Популярные услуги

Любое задание БЖД -Определить УЗД
Повышение уникальности твоей работе
Исследование характеристик искусственного освещения
Исследование опасности поражения электрическим током в трехфазных электрических сетях напряжением до 1 кВ
Любой реферат по безопасность жизнедеятельности (БЖД и ГРОБ или ОБЖ)
Реферат по БЖД для студентов 1 курса
Исследование методов обеспечения комфортного микроклимата
Исследование эффективности звукоизоляции и звукопоглощения

Тема 9. ПОГАСАНИЕ ПЛАМЕНИ

2021-03-09СтудИзба

Тема 9. ПОГАСАНИЕ ПЛАМЕНИ (прекращение горения).

Радикальным способом прекращения горения является разделение го-рючего и окислителя. Однако это возможно только при диффузионном горе-нии. В остальном для обоих видов горения погасание пламени может проис-ходить при следующих условиях:

1. Снижение концентраций компонентов горючей смеси.

2. Охлаждение зоны горения.

3. Ингибирование горючей смеси.

Первые два способа взаимозависимы, так как охладить зону горения можно:

- либо снижением концентраций компонентов смеси и, тем самым, теп-ловыделения реакции;

- либо повышением теплоотвода в стенки реакционного сосуда.

9.1. Концентрационные пределы распространения пламени.

Рекомендуемые материалы

Из теории горения следует, что по мере понижения содержания недос-тающего компонента горючей смеси, а с ним и температуры горения, умень-шается нормальная скорость пламени. Изложенная в теме 7 теория не накла-дывает каких-либо ограничений на возможность уменьшения скорости пла-мени при обеднении горючей смеси. Нормальная скорость пламени ин может, казалось бы, уменьшаться до нуля, а температура горения – до температуры исходных газов.

В теме 7 мы рассматривали процесс сгорания как адиабатический. Но в реальных условиях существуют тепловые потери, которые нарушают адиаба-тичность сгорания.

Скорость неадиабатического пламени уменьшается при охлаждении зо-ны горения. Однако эта зона отдает непосредственно в окружающее про-странство небольшое количество тепла. Более интенсивны тепловые потери, связанные с охлаждением слоев газа, прилегающих к пламени (рис. 35). При этом температура остывающих продуктов сгорания оказывается меньше тем-пературы зоны реакции и возникает температурный градиент, направленный в сторону сгоревшего газа. В результате зона реакции охлаждается путем те-плопроводности. В тепловых потерях участвует также и нагретая, но несго-ревшая смесь, передающая в конечном счете тепло зоны реакции в окру-жающее пространство.

Рис. 35. Изменение распределения температуры во фронте пламени под влиянием тепловых потерь: 1 – адиабатическое горение; 2, 3 – го-рение с тепловым потерями (q2<q3).

Относительная роль теплопотерь за счет теплопроводности к стенкам сосуда и излучения возрастает с уменьшением скорости горения, так как при этом продолжительность процесса теплоотдачи от нагретого газа больше. При определенном критическом значении тепловых потерь зона реакции про-грессивно охлаждается, реакция тормозится, и пламя затухает. Этот режим соответствует пределу распространения пламени.

При изучении механизма теплового самовоспламенения (рис. 22) было показано, что превышение теплоприхода над теплоотводом, приводящее к саморазогреву и воспламенению горючей смеси, начинается при температуре стенок сосуда Токр. При этом мы рассматривали определенный состав сме-си, то есть соотношение горючего и окислителя, изменяя температуру стенок реакционного сосуда.

Теперь рассмотрим случай, когда температура стенок То=const, а изме-няется концентрация компонентов смеси.

Скорость выделения тепла, как и скорость пламени изменяется по урав-нению (6.2):

,

в котором существенную роль играет тепловой эффект реакции (Q) и кон-центрация веществ (с).

Схема соотношения между теплоотводом q2 и теплоприходом q1 при трех разных составах q1max, q1кр и q1и показана на рис. 36.

