Популярные услуги

Поверхностные интегралы

2021-03-09СтудИзба

Лекция 7. Поверхностные интегралы.

Задача о массе поверхности.

Задача о массе поверхности приводит нас к поверхностному интегралу 1 рода, точно так же, как задача о массе кривой привела нас к криволинейному интегралу первого рода.

Пусть в каждой точке кусочно-гладкой поверхности s задана поверхностная плотность f(x, y, z).

1. Введем разбиение s на элементарные области  Dsi – элементы разбиения так, чтобы они не имели общих внутренних точек ( условие А).

2. Отметим точки Mi на элементах разбиения Dsi. Вычисляем f (Mi) = f (xi, yi, zi) и считаем плотность постоянной и равной f (Mi)  на всем элементе разбиения Dsi..Приближенно вычислим массу ячейки разбиения  как f (Mi) Dsi . Приближенно вычислим массу поверхности s, просуммировав массы ячеек (составим интегральную сумму) . В интегральной сумме  - это площадь поверхности элементарной ячейки. Здесь, как и ранее, традиционно употребляется одно и то же обозначение для самой элементарной ячейки и для ее площади.

3. Измельчаем разбиение и переходим к пределу в интегральной сумме при условии  (условие B). Получаем поверхностный интеграл первого рода, который равен массе поверхности (если только f(Mi)>0 на поверхности).

= .

Рекомендуемые материалы

Теорема существования. Пусть функция  непрерывна на кусочно-гладкой ограниченной поверхности . Тогда поверхностный интеграл первого рода существует как предел интегральных сумм.

= .

Замечание. Интеграл (как предел интегральных сумм) не зависит:

1) от выбора разбиения поверхности (лишь бы выполнялось условие А),

2) от выбора отмеченных точек на элементах разбиения,

3) от способа измельчения разбиения (лишь бы выполнялось условие В).

Свойства поверхностного интеграла первого рода.

(они аналогичны по формулировке и доказательству свойствам рассмотренных ранее интегралов первого рода).

1) Линейность.

2) Аддитивность

3)  - площадь поверхности.

4) Если , то  (если , то ),

5) Теорема об оценке. Если , то ,

6) Теорема о среднем. Пусть функция  непрерывна на кусочно-гладкой ограниченной поверхности . Тогда на поверхности найдется точка С, такая что 

Доказательство. Первые четыре свойства доказываются аналогично подобным свойствам в двойном, тройном интегралах, криволинейном интеграле первого рода (записью соотношений в интегральных суммах и предельным переходом). Во втором свойстве используется возможность такого разбиения поверхности на две части, чтобы ни один элемент разбиения не содержал граничные точки этих частей в качестве своих внутренних точек.

Теорема об оценке следует из свойств 3, 4.

Теорема о среднем, как и ранее, использует теоремы Вейерштрасса и Больцано-Коши для функций, непрерывных на замкнутых ограниченных множествах.

Вычисление поверхностного интеграла первого рода.

Раньше во второй лекции  мы вычисляли площадь поверхности с помощью двойного интеграла, то есть сводили интеграл  к двойному интегралу. Теперь нам надо свести интеграл к двойному интегралу. Повторяя вновь те же выкладки с той лишь разницей, что под интегралом стоит функция , получим аналогичную формулу для поверхности, заданной соотношением

=.

Если поверхность задана уравнением , точно так же получим формулу

= . Здесь надо учитывать, что точка (x, y, z) лежит на поверхности .

Пример. Найти массу поверхности однородной полусферы , z>0 с постоянной поверхностной плотностью W.

. .

Обозначим D - круг – проекцию полусферы на плоскость OXY.

=

=.

Поверхностный интеграл второго рода.

Поверхность  называется ориентируемой, если в каждой ее точке существует вектор нормали к , - непрерывная вектор – функция на .

Поверхность называется односторонней, если при обходе поверхности по контуру g вектор нормали меняет свое направление на противоположное.

