Популярные услуги

Любое задание БЖД -Определить УЗД
Повышение уникальности твоей работе
Исследование характеристик искусственного освещения
Исследование опасности поражения электрическим током в трехфазных электрических сетях напряжением до 1 кВ
Любой реферат по безопасность жизнедеятельности (БЖД и ГРОБ или ОБЖ)
Реферат по БЖД для студентов 1 курса
Исследование методов обеспечения комфортного микроклимата
Исследование эффективности звукоизоляции и звукопоглощения

Тема 8. УДАРНЫЕ ВОЛНЫ И ДЕТОНАЦИЯ

2021-03-09СтудИзба

Тема 8. УДАРНЫЕ ВОЛНЫ И ДЕТОНАЦИЯ.

До сих пор мы рассматривали закономерности дефлаграционного горе-ния, при котором пламя распространяется по горючей среде путем послойной передачи поджигающего импульса в результате молекулярной теплопровод-ности. Возможен и другой механизм распространения в пространстве зоны быстрой химической реакции, при котором каждый последующий слой газа нагревается не теплопроводностью, а путем быстрого сжатия, достаточно ин-тенсивного, чтобы довести реагирующую среду до состояния адиабатическо-го воспламенения. Такой механизм горения, именуемый детонацией, в прин-ципе отличающийся от дефлаграционного, характеризуется рядом особенно-стей, порождающих сложные задачи для техники взрывобезопасности. Для понимания закономерностей детонационного горения необходимо устано-вить, в каких условиях происходит нагревание сжатием до столь высоких температур.

8.1. Ударные волны в инертном газе.

Ударное сжатие. При любом резком повышении давления в газе или жидкости возникает волна сжатия – ударная волна. Она распространяется по сжимаемой среде, переводя ее в более плотное состояние. Ударная волна представляет собой границу скачкообразного перехода от состояния исходно-го вещества к состоянию сжатого. В сильных ударных волнах это изменение происходит на расстоянии порядка длины свободного пробега молекул. Воз-никновение волны сжатия обусловлено тем, что изменившееся в какой-либо точке пространства давление выравнивается не мгновенно, а с конечной, хотя и достаточно большой скоростью, порядка скорости звука в данной среде.

Для определения закономерностей ударного сжатия рассмотрим пове-дение однородного газа, находящегося в длинной трубе, при быстром вдви-жении в трубу поршня. Труба достаточно широка и сжатие достаточно быст-ро для того, чтобы теплоотдачей от сжатого газа к стенкам трубы и к несжа-тому газу можно было пренебречь и не учитывать торможение газового пото-ка трением у стенок.

Принимаем, что поршень движется с постоянной скоростью w: очевид-но, что это – скорость движения сжимаемого газа. Граница между сжатым и несжатым газом, т. е. волна сжатия, движется по отношению к исходному, не-сжатому газу впереди поршня со скоростью D. Скорость распространения волны сжатия определяется условием сохранения при прохождении волны трех характеристик: массы, количества движения и энергии. 

Рис. 31. Схема движения волны сжа-тия: 1 – исходное положение поршня; 2 положение поршня в момент времени τ; 3 – положение фронта ударной волны в момент времени τ.

Рекомендуемые материалы

Схема движения волны сжатия и газа показана на рис. 31. Обозначим через  v = 1/ρ удельный объем, ρ – плотность газа. За время τ поршень, а с ним и газ переместится на расстояние wτ, волна сжатия – на расстояние Dτ по отношению к исходному положению поршня и на расстояние (D-w – к ко-нечному; (D-w – высота столба сжатого газа. Расстояние, пройденное вол-ной, определяет объем сжатого вещества в его исходном состоянии; здесь и в дальнейшем расчет ведется на единицу поверхности поршня. После сжатия объем этого количества вещества сокращается до границ между фронтом волны и поршнем (D-w)τ, в силу закона сохранения массы

                                                                               (8.1)

При переходе в сжатое состояние масса вещества, равная rоDτ, приобрела скорость w. Произведение этих величин представляет собой изменение количества движения, которое, согласно второму закону Ньютона, равно им-пульсу действующей силы, определяемой изменением давления при сжатии; импульс силы равен (P – Pо)τ, т. е.

                                                                                  (8.2)

По условию сжатие не сопровождается теплообменом, и в силу закона сохранения энергии величина изменения полной энергии единицы массы газа равна затраченной при этом процессе работе. На пути wτ поршень действовал на газ с силой P. При этом был сжат столб газа с массой rоDτ, изменение внутренней энергии единицы его массы равно ЕЕо, а кинетической энергии w2/2. Отсюда следует, что

                                                                           (8.3)

Уравнение (8.1) дает соотношение скоростей D и w:

                                                                                         (8.1а)

Из уравнения (8.1а) очевидно, что при ударном сжатии к заметному из-менению плотности приводит только такое движение газа, скорость которого соизмерима со скоростью ударной волны.