 

Рис. 36. Соотношение между теп-лоприходом и теплоотводом в го-рючих смесях при  q1max > q1кр > q1и.

Величина тепловыделения, скорость пламени и температура горения достигают максимального значения для стехиометрических смесей (q1max).

При удалении состава смеси от стехиометрического возрастают потери тепла из зоны пламени на нагрев избытка компонента. Это приводит к сни-жению теплового эффекта реакции, прогрессивному охлаждению зоны горе-ния и уменьшению скорости распространения пламени до Uпр (кривая q1кр). При снижении количества горючего (бедные смеси) или окислителя (богатые смеси) больше критического пламя гаснет либо, с другой стороны, невоз-можно поджечь такую смесь внешним импульсом тепла (q1).

Таким образом, скорость пламени не может быть меньше определенно-го критического значения. Распространение пламени в смесях горючего и окислителя возможно лишь в определенном интервале концентраций. При поджигании смесей, состав которых выходит за эти пределы, стационарное пламя не образуется, и реакция, вызванная поджигающим импульсом, затуха-ет на некотором расстоянии от места ее инициирования. При выходе составов за эти пределы стационарное пламя затухает.

Для смесей горючего и окислителя принято различать верхнюю πmax и нижнюю πmin предельные концентрации горючего, которыми ограничена об-ласть взрывоопасных составов. Эти пределы являются важнейшей характе-ристикой взрывоопасное горючих газов и паров. Они зависят в основном от содержания инертных компонентов в смеси и в меньшей степени – от давле-ния и температуры. С повышением начальной температуры смеси πmin снижа-ется, а πmax повышается, поскольку в смесь вносится внешнее физическое те-пло.

Изменение начального давления смеси влияет на пределы по-разному. Так, для смеси водорода с воздухом они почти не изменяются, в то время как для окиси углерода резко сужаются и при 20 атм смеси становятся невзрыво-опасными.

Значения πmin и πmax определяют границы составов смесей, содержащих горючее и окислитель, образование которых не связано с опасностью взрыва. Исходя из этих величин, определяют возможности выбора безопасных соста-вов в технологических процессах.

Значения концентрационных пределов несколько зависят от формы и направления распространения пламени в сосуде, в котором изучается горе-ние. При поджигании у верхнего конца вертикальной трубы распространение пламени возможно в более узком интервале концентраций, чем при поджига-нии у нижнего конца. Эта особенность обусловлена возникновением конвек-тивных потоков, поднимающих вверх нагретые продукты сгорания и тем са-мым облегчающих распространение пламени вверх у предельных составов.

Ниже приведены значения концентрационных пределов распростране-ния пламени вверх для воздушных и кислородных смесей различных горю-чих при атмосферном давлении и комнатной температуре.

Таблица 9.1. Концентрационные пределы распространения пламени.

Горючее вещество

Воздушные смеси

Кислородные смеси

Название

Формула

πmin

πmax

πmin

πmax

Водород

Н2

4.0

7.5

4.0

94

Окись углерода

СО

12.5

74

15.5

94

Метан

СН4

5.3

14

5.1

61

Пропан

С3Н8

2.2

9.5

2.3

55

Бутан

С4Н10

1.9

8.5

1.8

49

9.2.Общие закономерности для пределов распространения пламени.

Тепловая теория пределов распространения пламени Я.Б. Зельдовича устанавливает основные количественные критические условия для пределов распространения пламени. Так, зависимость скорости пламени от адиабати-ческой температуры горения (Тад) приближенно описывается уравнением

                                                    .                                                    (9.1)

При неадиабатическом сгорании, то есть наличии потерь, температура про-дуктов реакции и величины скорости пламени меньше теоретических и при критических условиях

                                                                                                           (9.2)

Поделив уравнение (9.2) на (9.1), находим:

Допуская, что Ткр·Тад ≈Тад2 , получаем

При критических условиях ин= икр, тогда

               ,     а 

                                         .                                  (9.3)

Таким образом, охлаждение зоны реакции больше чем на характеристи-ческий интервал температуры   приводит к прекращению горения.