Поверхность называется двусторонней, если при обходе поверхности по контуру g вектор нормали не меняет свое направление.

Примером односторонней поверхности является петля Мебиуса, примерами двусторонних поверхностей – плоскость, сфера, гиперболоиды и т.д.

Задача о потоке жидкости через поверхность.

Поток жидкости через поверхность .– это количество жидкости, протекающее через поверхность в единицу времени.

Пусть на элементе поверхности  площадке в некоторой ее точке M проведен вектор перемещения частицы жидкости через площадку в единицу времени. Предполагаем, что для всех точек  перемещение одинаково по величине и направлению. Поток жидкости  можно вычислить как объем наклонного (по направлению вектора перемещений) параллелепипеда, построенного на . Этот объем равен , где - единичный вектор нормали к поверхности. Тогда поток жидкости равен П =

Здесь мы  вычисляли дифференциал потока, а затем интегрировали по всей поверхности – это метод дифференциалов при построении интеграла.

Можно строить интеграл с помощью метода интегральных сумм, как мы действовали обычно.

- Введем разбиение области на элементы так, чтобы соседние элементы не содержали общих внутренних точек (условие А),

- на элементах разбиения отметим точку М. Предполагая перемещение частиц жидкости постоянным на элементе и равным  (M), вычислим приближенно поток через элемент разбиения и просуммируем его по элементам, получая интегральную сумму .

- Измельчим разбиение при условии  (условие В) и перейдем к пределу получая поверхностный интеграл второго рода

.

По виду это – поверхностный интеграл первого рода, он и имеет те же свойства, что поверхностный интеграл первого рода, но имеет еще и свойство ориентируемости. Интеграл по внешней стороне поверхности отличается знаком от интеграла по внутренней стороне поверхности, так как на различных сторонах поверхности нормали в той же точке нормали направлены по одной прямой в различные стороны.

Теорема существования формулируется так же, как для поверхностного интеграла первого рода с тем же замечанием о независимости интеграла от способа выбора разбиения (лишь бы выполнялись условия А), от выбора точек на элементах разбиения, от способа измельчения разбиения (лишь бы выполнялось условие В).

Запись поверхностного интеграла второго рода.

Запишем вектор перемещений частиц и нормаль в точке M(x, y, z), выделяя скалярные компоненты векторов

,

, . Знак «+» выбирается, если угол между нормалью к поверхности и осью (OX в первом интеграле, OY во втором, OZ в третьем) острый, знак «-» выбирается, если угол тупой. В самом деле, в поверхностных интегралах площади элементов поверхности положительны, а знаки «+» или «–» компенсируют знак косинуса угла между нормалью и координатной осью. При переходе от поверхностных интегралов к двойным одна из координат подставляется из уравнения поверхности, чтобы точка (x, y, z) находилась на поверхности .

Пример. Найти поток радиуса-вектора через полную поверхность тетраэдра, ограниченного координатными плоскостями и плоскостью x + y + z = 1

Поток радиус-вектора через координатные плоскости нулевой, так как на них радиус-вектор точки лежит в координатной плоскости и ортогонален нормали к координатной плоскости, т.е. .

 Вычислим поток через грань тетраэдра, лежащую в плоскости x + y + z  =1. Он и будет суммарным потоком, так как поток через остальные грани нулевой. Для этой грани , площадь грани – треугольника по теореме Пифагора равна  (проверьте).

Люди также интересуются этой лекцией: 8 Промежуточное представление программы.

Поток равен  

Поток равен .

Вычислим поток через двойные интегралы проектированием на координатные плоскости. Поток радиус-вектора через координатные плоскости нулевой. Тогда

=

=.

Получили тот же результат.