Уравнения (8.1) и (8.2) без использования уравнения сохранения энер-гии связывают скорость волны, возникающей при ударном сжатии, либо не-обходимую для этого скорость движения газа с параметрами состояния сжа-того вещества P, v:

                                                                                   (8.4)

                                                                             (8.5)

Из уравнений (8.3), (8.1а) и (8.5) следует:

                                                                         (8.6)

Адиабата Гюгонио. Полученные выражения и уравнение термодинамического состояния газа, связывающее между собой значения T, P и v, позволяют описать ударное сжатие от Po, vo до P, v кривой в координатах P – v, которая называется адиабатой (сжатие происходит без теплообмена) Гюгонио. Величины исходных давления и удельного объема, имеющие особое значение, содержатся в уравнении адиабаты Гюгонио в качестве параметров.

Закономерности сжатия в ударной волне принципиально отличаются от закономерностей изоэнтропического сжатия, описываемого адиабатой Пуас-сона:

                             .                        (8.7)

Изоэнтропическое сжатие обратимо, его можно выполнять ступенчато, после-довательно сжимая газ от Ро до Р1 > Ро, затем до Р2 > Р1 и т. д., а также чередуя сжатие и разрежение; при этом достигается то же конечное состояние. Как при всяком обратимом процессе, результат сжатия по адиабате Пуассона не зависит от порядка ведения процесса, а лишь от начального и конечного дав-лений.

Ударное сжатие необратимо и потому неизоэнтропично, часть энергии сжатия расходуется на необратимое нагревание газа. Разделим ударное сжа-тие от Ро до Р2 на два этапа: первая ударная волна сжимает газ от Ро до Р1 < Р2, вторая – от Р1 до Р2 (рис. 32). Состояние Р1, v будет играть роль исходного для второй ударной волны. При этом конечный объем v2, меньше соответствую-щей величины v2, характеризующей состояние вещества при одностадийном сжатии до Р2. Поэтому при сжатии по адиабате Гюгонио вещество не прохо-дит через состояния, соответствующие последовательному перемещению вдоль кривой Р(v), как это происходит при изоэнтропическом сжатии. Эта кривая лишь определяет конечное значение удельного объема при ударном сжатии газа с параметрами Ро , vо  до давления Р.

Давление газа в ударной волне отличается от давления в неподвижном газе. Давление на стенку зависит также от ее ориентации по отношению к на-правлению движения ударной волны. Поэтому закон Паскаля здесь не вы-полняется.

При стационарном распространении ударной волны, т. е. при D = const, в зоне изменения плотности существует линейная зависимость между вели-чинами давления и удельного объема, как это следует из уравнения (8.4). 

Рис. 32. Адиабаты Гюгонио и Пуассона: 1 - адиабата Пу-ассона; 2 адиабата Гюго-нио.

Из уравнения (8.4) следует также, что скорость ударной волны возрас-тает с увеличением степени сжатия. Очевидно, что скорость ударной волны определяется наклоном прямой, связывающей точки Р, v и Ро, vо. Если сред-нее в диапазоне vо–v значение углового коэффициента (для прямой Р – v) рав-но ΔР/Δv, то

                                                                                             (8.8)

В предположении Е = cvT, и учитывая, что cp/cv = g, ср – cv = R/M (M – молекулярная масса), а RT = РvM, найдем

                                                                                           (8.9)

Выражая аналогично величину Ео и используя уравнения (8.6), запишем уравнение адиабаты Гюгонио в наиболее удобной форме:

                                                                       (8.10)

В координатах Р – v адиабата Гюгонио изображается более крутой кри-вой, чем адиабата Пуассона (см. рис. 33). Умножая обе части уравнения (8.10) на отношение v/vо, можно вычислить степень нагревания в ударной волне, учитывая, что Т/То = Рv/Рovo:

                                                                       (8.11)

Сильные и слабые ударные волны. Существенная особенность удар-ного сжатия заключается в том, что, как бы ни было высоко давление в удар-ной волне, степень сжатия  = vo/v не может превысить некоторого конеч-ного значения. При Р>>Ро,  v → v

                                                                                        (8.12)

При изоэнтропическом сжатии объем неограниченно уменьшается с ростом конечного давления (см. рис. 32). Если в каждой из п последователь-ных ударных волн Р >> Ро, то

                                                                                      (8.13)

Из уравнений (8.4) и (8.5) вытекают и другие особенности сжатия в сильной ударной волне. Полагая Р >> Ро и подставляя в эти уравнения значе-ние ε, находим

                                                                                                                  (8.14)

                                                                     (8.15)

Таким образом, при сильном сжатии рост давления в ударной волне пропорционален квадрату скорости сжимающего тела (поршня).

Не только очень сильные, но и очень слабые ударные волны отличаются рядом особенностей. Ударное сжатие очень малой амплитуды эквивалентно сжатию в звуковой волне. В этом случае D = со, где со – скорость звука в ве-ществе, находящемся в исходном состоянии. В этом случае разности Р–Ро=ΔР и vо–v=Δv можно заменить дифференциалами, аналогичные суммы – величи-нами 2Р и 2v либо 2Ро и 2v0 соответственно. Уравнение (8.4) принимает вид:

                                                          (8.16)

Скорость движения газа в слабой ударной волне, как это следует из уравнений (8.4) и (8.5), мала по сравнению со скоростью волны. Для слабого сжатия адиабаты Гюгонио и Пуассона совпадают.