После решения уравнений теплового баланса и их преобразований кри-тическое значение нормальной скорости пламени

                                                .                                             (9.4)

Тепловые потери не могут понизить нормальную скорость пламени бо-лее чем в е раз. При более интенсивной теплоотдаче стационарное горение прекращается.

Таким образом, по мере удаления состава смеси от стехиометрического или увеличения содержания инертного компонента температура горения, а с нею и нормальная скорость пламени настолько понижаются, что потери из-лучением приводят к заметной неадиабатичности горения. При дальнейшем понижении концентрации недостающего компонента достигается критиче-ское значение ин, и горение становится невозможным. Так, потери излучени-ем, не зависящие от аппаратурных условий, становятся важнейшим факто-ром, определяющим границы стационарного горения в бесконечном про-странстве. Их значение устанавливают концентрационные пределы распро-странения пламени.

9.3. Затухание пламени в узких каналах.

Если в затухании пламени главную роль играет теплоотвод излучением, который определяет пределы распространения пламени, то для быстрогоря-щих газовых смесей радиационные потери малы и зона пламени может охла-ждаться только путем теплопроводности. Теплоотвод возрастает при умень-шении диаметра канала, по которому распространяется пламя.

Интенсивность теплоотвода q2 можно определить по закону теплопере-дачи Ньютона (6.3). Для единицы объема охлаждаемого газа

                                        ,                                      (9.5) 

где  S/V – отношение поверхности теплоотдачи к величине объема охлаждае-мого газа.

Закономерности теплоотдачи остаются такими же, как и в случае теп-лового взрыва (§ 6.1), несмотря на различие этих процессов, и условие (9.3) остается в силе.

Рассмотрим принцип распространения пламени в трубе с переходом в узкие каналы (рис. 37).

 

Рис. 37.

При переходе горения в узкие каналы поверхность теплоотдачи S резко возрастает и соответственно теплопотери к стенкам каналов за счет резкого усиления теплопроводности. В достаточно узких каналах возможны теплопо-тери, приводящие к гашению даже наиболее быстрогорящих взрывчатых смесей.

Рассмотрим соотношение между теплоприходом (q1) и теплоотводом (q2) при горении определенного состава смеси с переходом пламени в узкие каналы (рис. 38), причем d1 > dкр > d3.

Рис. 38. Соотношение между теплопри-ходом и теплоотводом: q2' < q2кр < q2" – теплопотери канала соответственно при d1 > dкр > d2

При уменьшении диаметра канала возрастает скорость теплопотерь, а следовательно наклон прямых q2. И при диаметре канала dкр наступают кри-тические условия гашения пламени.

Возможность горения в узких каналах зависит от трех факторов:

- химического состава горючей среды, определяющего величину нор-мальной скорости пламени Uн;

- давления смеси Р;

- диаметра пламегасящих каналов dкр.

Установлено, что в условиях горения газовых смесей на пределе рас-пространения пламени известный в теории теплопередачи безразмерный кри-терий Пекле (Ре)

                                     ,                              (9.6)

где    - коэффициент температурной проводности, зависящий только от давления   х ~ 1/Р.

Эмпирически связь между dкр и давлением смеси Р выражается уравне-нием

                                              ,                                         (9.7)

где    а – показатель степени для различных составов смесей равен 0,83-1,0.

Условие постоянства Ре на пределе гашения является основным уни-версальным законом, определяющим возможности использования огнепре-градителей.

Важная особенность гашения пламени в узких каналах заключается в том, что хотя этот процесс обусловлен теплопередачей от газа к твердым стенкам, пределы гашения не зависят от свойств материала стенок пламега-сящих каналов, в том числе и теплопроводности. Возможность гашения оп-ределяется условиями охлаждения слоя газа, толщина которого соизмерима с шириной фронта пламени. 

