Интеграл Фурье
Интеграл Фурье.
Пусть функция f(x) на каждом отрезке [-l,l], где l – любое число, кусочно – гладкая или кусочно – монотонная, кроме того, f(x) – абсолютно интегрируемая функция, т.е. сходится несобственный интеграл

Тогда функция f(x) разлагается в ряд Фурье:


Если подставить коэффициенты в формулу для f(x), получим:


Рекомендуемые материалы
Переходя к пределу при l®¥, можно доказать, что
и

Обозначим
При l®¥ Dun ®0.

Можно доказать, что предел суммы, стоящий в правой части равенства равен интегралу

Лекция "Место художественной литературы в ряду искусств" также может быть Вам полезна.
Тогда 
- двойной интеграл Фурье.
Окончательно получаем:

- представление функции f(x) интегралом Фурье.
Двойной интеграл Фурье для функции f(x) можно представить в комплексной форме:
