Для звуковой волны, как следует из уравнения (8.6),

                                                  dE = - Рdv                                               (8.17)

В предельном случае сильного сжатия по уравнению (8.12) рост темпе-ратуры, как это следует из уравнения (8.11), равен

                                                                                (8.18)

т.е. Т ~ Р, тогда как при изотермическом сжатии (уравнение 7.9) показатель степени при Р, равный (g — 1)/g, не превосходит 0,4. Так, при Р/Ро = 100 для двухатомного газа (Т/Т0) = 16,6, аналогичная величина для изоэнтропическо-го сжатия имеет значение (T/T0)i= 3,72.

Поскольку сжатие в звуковой волне изоэнтропично, очевидно, что для идеального газа (т.е. для условия Р = const Рg)

                                                                                     (8.19)

                                                                             (8.20)

Скорость звука возрастает с повышением температуры газа ~, поэтому для газа, сжатого ударной волной, с > с0. Подставляя в уравнение (8.19) зна-чение плотности при сильном сжатии, найдем скорость звука для этого ре-жима:

                                                                                  (8.21)

Сопоставление уравнений (8.14), (8.15) и (8.22) показывает, что при сжатии в сильной волне текущее значение скорости звука составляет 41-56% скорости ударной волны, а скорость газа, стремящаяся к нулю для слабых волн, достигает 75-86% скорости ударной волны. Скорость сильной ударной волны значительно больше скорости звука в несжатом газе:

                                                                                     (8.22)

Так, при Р/Ро = 100 для одноатомного газа D = 8со.

Структура ударной волны. Установленные закономерности позволяют объяснить важную особенность сжатия в ударной волне – резкое изменение свойств сжимаемого вещества. Рассмотрим сжатие газа в описанном в начале главы опыте с вдвижением поршня в трубу при условии его ускорения, при-чем скорость поршня возрастает последовательными небольшими скачками.

После первого увеличения скорости поршня от нуля до определенного малого значения w1 возникает слабая ударная волна, движущаяся по сжимае-мому газу со скоростью D1. При увеличении скорости поршня до w2>w1 воз-никает новая ударная волна, распространяющаяся по уже сжатому газу со скоростью D2. Легко показать что D2>D1. С одной стороны, скорость слабой ударной волны, близкая к скорости звука, возрастает с повышением темпера-туры и потому будет больше в газе, уже нагретом первой волной. С другой стороны, сам сжатый газ движется в направлении распространения волны сжатия.

Поскольку скорость второй ударной волны больше первой, через опре-деленное время вторая волна догонит первую. Обе волны сольются, их ам-плитуды сложатся, две волны заменятся одной новой, более мощной. Анало-гичным образом происходит наложение всех последующих волн, а также бес-конечно малых волн, возникающих при плавном ускорении поршня, с обра-зованием все более сильной волны. Наложение последовательно распростра-няющихся ударных волн является причиной резкого изменения свойств сжи-маемого ими газа, ударная волна имеет характер разрыва, скачка.

Ширина фронта очень слабых волн может быть довольно значительна. Для сильной ударной волны, т.е. при Р >> Ро, фронт волны имеет ширину по-рядка длины свободного пробега.

Поведение ударной волны у преграды. Для техники безопасности имеют большое значение закономерности отражения ударной волны от не-подвижной преграды. В силу относительности движения торможение газа, сжатого ударной волной, у препятствия, нормального направлению распро-странения волны, эквивалентно движению этой стенки в обратном направле-нии по неподвижному газу. При этом она как поршень повторно сжимает газ, уже сжатый исходной, падающей волной. Встреча ударной волны с непод-вижной стенкой приводит к образованию отраженной ударной волны и еще более сильному сжатию газа.

Для слабых волн давление в отраженной волне вдвое больше, чем в па-дающей волне. При большем сжатии это различие возрастает.

Если Р+ >> Ро, то

                                               ,                                        (8.23)

где:  Р- и Р+ - давления газа соответственно в отраженной и прямой волне, так для двухатомного газа, т.е. для g = 7/5, давление в сильной отраженной волне в 8 раз превосходит давление в падающей волне.

Таким образом, отражение ударной волны от преграды может приво-дить к чрезвычайно высокому, хотя и кратковременному росту давления, ко-торый способен вызвать большие разрушения. Следует иметь в виду, что роль преграды, отражающей ударную волну, могут играть не только стенки сосуда или стены закрытого помещения, но и любое твердое тело, оказывающееся на пути распространения ударной волны.

Необходимо отметить, что к разрушениям промышленных и жилых зданий и сооружений может приводить уже сравнительно небольшой рост давления в ударной волне, если только волна отличается большими геометри-ческими размерами, т. е. действует на большие площади. Волна с амплитудой 0,35 am разрушает здания, а при нескольких сотых am выбивает окна. Чело-век может перенести действие ударной волны около 0,5 am, если не будет брошен ею на землю. Ускорение, полученное человеком под действием удар-ной волны, может быть настолько велико, что удар о землю оказывается смертельным.