Такая особенность обусловлена большой разностью плотностей сго-рающего газа и материала пламегасителя. В результате газ, сгорающий в ог-непреградителе, охлаждается, практически не нагревая при этом стенки кана-ла. Основная часть процесса теплоотдачи реализуется в газовой, а не в твер-дой фазе, хотя тепло отводится в твердую стенку. Лишь длительное истечение сгоревшего газа через канал может привести к значительному нагреву его стенок.

Следует отметить, что в выражения для критических условий гашения не входит длина пламегасящих каналов. Реально эта зависимость, а также влияние формы пламегасящих каналов существуют.  

Эта особенность горения в узких каналах используется в огнепрегради-телях с узкими каналами, отделяющими аппарат, в котором возможно ини-циирование очагов горения, от защищаемого огнепреградителем окружающе-го пространства, заполненного взрывчатой средой.

9.4. Пределы распространения пламени в системе горючий газ +

окислитель + флегматизатор.

Поскольку температура горения является главным фактором, опреде-ляющим скорость пламени – для данного состава горючей смеси, величина ин зависит в первую очередь от соотношения концентраций горючего и окисли-теля и общего содержания инертных компонентов. Если при фиксированном соотношении содержаний горючего и окислителя к их смеси добавлять инертные компоненты, температура горения понижается, так как энергия хи-мического превращения затрачивается на нагревание дополнительных ком-понентов смеси продуктов сгорания.

Добавки различных веществ могут флегматизировать горючую систему, т.е. уменьшать скорость горения вплоть до превращения такой системы в не-горючую. По характеру воздействия на реакцию в пламени флегматизаторы можно в принципе разделить на два основных класса.

К первому классу тепловых флегматизаторов, относятся компоненты, не принимающие прямого участия во взаимодействии горючего с окислите-лем, но понижающие температуру горения. Избыточный компонент смеси также можно рассматривать как тепловой флегматизатор. Ко второму классу, химически активных флегматизаторов, относятся ингибиторы – отрица-тельные катализаторы, способные тормозить реакцию при неизменной тем-пературе горения вследствие их специфического, чисто химического воздей-ствия на реакцию.

Инертные компоненты влияют и на концентрационные пределы рас-пространения пламени. Типичная зависимость предельной концентрации го-рючего от содержания инертного компонента, т. е. схема пределов области воспламеняемости в тройной смеси горючее + окислитель + инертный ком-понент показана на рис. 39.

При увеличении содержания инертного компонента I уменьшается диа-пазон горючих составов между верхним и нижним концентрационными пре-делами. При определенном содержании инертного компонента Iкр обе ветви кривой критических составов πmin  (I) и πmax  (I) смыкаются в точке, называе-мой мысом области воспламеняемости, или точке флегматизации.

Рис. 39. Схема области воспламе-няемости в смеси горючий газ + окислитель + флегматизатор: 1 – верхний концентрационный предел; 2 – нижний концентрационный пре-дел; 3 – мыс области взрываемости; I – область богатых негорючих сме-сей; II – область бедных негорючих смесей; III – область горючих сме-сей.

Если концентрация инертного компонента больше Iкр, поджигание не-возможно при любом соотношении содержаний горючего и окислителя. Об-ласть составов, отвечающих горючим смесям, ограничена критической кри-вой и осью ординат. Опыт показывает, что для смесей, в которых окислите-лем является кислород, а инертным компонентом азот, только πmах заметно за-висит от I, ветвь πmin (I) идет почти параллельно оси абсцисс.

Пределы в системе горючее + окислитель + инертный компонент часто представляют в треугольной диаграмме. По каждой из трех осей равносто-роннего треугольника откладывается содержание одного из компонентов. Любой точке, расположенной внутри треугольника, отвечает состав, опреде-ляемый величинами отрезков, отсекаемых по каждой из осей линиями, па-раллельными сторонам треугольника, проходящими через данную точку. Об-ласть горючих составов ограничена критической кривой; ее крайние точки опираются на ось, вдоль которой откладываются составы бинарных (двой-ных) смесей горючее окислитель (I = 0).

