Элементы комбинаторики и их применение в теории множеств
ЭЛЕМЕНТЫ КОМБИНАТОРИКИ И ИХ ПРИМЕНЕНИЕ В ТЕОРИИ МНОЖЕСТВ
Основная задача комбинаторики – пересчет и перечисление элементов в конечных множествах.
1. Если нас интересует, сколько элементов принадлежащих данному конечному множеству обладают некоторым свойством, то это задача пересчета.
2. Если необходимо выделить все элементы множества, обладающие заданными свойствами, то это задача перечисления.
Рассмотрим следующие элементы комбинаторики, позволяющие решать вышеупомянутые задачи. К таким объектам относятся:
- перестановки (с повторением и без них);
- размещения (с повторением и без них);
- сочетания (с повторением и без них);
Рекомендуемые материалы
Перестановками называют комбинации, состоящие из одних и тех же элементов и отличающиеся только порядком их расположения. Число всех возможных перестановок обозначается (без повторений).
Перестановки с повторениями вычисляются по формуле:
, где
- число повторений элементов каждого вида.
16 Проблемы культурного развития человечества - лекция, которая пользуется популярностью у тех, кто читал эту лекцию.
Сочетанием называются такие комбинации элементов, которые отличаются между собой в каждой группе только самими элементами (но не порядком их расположения в группе).
(без повторения)
(с повторением)
Размещением называются такие комбинации элементов, которые отличаются между собой или самими элементами или порядком их расположения в группе.
(без повторения)
(с повторением)