8.2. Воспламенение при быстром сжатии.

Горючая среда может воспламеняться не только при введении в нагре-тый сосуд. Возможен и другой режим воспламенения, уже не самопроизволь-ного, а вынужденного – при нагревании горючей среды в сосуде с холодными стенками путем быстрого сжатия. При достаточном нагревании начинается самоускоряющаяся реакция, т.е. происходит тепловой взрыв. Такое воспламе-нение в результате нагревания адиабатическим сжатием иногда называют адиабатическим воспламенением.

Процесс адиабатического воспламенения имеет большое значение в теории горения, так как обусловливает важнейшее явление детонации. В этом случае газ нагревается вследствие сжатия ударной волной, возникающей при быстром сгорании. Изучение адиабатического воспламенения существенно также для решения некоторых проблем работы двигателей, в частности так называемого «стука» в поршневых двигателях – быстрого сгорания с низким к.п.д. и образованием сильных ударных волн, приводящим к преждевремен-ному износу двигателя.

Существенное отличие процесса адиабатического воспламенения от самовоспламенения в нагретом сосуде заключается в том, что, оставаясь хо-лодными, стенки реактора не участвуют в генерировании активных центров. Это затрудняет воспламенение по сравнению с реакцией в нагретом сосуде и увеличивает критическую температуру перехода к режиму самоускорения.

Вернемся к рассмотрению рис. 22. Кривая тепловыделения q1 и прямая теплоотвода q2 имеют кроме точки пересечения (a) при Т = Т1 еще и вторую точку пересечения (b), для которой Т = Т2. Состояние системы в этой точке соответствует критическому режиму адиабатического воспламенения. Если Т>Т2, скорость тепловыделения превышает скорость теплоотвода, и возника-ет прогрессивный саморазогрев. Однако горючая среда, заключенная в сосуд с температурой стенок То, не может самопроизвольно достичь температуры Т2. Предоставленная самой себе, она приходит к режиму стационарной реак-ции при Т = Т1. В точку Т = Т2 реагирующая система попадает лишь в резуль-тате внешнего воздействия – нагревания сжатием.

Температура газа, нагретого при адиабатическом сжатии от давления Ро до Рг, определяется уравнением Пуассона (7.9).

8.3. Возникновение детонации.

Ускорение горения в трубах. Для возникновения детонации необходи-ма сильная ударная волна, в которой происходит достаточное нагревание взрывчатой среды. Такая волна может создаваться внешним инициирующим импульсом, например, при взрыве заряда взрывчатого вещества.

Однако в задачах взрывобезопасности значительно больший интерес представляет самопроизвольное возникновение детонации в горящем газе. Очевидно, что достаточно быстрое сжатие горючей среды может осуществ-ляться вследствие расширения этой среды при сгорании. Нагревание до тем-пературы адиабатического воспламенения в ударной волне (т. е. с малым временем задержки) требует очень высоких скоростей движения газа, поряд-ка 1 км/сек. Каков же механизм ускорения пламени, приводящий к столь бы-строму движению газа?

Самопроизвольная детонация, как правило, возникает только при сгора-нии в длинных трубах. Лишь в таких условиях возможно соответствующее ускорение пламени. Возникновению детонации существенно способствует поджигание газа со стороны закрытого конца трубы.

Как уже известно, величина нормальной скорости пламени даже наибо-лее взрывчатых газовых смесей не превосходит 15 м/сек. Многие же газовые системы, способные детонировать, имеют значительно меньшие нормальные скорости ин (порядка 1 м/сек и даже меньше). Хотя нормальные скорости пламени сравнительно невелики, дефлаграция может вызвать движение газа, достаточно быстрое для необходимого нагревания газа в ударной волне.

При неподвижных продуктах сгорания расширение газа приводит к возникновению потока исходной горючей среды. Эта среда движется по от-ношению к плоскому пламени со скоростью ип опр – 1), которая может в 5 – 15 раз превосходить величину ин. Такое расширение происходит при адиа-батическом (т.е. достаточно быстром) сгорании газа, подожженного у закры-того конца трубы.

Однако при сгорании в закрытой трубе фронт пламени не остается пло-ским. Быстрое движение газа и сопровождающее его трение о стенки трубы приводят к возрастающей турбулизации сгорающего газа. Фронт пламени все более вытягивается, его поверхность увеличивается, и скорость пламени в целом возрастает в соответствии с законом площадей (7.12).

Ускорение пламени при его турбулизации имеет сложную природу. В результате влияния трения вырабатывается профиль скоростей течения по се-чению трубы (см. рис. 30), причем скорость больше по оси и меньше у сте-нок. Такое вытягивание пламени возможно в пределах сохранения ламинар-ного режима. На последующих стадиях ускорения часто возникают вибрации газа и пламени, связанные с появлением и отражением звуковых волн. На оп-ределенных участках наблюдается даже перемена знака направления движе-ния пламени – его отбрасывание в сторону точки зажигания.

Все возрастающая турбулизация зоны горения приводит к тому, что «конус» сильно вытянутого пламени перестает быть гладким. Он заменяется размытой турбулентной зоной, в которой отдельные элементы исходной го-рючей среды и продуктов сгорания хаотически перемешаны между собой.