На рис. 40 для иллюстрации приведена диаграмма пределов распро-странения пламени в системе СН4 + О2 + N2 при нормальных условиях. Точки А и В характеризуют составы предельных бинарных смесей: 5,1 и 61% горю-чего. Точки С и D соответствуют воздушным смесям, содержащим 74,7 и 67,8% N2, у которых содержание СН4 равно соответственно 5,3 и 14,2%. Точ-ка М описывает состав у «мыса» области взрываемости: 81,9% N2, 6,0% СН4 и 12,1% О2. Треугольные диаграммы используют также для описания крити-ческих составов смесей, свободных от инертных компонентов, но содержа-щих по два горючих или окислителя.

Рис. 40. Диаграмма пределов распространения пламени в сис-теме СН4 + О2 + N2.

Добавки инертных компонентов, уменьшая температуру горения, флег-матизируют смесь, затрудняют горение. Поэтому с ростом содержания инерт-ного компонента пределы сужаются. Пределы в известной степени зависят от природы инертных компонентов ввиду различия их теплосодержаний при температуре горения. Эта величина уменьшается в ряду: ∆Нсо2 > ∆Нн2о > ∆Hn2.


При определении пределов для систем, содержащих различные инерт-ные флегматизаторы, можно учесть сравнительно небольшую разность пре-делов, величина которой зависит от природы инертного компонента. Этот эффект иллюстрирует рис. 41, на котором приведены пределы распростране-ния пламени для смесей СН4 + воздух + (Аг, Не, N2, H2O, СО2) при нормаль-ных условиях. Если смесь содержит несколько инертных компонентов, их специфику бывает трудно учесть. В таком случае все инертные компоненты приравниваются к азоту, чем создается некоторый «запас надежности».

Рис. 41. Зависимость пределов распространения пламени от природы инертного компонента в системе СН4 + воздух + (Аг, Не, N2 , Н2О, СО2: 1 – СО2; 2 – Н2О; 3 – N2 (добавочный); 4 – Не; 5 – Ar.

9.5. Закономерности для точки флегматизации.

Наиболее безопасные для технологических целей смеси горючего, ки-слорода и инертного компонента, состав которых соответствует зоне, нахо-дящейся правее мыса области воспламеняемости на рис. 37 (I > Iкр) отлича-ются одной важной особенностью. Любая трехкомпонентная смесь кислоро-да, горючего и инертного компонента невзрывчата при произвольном соот-ношении содержаний двух последних, если в такой смеси [О2] < Y, где Yсо-держание кислорода у точки флегматизации.

Известно, что эта предельная концентрация Y, практически одинакова для большинства горючих газов и паров. Так, если составлять горючие смеси, используя обогащаемый азотом воздух, то для СН4, С2Н6, С3Н8, С4Н10, С5Н12, С6Н14, С3Н6, С4Н8, С6Н6, (СН3)2СО эта величина будет находиться в пределах 11,0—13,5%. Если добавкой к воздуху служит двуокись углерода, значение Y для указанных горючих увеличится до 13,4 — 15,6% абс. (т.е. приблизитель-но на 20%) вследствие большей теплоемкости СО2. Для смесей эндотермиче-ских соединений — этилена и бутадиена — значения Y ниже, чем для боль-шинства горючих. Особенно резкое отличие наблюдается для водорода, окиси углерода и ацетилена.

