файлов, цена, в общем, все прекрасно. Даже сам продаю какие-то свои работы.
Студизба ван лав ❤
Очень офигенный сайт для студентов. Много полезных учебных материалов. Пользуюсь студизбой с октября 2021 года. Серьёзных нареканий нет. Хотелось бы, что бы ввели подписочную модель и сделали материалы дешевле 300 рублей в рамках подписки бесплатными.
Отличный сайт
Лично меня всё устраивает - и покупка, и продажа; и цены, и возможность предпросмотра куска файла, и обилие бесплатных файлов (в подборках по авторам, читай, ВУЗам и факультетам). Есть определённые баги, но всё решаемо, да и администраторы реагируют в течение суток.
Маленький отзыв о большом помощнике!
Студизба спасает в те моменты, когда сроки горят, а работ накопилось достаточно. Довольно удобный сайт с простой навигацией и огромным количеством материалов.
Студ. Изба как крупнейший сборник работ для студентов
Тут дофига бывает всего полезного. Печально, что бывают предметы по которым даже одного бесплатного решения нет, но это скорее вопрос к студентам. В остальном всё здорово.
Спасательный островок
Если уже не успеваешь разобраться или застрял на каком-то задание поможет тебе быстро и недорого решить твою проблему.
Всё и так отлично
Всё очень удобно. Особенно круто, что есть система бонусов и можно выводить остатки денег. Очень много качественных бесплатных файлов.
Отзыв о системе "Студизба"
Отличная платформа для распространения работ, востребованных студентами. Хорошо налаженная и качественная работа сайта, огромная база заданий и аудитория.
Отличный помощник
Отличный сайт с кучей полезных файлов, позволяющий найти много методичек / учебников / отзывов о вузах и преподователях.
Отлично помогает студентам в любой момент для решения трудных и незамедлительных задач
Хотелось бы больше конкретной информации о преподавателях. А так в принципе хороший сайт, всегда им пользуюсь и ни разу не было желания прекратить. Хороший сайт для помощи студентам, удобный и приятный интерфейс. Из недостатков можно выделить только отсутствия небольшого количества файлов.
Спасибо за шикарный сайт
Великолепный сайт на котором студент за не большие деньги может найти помощь с дз, проектами курсовыми, лабораторными, а также узнать отзывы на преподавателей и бесплатно скачать пособия.
Популярные преподаватели
Добавляйте материалы
и зарабатывайте!
Продажи идут автоматически
5160
Авторов
на СтудИзбе
439
Средний доход
с одного платного файла
Обучение Подробнее