Возникновение детонации нельзя рассматривать как непрерывный пе-реход от дефлаграции, все более ускоряющейся вследствие возрастающей турбулентности. Детонация возникает скачкообразно. На фоторегистрациях ясно фиксируется момент воспламенения на определенном расстоянии впе-реди фронта достаточно ускорившегося пламени. В этой точке давление дос-тигает большего значения, чем в стационарной детонационной волне.

Схема распространения ударных волн при ускоряющемся горении и возникновения детонации показана на рис. 33.

                

    

Рис. 33. Схема возникнове-ния  детонации: ОЕ – уча-сток ускоряющегося пламе-ни; ОА; D1A; D2A; D3A – по-следовательно отходящие ударные волны; АВ – дето-нация.

Когда фронт горения находится в точке С, возникает детонация в точке А. Вправо линия АВ – распространение детонационной волны, АЕ – ретона-ционная волна (по продуктам горения).

Преддетонационный разгон пламени в трубе характеризуется расстоя-нием от точки зажигания (т.О) до места возникновения детонации (т.А). Преддетонационное расстояние возрастает с повышением температуры ис-ходной горючей среды и сокращается с понижением начального давления. Разбавление смеси инертным газом или избыточным компонентом, замед-ляющее дефлаграционное горение, затрудняет переход к детонации. Абсо-лютное значение преддетонационного расстояния возрастает с увеличением диаметра трубы; однако если это расстояние измерять диаметрами трубы, де-тонация возникает легче в широких трубах. Как правило, преддетонационное расстояние для гладкой трубы равно примерно нескольким десяткам диамет-ров.

Вследствие трения газа о стенки, турбулизация газа при горении, при-водящая в конце концов к ускорению горения, достаточному для возникновения детонации, возможна и при поджигании у открытого конца трубы. Одна-ко расширение продуктов сгорания в закрытой трубе способствует более ран-нему развитию детонации.

Все изложенное характеризует закономерности возникновения детона-ции в гладких трубах. Преддетонационное расстояние сокращается в 10–20 раз (до 2 – 4 диаметров трубы) при переходе от гладких труб к шероховатым.

Вследствие возможности ускорения горения в трубах и возникновения детонации газопроводы и длинные аппараты с неровной, шероховатой, внут-ренней поверхностью – очень опасные объекты. Эта опасность особенно воз-растает, если такая труба – потенциальный очаг детонации – соединена с большой емкостью, заполненной тем же взрывчатым газом.

8.4. Стационарный режим распространения детонации.

Достаточно сильная ударная волна может вызвать воспламенение на-гретой ею взрывчатой среды. Однако горение, вызванное одиночным импуль-сом сжатия, может быть нестационарным. При одиночном, впоследствии за-тухающем импульсе сжатия воспламенение нагретого газа может иницииро-вать дефлаграционное горение. Ударная волна создает неизменные условия сжатия все новых слоев газа только в том случае, если ее поддерживать внешним воздействием, например, непрерывным движением сжимающего поршня.

Расширение газа при его сгорании само может приводить к сжатию и нагреванию новых, еще холодных слоев взрывчатой среды и ее воспламене-нию. Расширяющиеся продукты реакции играют роль сжимающего поршня. Возникает комплекс из ударной волны, бегущей по взрывчатой среде, и сле-дующей за нею зоны быстрой реакции в газе, нагретом ударной волной. Теп-ловыделение в этой зоне поддерживает устойчивое существование ударной волны. Такой комплекс, именуемый детонационной волной, стационарен, т.е. распространяется на неограниченном протяжении без изменения его струк-туры.

При детонационном горении от слоя к слою передается лишь импульс сжатия, - теплопроводность в этом процессе не играет роли. Детонационная волна распространяется со скоростью порядка нескольких километров в се-кунду. Давление в ней в несколько раз превосходит максимальное давление адиабатического сгорания в замкнутом сосуде, и потому детонация может вы-звать большие разрушения. Так как скорость детонации больше скорости зву-ка и никакое возмущение в газе не может опередить детонационную волну, то разрушающее действие волны не зависит от того, возникает ли детонация в открытом или закрытом сосуде.

Отличительную особенность детонации представляет ее строгая ста-ционарность. В достаточно широких длинных трубах детонация распростра-няется с неизменной скоростью, которая не зависит от аппаратурных условий и давления и лишь слабо зависит от начальной температуры. Скорость дето-нации зависит только от термодинамических характеристик газовой смеси. Другая особенность детонационного горения заключается в том, что при де-тонации продукты реакции движутся в ту же сторону, что и зона реакции, то-гда как при дефлаграции эти направления противоположны. Лишь впоследст-вии, после подхода волны разрежения, величина скорости продуктов реакции меняет знак на обратный.

Скачок давления в ударной волне происходит на расстоянии длины свободного пробега молекул, но химическая реакция, даже высокотемпературная, протекает только после многих столкновений. По этой причине, а также вследствие большой скорости детонационной волны ширина зоны реакции достаточно велика.