Выше отмечалось, что нижний концентрационный предел не изменяет-ся при частичной замене кислорода азотом. Оказывается, что эта закономер-ность соблюдается практически вплоть до составов, соответствующих поло-жению мыса области взрываемости. При этом величина Y смесей, флегмати-зированных азотом, мало отличается от содержания кислорода, эквивалент-ного количеству горючего на нижнем пределе. Это предположение позволяет находить расчетные значения Y

                                                   Y = min                                                   (9.8)

где    v – стехиометрический коэффициент для реакции полного окисления данного горючего кислородом. Ниже приведены экспериментальные пре-дельные содержания кислорода в горючих смесях:

Горючее

Yex

Yt

Горючее

Yex

Yt

СН4

12,1

10,6

С6Н6

11,2

10,5

С2Н6

11,0

10,5

СН3ОН

10,3

10,9

С3Н8

11,4

11,0

(СН3)2СО

13,5

12,0

С4Н10

12,1

12,3

СО

5,6

6,2

С5Н12

12,1

12,0

Н2

5,5

6,0

Изложенные соображения позволяют вычислять значения Y для неис-сле­дованных горючих газов или многокомпонентных смесей по вели­чине нижнего концентрационного предела, т. е., по существу, из термохимиче­ских данных. Так, для ацетилена, у которого πmin = 2,5%, следует ожидать Y = 6,2%. Возможность вычисления Y имеет большое практическое значение, так как экспериментальные определения предельной концентрации кислорода произ-водились лишь для ограниченного числа горючих газов и па­ров. Величина же Y представляет собой важную характеристику взрывобезо­пасности для ряда технологических процессов.

Результаты исследований взрывоопасности систем горючий газ + воз-дух + инерт удобнее представлять на тройных диаграммах в виде прямо-угольного треугольника. При этом картина более наглядна (рис. 42) и точнее обрабатывается.

Рис. 42. Предельные усло-вия взрывоопасности в сис-теме газ + кислород (воз-дух) + инерт.

Точки:

       К – 100% воздуха, или 21% кислорода;

       Г – 100% горючего газа;

       И – 100% инертного газа (флегматизатора);

       Ф – точка флегматизации;

       Н (Н’) – нижний концентрационный предел воспламенения в смеси

                       газ + воздух (кислород);

       В (В’) – верхний концентрационный предел воспламенения в смеси

                      газ + воздух (кислород);

       1 – максимально взрывоопасная концентрация кислорода в смеси

             газ + кислород (воздух);

       2 – минимально взрывоопасная концентрация кислорода в смеси

             газ + кислород (воздух);

       3 – минимальное содержание кислорода в смеси И + К, ниже кото-

              рого смеси не воспламеняются при любой добавке газа.

       4 – минимальное содержание газа в смеси Г + И, ниже которого

             смеси невзрывоопасны при любой добавке кислорода (воздуха);

       Кф – содержание кислорода в точке флегматизации;

       Гф – содержание горючего газа в точке флегматизации;

       100 – Иф – содержание инерта в точке флегматизации;

       С (С’) – стехиометрический состав смеси Г + К при коэффициенте

                     избытка воздуха α = 1.

Линии:

       К – 4 – составы с одинаковым соотношением И +Г;

       Г – 3 – составы с одинаковым соотношением И + К;

       И – С – стехиометрические составы Г + К в тройной смеси

                     при α = 1.

Области:

       ИСК – бедные смеси с α > 1;

       ИСГ – богатые смеси с α < 1;

       И3Ф4 – невоспламеняющиеся смеси;

       ИФВГ – воспламеняемые смеси при добавке кислорода;

       ЗФНК – воспламеняемые смеси при добавке горючего газа.

                             

9.6. Механизм флегматизации взрывоопасных смесей.

Достаточно широко используется метод  обеспечения взрывобезопасно-сти, основанный на снижении концентрации горючего меньшей нижнего концентрационного предела. Для его объяснения и обоснования проанализи-руем более подробно принципы флегматизации взрывчатых смесей.

Тепловая флегматизация. Флегматизация горения различными добав-ками известна давно. Если ограничиться рассмотрением класса тепловых флегматизаторов, понижающих температуру горения, то этот класс следует в свою очередь разделить на две группы – инертных компонентов (СО2, Н2О, N2) и добавок сложных горючих веществ, флегматизирующих горение бога-тых смесей. Инертные добавки флегматизируют горение, воспринимая часть теплового эффекта реакции при сгорании; однако у этих флегматизаторов происходит только увеличение запаса физического тепла, но не химическое превращение.