Свежие статьи
Популярно сейчас
Почему делать на заказ в разы дороже, чем купить готовую учебную работу на СтудИзбе? Наши учебные работы продаются каждый год, тогда как большинство заказов выполняются с нуля. Найдите подходящий учебный материал на СтудИзбе!
Ответы на популярные вопросы
Да! Наши авторы собирают и выкладывают те работы, которые сдаются в Вашем учебном заведении ежегодно и уже проверены преподавателями.
Да! У нас любой человек может выложить любую учебную работу и зарабатывать на её продажах! Но каждый учебный материал публикуется только после тщательной проверки администрацией.
Вернём деньги! А если быть более точными, то автору даётся немного времени на исправление, а если не исправит или выйдет время, то вернём деньги в полном объёме!
Да! На равне с готовыми студенческими работами у нас продаются услуги. Цены на услуги видны сразу, то есть Вам нужно только указать параметры и сразу можно оплачивать.
Отзывы студентов
Ставлю 10/10
Все нравится, очень удобный сайт, помогает в учебе. Кроме этого, можно заработать самому, выставляя готовые учебные материалы на продажу здесь. Рейтинги и отзывы на преподавателей очень помогают сориентироваться в начале нового семестра. Спасибо за такую функцию. Ставлю максимальную оценку.
Лучшая платформа для успешной сдачи сессии
Познакомился со СтудИзбой благодаря своему другу, очень нравится интерфейс, количество доступных файлов, цена, в общем, все прекрасно. Даже сам продаю какие-то свои работы.
Студизба ван лав ❤
Очень офигенный сайт для студентов. Много полезных учебных материалов. Пользуюсь студизбой с октября 2021 года. Серьёзных нареканий нет. Хотелось бы, что бы ввели подписочную модель и сделали материалы дешевле 300 рублей в рамках подписки бесплатными.
Отличный сайт
Лично меня всё устраивает - и покупка, и продажа; и цены, и возможность предпросмотра куска файла, и обилие бесплатных файлов (в подборках по авторам, читай, ВУЗам и факультетам). Есть определённые баги, но всё решаемо, да и администраторы реагируют в течение суток.
Маленький отзыв о большом помощнике!
Студизба спасает в те моменты, когда сроки горят, а работ накопилось достаточно. Довольно удобный сайт с простой навигацией и огромным количеством материалов.
Студ. Изба как крупнейший сборник работ для студентов
Тут дофига бывает всего полезного. Печально, что бывают предметы по которым даже одного бесплатного решения нет, но это скорее вопрос к студентам. В остальном всё здорово.
Спасательный островок
Если уже не успеваешь разобраться или застрял на каком-то задание поможет тебе быстро и недорого решить твою проблему.
Всё и так отлично
Всё очень удобно. Особенно круто, что есть система бонусов и можно выводить остатки денег. Очень много качественных бесплатных файлов.
Отзыв о системе "Студизба"
Отличная платформа для распространения работ, востребованных студентами. Хорошо налаженная и качественная работа сайта, огромная база заданий и аудитория.
Отличный помощник
Отличный сайт с кучей полезных файлов, позволяющий найти много методичек / учебников / отзывов о вузах и преподователях.
Отлично помогает студентам в любой момент для решения трудных и незамедлительных задач
Хотелось бы больше конкретной информации о преподавателях. А так в принципе хороший сайт, всегда им пользуюсь и ни разу не было желания прекратить. Хороший сайт для помощи студентам, удобный и приятный интерфейс. Из недостатков можно выделить только отсутствия небольшого количества файлов.
Спасибо за шикарный сайт
Великолепный сайт на котором студент за не большие деньги может найти помощь с дз, проектами курсовыми, лабораторными, а также узнать отзывы на преподавателей и бесплатно скачать пособия.
Популярные преподаватели
Нашёл ошибку?
Или хочешь предложить что-то улучшить на этой странице? Напиши об этом и получи бонус!
Бонус рассчитывается индивидуально в каждом случае и может быть в виде баллов или бесплатной услуги от студизбы.
Предложить исправление
Добавляйте материалы
и зарабатывайте!
Продажи идут автоматически
5120
Авторов
на СтудИзбе
445
Средний доход
с одного платного файла
Обучение Подробнее