Уравнение (8.4) справедливо для любых систем. В любой точке зоны реакции стационарной детонационной волны соблюдается зависимость

                                            ,                                 (8.4а)

описывающая (в Р – v координатах) (рис. 34) так называемую прямую Ми-хельсона – одного из создателей теории детонации.

Обозначим индексами 0, 1 и 2 соответственно состояния газа до сжатия в ударной волне, непосредственно после сжатия, но до начала реакции, и по-сле завершения реакции.

Рис. 34. Изменение состояния газа при детонации.

8.5. Определение скорости детонации.

Нанесем на график (рис. 34) две адиабаты Гюгонио: для исходной сре-ды 1 и для сжатых продуктов реакции 2. Адиабата 2 не проходит через точку исходного состояния Ро, vо, как адиабата 1; последнее очевидно из уравнения (8.10): при v1 = vо, Рi = Р2. Для адиабаты 2 уравнение (8.6) по-прежнему спра-ведливо, однако условие (8.9) выполняется только для продуктов реакции, а для исходной среды должно быть заменено на

                                                                                (8.9а)

где:   Qv – теплота сгорания единицы массы. Подстановка значений Е и Ео в уравнение (8.6) дает при v2 = vо:

                                                     Р2 = Ро + Q (g — 1)/vо.                                 (8.24)

По этой причине вся адиабата 2 располагается выше адиабаты 1. На-клон прямой Михельсона определяет скорость детонации: она тем выше, чем круче поднимается прямая. Очевидно, что эта прямая не может целиком раз-мещаться ниже адиабаты 2, так как в этом случае стационарное распростра-нение детонационной волны не приводило бы к образованию продуктов сго-рания.

Устойчивая детонация возможна только в том случае, когда адиабата 2 касается прямой Михельсона. Этот режим соответствует наименьшей воз-можной скорости детонации. В точке касания J, именуемой точкой Жуге, за-вершается переход исходного газа в продукты сгорания, а значит, и тепловы-деление. Поскольку реакция в горящем газе необратима, энтропия возрастает при изменении состояния вдоль прямой (8.4а) в направлении к точке Ро, vо. В точке J реакция завершается, dQ = TdS = 0, а значит, dS = 0, энтропия дости-гает максимума.

Учитывая уравнение (8.19), запишем

                                                                    (8.25)

где:  сJ – скорость звука в продуктах сгорания при состоянии, отвечающем точке Жуге. Из уравнений (8.1), (8.4) и (8.3) следует, что

                                                                      (8.26)

т.е. скорость детонации по отношению к продуктам сгорания равна скорости распространения в них звука (до начала расширения), а по отношению к го-рючей среде – сумме скорости звука в продуктах реакции и скорости их дви-жения.

                                                                                    (8.27)

Из уравнения (8.27) следует, что скорость детонации определяется тер-модинамическими свойствами вещества и зависит лишь от калорийности го-рючей среды в расчете на единицу массы и отношения теплоемкостей. Урав-нение поясняет экспериментально установленные факты: скорость детонации практически не зависит от давления и начальной температуры.

Другая особенность детонационного сгорания, как следует из уравне-ния (8.27), заключается в характере влияния состава на скорость детонации. Так, стехиометрическая смесь 2Н2 + О2, разбавляемая азотом, детонирует с большей скоростью, чем та же смесь, разбавленная таким же количеством ки-слорода (т.е. одним из реагирующих компонентов), ввиду меньшего молеку-лярного веса азота. Разбавление смеси 2Н2 + О2 избыточным водородом за-метно увеличивает скорость детонации. Несмотря на понижение температуры горения, действие такой добавки ускоряет детонацию вследствие уменьшения среднего молекулярного веса смеси.

Давление в детонационной волне вдвое превосходит равновесное дав-ление взрыва в замкнутом объеме. Отражение от препятствия ударной волны, возникающей при детонации, приводит к дополнительному росту давления в соответствии с уравнением (8.23). Эти соотношения показывают, как велика сила разрушительного действия детонационной волны.

8.6. Вырождение детонации.

Концентрационные пределы детонации. Тепловые потери из зоны  реакции  детонационной  волны в стенках приводят  к  отклонениям  от зако-номерностей детонации, изложенных в § 8.5. При наличии потерь часть теп-лового эффекта реакции, расходуе­мого при адиабатическом процессе только на нагревание и ударное сжатие взрывчатой среды, отводится в стенки  тру-бы. Величина скорости детонации и соответствующие ей давление и темпе-ратура во фронте детонационной волны будут определяться уже не полным тепловым эффектом реакции, а частью его, соответствующей тепло­выделе-нию к моменту достижения точки Жуге J на ударной адиабате. Эта адиабата описывает сжатие при таком процессе, когда достигается равенство скоро-стей выделения и отвода тепла. Таким образом, в точке Жуге освобождается не все тепло реакции, и кроме того соответствующее состояние достигается до ее завершения, т.е. при освобождении еще меньшего количества тепла. В результате этого скорость детонационной волны, а с нею давление и темпе-ратура в точке Жуге оказываются меньше теоретических.