Более сложную природу имеет действие добавок органических горючих флегматизаторов в пламенах богатых взрывчатых смесей 1 и распадающихся эндотермических соединений. Как и чисто инертные добавки, они не оказы-вают специфического химического влияния на кинетику реакции в пламени, а только понижают температуру горения. Однако такие добавки флегматизи-руют горение гораздо активнее, чем инертные компоненты. Это обусловлено не только (и даже не столько) их большей теплоемкостью, которая, действии-тельно, сильно возрастает с усложнением молекулы, сколько способностью этих веществ к эндотермическим превращениям при высоких температурах. Поэтому сложные соединения, распадающиеся в пламени, способны флегма-тизировать горение уже в значительно меньших концентрациях, чем инерт-ные добавки.

Наиболее активным флегматизатором значительной части технологиче-ских процессов оказывается само избыточное горючее. Использование избы-точного горючего для флегматизации к тому же наиболее просто в отношении требований технологии: отпадает необходимость введения в реакционную среду посторонних продуктов.

Распад избыточного горючего в пламенах богатых смесей является ре-шающим фактором, определяющим значения пределов распространения пла-мени.

Применение ингибиторов. Химически активные добавки уже в кон-центрациях порядка 1% могут оказывать еще большее гасящее воздействие и сужать пределы, чем избыточное горючее. Это наблюдалось, например, при добавлении к воздушным смесям углеводородов, водорода, окиси углерода, галоидсодержащих продуктов: CH2ClBr, CH3Br, а также СС14 и С12.

Механизм воздействия химически активных флегматизаторов на горе-ние заключается в обрыве реакционных цепей основного процесса окисления горючего. Ингибиторы конкурируют с окисляющимися компонентами во взаимодействии с активными центрами цепной реакции. В результате более высокого, чем у горючего, химического сродства к активным промежуточным продуктам реакции окисления молекулы ингибитора или продуктов его рас-пада энергично реагируют с активными центрами, превращая их в устойчи-вые соединения и прекращая развитие реакционной цепи. Поэтому добавки ингибитора заметно понижают концентрацию активных центров. Так, галои-ды и галоидпроизводные активно реагируют с атомарным водородом, кото-рый принимает участие в большинстве цепных процессов окисления.

Основное применение химически активных флегматизаторов ограничи-вается их использованием в предохранительных приспособлениях. В аварий-ных случаях эти продукты быстро вводят в больших количествах в зону горе-ния или во взрывоопасную среду, которая при этом достаточно быстро пре-вращается в негорючую. Таково использование различных галоидпроизвод-ных в пламегасящих составах.

Так, огнетушащая эффективность галоидов повышается при замещении в них атома водорода на атом галогена по ряду F ≤ Cl << Br ≥ I.

Механизм процесса заключается в регенеративном ингибировании, то есть в восстановлении исходного вещества или образования новых промежу-точных компонентов, способных достаточно эффективно связывать активные центры цепной реакции. Общий пример такого типа:

Hα + x → Hx + α,

где:    х – атом галогена;

          Нα – водородосодержащее вещество.

Общепринятый механизм действия ингибиторов состоит в том, что ра-дикалы Н+, ОН или О−2, реагируя с ингибитором или его производным, исче-зают и заменяются малоактивными атомами.

Например, считают, что при использовании в реакции горения водорода простейшего ингибитора НВr ингибирование происходит по схеме:

Если Вам понравилась эта лекция, то понравится и эта - Обязанности.

Н + НВr → H2 + Br

OH + HBr → H2O + Br

O + HBr = OH + Br

Регенерирование ингибитора идет по реакции:

Br + H + M = HBr + M

и цикл повторяется. Благодаря этим процессам снижается скорость пламени и сужаются пределы воспламенения.