Снижение скорости детонационной волны и температуры сжатого газа способствует увеличению потерь и дальнейшему замедлению реакции во фронте волны. При достаточной интенсивности потерь охлаждение сжатого газа, уменьшение скорости ударной волны и скорости реакции, взаимоусили-вающие друг друга, становятся прогрессирующими. Ста­ционарное распро-странение детонационной волны оказывается не­возможным, и она разруша-ется. Так устанавливаются предельные условия распространения детонации. Заметим, что, несмотря на большую скорость детонационной волны, тепло-вые потери сказы­ваются на состоянии в ней вещества в еще большей степе-ни, чем при дефлаграции, вследствие большой ширины зоны реакции и ин-тенсивности  процессов переноса тепла и количества движения.

Как было показано в § 8.5, при адиабатическом процессе скорость де-тонации и состояние газа во фронте детонационной волны зависят только от термодинамических характеристик взрывчатой среды, но не от кинетических закономерностей реакции в сжатом газе. Однако интенсивность потерь из зо-ны реакции детонирующей среды, а значит, и состояние реагирующего в не-адиабатическом ре­жиме вещества существенным образом связаны с особен-ностями кинетики реакции. Потери определяют, возможно ли распростране-ние детонации, т.е. от них зависят условия для ее пределов. Очевидно, что пределы распространения детонации для труб различного диаметра должны существенно отличаться, поскольку само существование предела детонации обусловлено потерями, связанными с влиянием стенок трубы. Таким обра-зом, потери из зоны реакции детонационной волны должны быть обусловле-ны влиянием  стенок, либо излучением в бесконечное пространство. 

В табл. 8.1 сопоставлены имеющиеся в литературе данные о концентра-ционных пределах детонации (при нормальных условиях) с аналогичными величинами для дефлаграции (см. § 9.1). Как и следовало ожидать, распро-странение детонации возможно в гораздо более узком диапазоне составов.

Таблица 8.1. Концентрационные пределы распространения детонации и дефлаграции (в мол. % горючего).

Горючая смесь

Дефлаграция

Детонация

Горючая смесь

Дефлаграция

Детонация

Н2 + О2

4,0-94

20-90

С3Н8 + О2

2,3-55

3,2-37

Н2 + воздух

4,0-75

15-63,5

С4Н10 + О2

1,8-48

2,9-31,3

СО + О2

15,5-94

38-90

NH3 + O2

15-79

25,4-75,4

С2Н2 + воздух

2,5-81

4,2-50

2Н5)2О + О2

2,0-82

2,7-40

Очевидно, что поведение дефлаграционного и детонационного пламени в узких трубах характеризуется аналогичными соотноше­ниями. В трубах, в которых еще возможно распространение дефла­грации, распространение ус-тойчивой детонации уже не происходит. При входе в такие трубы детонаци-онная волна разрушается, под­жигающая сильная ударная волна затухает, а по трубе продолжается распространение обычного нормального пламени.

Теперь становятся понятными закономерности гашения детона­ции в узких каналах. Понятно, почему гашение происходит так, как если бы со-стояние горючей системы не изменялось при возникновении детонации. Здесь фактически происходит гашение уже не детонации, а дефлаграции, де-тонационная волна еще раньше прекращает свое существование. Естествен-но, что пределы гашения характеризуются   параметрами   обычной   дефла-грации,   а   значит, свойствами горючей среды до возникновения детонации.

Особенности детонации в узких каналах. Теория детонации с поте-рями, учитывающая только действие стенок трубы, приводит к заключению, что относительное снижение скорости детонации D/D возрастает с увели-чением времени реакции  для точки Жуге (т.е. при замедлении реакции) и с уменьшением диаметра d трубы. Установлено, что в первом приближении справедливо условие

                                                .                                           (8.28)

Расчеты показывают, что детонационная волна теряет устойчи­вость уже при незначительном снижении ее скорости. Для гладких труб предель-ное значение отношения D/D определяется условием

                                            .                                       (8.29)

Очевидно, что стационарная детонация становится невозможной при определенном критическом диаметре  dD, при этом  dD > dкр, найденного для дефлаграции. Поскольку гашение детонации безусловно происходит при ус-ло­виях, в которых локализуется дефлаграция, для обеспечения взрывобезо-пасности наибольшую практическую ценность представ­ляет установление развивающегося при этом давления, а не скорости детонации в каналах, не-достаточных для гашения. Результаты исследований сви­детельствуют о силь-ном снижении давления в детонационной волне после прохождения каналов, диаметр которых значительно превосходит критический для гашения пламе-ни вопреки его постоянству ожидаемому на основании расчетов. Причины снижения давления в столь широких каналах пока полностью объяснить не удалось.

Для ориентировочных оценок можно привести следующие примерные значения критического диаметра гашения (в мм) наиболее опас­ных воздуш-ных и кислородных смесей метана, водорода и ацетилена при 1 am:

Горючее                  Воздушные смеси                 Кислородные смеси

Вам также может быть полезна лекция "5. Основная формула гидростатики".

  СН4                                    4,1                                         0,35

   Н2                                     0,80                                        0,30

  С2Н2                                     0,85                                         0,08

Шероховатости стенок трубы могут оказывать двоякое действие. Вы-званные ими потери тепла и количества движе­ния вдвое понижают скорость детонации сильно взрывчатых смесей. В то же время горение недетонирую-щих смесей в такой же трубе происходит со скоростью, равной скорости го-рения детонирующих смесей.

Этот процесс оказывается возможным вследствие неодномерности го-рения. От периферии стенок трубы конусообразная зона реакции распростра-няется к оси трубы. Механизм распространения горения в такой конусооб-разной зоне не во всем ясен. Значительную роль играет увеличение поверх-ности пламени, обусловленное различием скоростей течения по сечению тру-­бы. С другой стороны, сгорающий газ сильно турбулизован, что также явля-ется важным фактором, благоприятствующим ускорению горения.

Для техники взрывобезопасности существенно то, что при быстром сгорании в шероховатых трубах рост давления, а значит, и разруша­ющий эффект примерно такие же, как и при нормальной детонации. Сгорание в ше-роховатых трубах представляет собой большую по­тенциальную опасность, которая не уменьшается даже при значительном удалении состава горючей смеси от концентрационных пре­делов детонации.                                                                           

Свежие статьи
Популярно сейчас
А знаете ли Вы, что из года в год задания практически не меняются? Математика, преподаваемая в учебных заведениях, никак не менялась минимум 30 лет. Найдите нужный учебный материал на СтудИзбе!
Ответы на популярные вопросы
Да! Наши авторы собирают и выкладывают те работы, которые сдаются в Вашем учебном заведении ежегодно и уже проверены преподавателями.
Да! У нас любой человек может выложить любую учебную работу и зарабатывать на её продажах! Но каждый учебный материал публикуется только после тщательной проверки администрацией.
Вернём деньги! А если быть более точными, то автору даётся немного времени на исправление, а если не исправит или выйдет время, то вернём деньги в полном объёме!
Да! На равне с готовыми студенческими работами у нас продаются услуги. Цены на услуги видны сразу, то есть Вам нужно только указать параметры и сразу можно оплачивать.
Отзывы студентов
Ставлю 10/10
Все нравится, очень удобный сайт, помогает в учебе. Кроме этого, можно заработать самому, выставляя готовые учебные материалы на продажу здесь. Рейтинги и отзывы на преподавателей очень помогают сориентироваться в начале нового семестра. Спасибо за такую функцию. Ставлю максимальную оценку.
Лучшая платформа для успешной сдачи сессии
Познакомился со СтудИзбой благодаря своему другу, очень нравится интерфейс, количество доступных файлов, цена, в общем, все прекрасно. Даже сам продаю какие-то свои работы.
Студизба ван лав ❤
Очень офигенный сайт для студентов. Много полезных учебных материалов. Пользуюсь студизбой с октября 2021 года. Серьёзных нареканий нет. Хотелось бы, что бы ввели подписочную модель и сделали материалы дешевле 300 рублей в рамках подписки бесплатными.
Отличный сайт
Лично меня всё устраивает - и покупка, и продажа; и цены, и возможность предпросмотра куска файла, и обилие бесплатных файлов (в подборках по авторам, читай, ВУЗам и факультетам). Есть определённые баги, но всё решаемо, да и администраторы реагируют в течение суток.
Маленький отзыв о большом помощнике!
Студизба спасает в те моменты, когда сроки горят, а работ накопилось достаточно. Довольно удобный сайт с простой навигацией и огромным количеством материалов.
Студ. Изба как крупнейший сборник работ для студентов
Тут дофига бывает всего полезного. Печально, что бывают предметы по которым даже одного бесплатного решения нет, но это скорее вопрос к студентам. В остальном всё здорово.
Спасательный островок
Если уже не успеваешь разобраться или застрял на каком-то задание поможет тебе быстро и недорого решить твою проблему.
Всё и так отлично
Всё очень удобно. Особенно круто, что есть система бонусов и можно выводить остатки денег. Очень много качественных бесплатных файлов.
Отзыв о системе "Студизба"
Отличная платформа для распространения работ, востребованных студентами. Хорошо налаженная и качественная работа сайта, огромная база заданий и аудитория.
Отличный помощник
Отличный сайт с кучей полезных файлов, позволяющий найти много методичек / учебников / отзывов о вузах и преподователях.
Отлично помогает студентам в любой момент для решения трудных и незамедлительных задач
Хотелось бы больше конкретной информации о преподавателях. А так в принципе хороший сайт, всегда им пользуюсь и ни разу не было желания прекратить. Хороший сайт для помощи студентам, удобный и приятный интерфейс. Из недостатков можно выделить только отсутствия небольшого количества файлов.
Спасибо за шикарный сайт
Великолепный сайт на котором студент за не большие деньги может найти помощь с дз, проектами курсовыми, лабораторными, а также узнать отзывы на преподавателей и бесплатно скачать пособия.
Популярные преподаватели
Добавляйте материалы
и зарабатывайте!
Продажи идут автоматически
5137
Авторов
на СтудИзбе
440
Средний доход
с одного платного файла
Обучение Подробнее