Свежие статьи
Популярно сейчас
Почему делать на заказ в разы дороже, чем купить готовую учебную работу на СтудИзбе? Наши учебные работы продаются каждый год, тогда как большинство заказов выполняются с нуля. Найдите подходящий учебный материал на СтудИзбе!
Ответы на популярные вопросы
Да! Наши авторы собирают и выкладывают те работы, которые сдаются в Вашем учебном заведении ежегодно и уже проверены преподавателями.
Да! У нас любой человек может выложить любую учебную работу и зарабатывать на её продажах! Но каждый учебный материал публикуется только после тщательной проверки администрацией.
Вернём деньги! А если быть более точными, то автору даётся немного времени на исправление, а если не исправит или выйдет время, то вернём деньги в полном объёме!
Да! На равне с готовыми студенческими работами у нас продаются услуги. Цены на услуги видны сразу, то есть Вам нужно только указать параметры и сразу можно оплачивать.
Отзывы студентов
Ставлю 10/10
Все нравится, очень удобный сайт, помогает в учебе. Кроме этого, можно заработать самому, выставляя готовые учебные материалы на продажу здесь. Рейтинги и отзывы на преподавателей очень помогают сориентироваться в начале нового семестра. Спасибо за такую функцию. Ставлю максимальную оценку.
Лучшая платформа для успешной сдачи сессии
Познакомился со СтудИзбой благодаря своему другу, очень нравится интерфейс, количество доступных файлов, цена, в общем, все прекрасно. Даже сам продаю какие-то свои работы.
Студизба ван лав ❤
Очень офигенный сайт для студентов. Много полезных учебных материалов. Пользуюсь студизбой с октября 2021 года. Серьёзных нареканий нет. Хотелось бы, что бы ввели подписочную модель и сделали материалы дешевле 300 рублей в рамках подписки бесплатными.
Отличный сайт
Лично меня всё устраивает - и покупка, и продажа; и цены, и возможность предпросмотра куска файла, и обилие бесплатных файлов (в подборках по авторам, читай, ВУЗам и факультетам). Есть определённые баги, но всё решаемо, да и администраторы реагируют в течение суток.
Маленький отзыв о большом помощнике!
Студизба спасает в те моменты, когда сроки горят, а работ накопилось достаточно. Довольно удобный сайт с простой навигацией и огромным количеством материалов.
Студ. Изба как крупнейший сборник работ для студентов
Тут дофига бывает всего полезного. Печально, что бывают предметы по которым даже одного бесплатного решения нет, но это скорее вопрос к студентам. В остальном всё здорово.
Спасательный островок
Если уже не успеваешь разобраться или застрял на каком-то задание поможет тебе быстро и недорого решить твою проблему.
Всё и так отлично
Всё очень удобно. Особенно круто, что есть система бонусов и можно выводить остатки денег. Очень много качественных бесплатных файлов.
Отзыв о системе "Студизба"
Отличная платформа для распространения работ, востребованных студентами. Хорошо налаженная и качественная работа сайта, огромная база заданий и аудитория.
Отличный помощник
Отличный сайт с кучей полезных файлов, позволяющий найти много методичек / учебников / отзывов о вузах и преподователях.
Отлично помогает студентам в любой момент для решения трудных и незамедлительных задач
Хотелось бы больше конкретной информации о преподавателях. А так в принципе хороший сайт, всегда им пользуюсь и ни разу не было желания прекратить. Хороший сайт для помощи студентам, удобный и приятный интерфейс. Из недостатков можно выделить только отсутствия небольшого количества файлов.
Спасибо за шикарный сайт
Великолепный сайт на котором студент за не большие деньги может найти помощь с дз, проектами курсовыми, лабораторными, а также узнать отзывы на преподавателей и бесплатно скачать пособия.
Популярные преподаватели
Добавляйте материалы
и зарабатывайте!
Продажи идут автоматически
5155
Авторов
на СтудИзбе
439
Средний доход
с одного платного файла
Обучение Подробнее