Популярные услуги

Тема 8. Основные системы мозга (часть 3)

2021-03-09СтудИзба

8.6. Слуховая сенсорная система

Слуховая система, слуховой анализатор, - совокупность механических, рецепторных и нервных структур, воспринимающих и анализирующих звуковые колебания. Строение слуховой системы, особенно ее периферического отдела, у разных животных может различаться. Так, типичный приемник звука у насекомых - тимпанальный орган, одним из приемников звука у костистых рыб является плавательный пузырь, колебания которого под влиянием звука передаются на веберов аппарат и далее на внутреннее ухо. У земноводных, пресмыкающихся и птиц во внутреннем ухе развиваются дополнительные рецепторные клетки (базиллярная папилла). У высших позвоночных, в том числе у большинства млекопитающих, слуховая система состоит из наружного, среднего и внутреннего уха, слухового нерва и последовательно соединенных нервных центров (основные из них - ядра кохлеарные и верхней оливы, задние бугры четверохолмия, слуховая область коры).

Развитие центрального отдела слуховой системы находится в зависимости от экологических факторов, от значения слуховой системы в поведении животных. Волокна слухового нерва идут от улитки в кохлеарные ядра. Волокна от правого и левого кохлеарных ядер идут на обе симметричные стороны слуховой системы. В верхней оливе сходятся афферентные волокна от обоих ушей. В частотном анализе звука существенную роль играет улитковая перегородка - своеобразный механический спектральный анализатор, функционирующий как ряд взаимно рассогласованных фильтров, пространственно рассеянных вдоль улитковой перегородки, амплитуда колебаний которой составляет от 0,1 до 10 нм (в зависимости от интенсивности звука).

Для центральных отделов слуховой системы характерно пространственно упорядоченное положение нейронов с максимальной чувствительностью к определенной частоте звука. Нервные элементы слуховой системы обнаруживают, помимо частотной, определенную избирательность к интенсивности, длительности звука и др. Нейроны центральных, особенно высших отделов слуховой системы, избирательно реагируют на сложные признаки звуков (например, на определенную частоту амплитудной модуляции, на направление частотной модуляции и движения звука).

Слуховой анализатор включает в себя орган слуха, проводящие пути слуховой информации и центральное представительство в коре больших полушарий.

Орган слуха

Орган слуха (organa audites) - лабиринт, в котором залегают двоякого рода рецепторы: одни из них (кортиев орган) служат для восприятия звуковых раздражений, другие представляют воспринимающие приборы стато-кинетического аппарата, необходимого для восприятия сил земного тяготения, для поддержания равновесия и ориентировки тела в пространстве. На низких ступенях развития эти две функции не отдифференцированы друг от друга, но статическая функция является первичной. Прототипом лабиринта в этом смысле может служить статический пузырек (ото- или статоциста), очень распространенный среди беспозвоночных животных, живущих в воде, например моллюсков. У позвоночных такая первоначально простая форма пузырька значительно усложняется с усложнением функций лабиринта.

Генетически пузырек происходит из эктодермы путем впячивания с последующей отшнуровкой, затем начинают обособляться трубкообразные придатки статического аппарата - полукружные каналы. У миксин имеется один полукружный канал, соединяющийся с одиночным пузырьком, вследствие чего они могут перемещаться лишь в одном направлении, у круглоротых появляются два полукружных канала, благодаря чему они получают возможность перемещать тело в двух направлениях. Начиная с рыб, у всех остальных позвоночных развиваются 3 полукружных канала соответственно существующим в природе трем измерениям пространства, позволяющие им двигаться во всех направлениях.

Рекомендуемые материалы

В результате формируются преддверие лабиринта и полукружные каналы, имеющие особый нерв - n. vestibularis. С выходом на сушу, с появлением у наземных животных локомоции при помощи конечностей, а у человека - прямохождения значение равновесия возрастает. В то время как вестибулярный аппарат сформирован у водных животных, акустический аппарат, находящийся у рыб в зачаточном состоянии, развивается лишь с выходом на сушу, когда становится возможным непосредственное восприятие воздушных колебаний. Он постепенно обособляется от остальной части лабиринта, закручиваясь спирально в улитку.

С переходом из водной среды в воздушную к внутреннему уху присоединяется звукопроводящий аппарат. Начиная с амфибий, появляется среднее ухо - барабанная полость с барабанной перепонкой и слуховыми косточками. Наивысшего развития акустический аппарат достигает у млекопитающих, имеющих спиральную улитку с весьма сложно устроенным звукочувствительным прибором. У них имеется отдельный нерв (n. cochlearis) и ряд слуховых центров - подкорковых (в заднем и среднем мозге) и корковых. У них же возникает наружное ухо с углубленным слуховым проходом и ушной раковиной.

Ушная раковина представляет позднейшее приобретение, играющее роль рупора для усиления звука, а также служащее для защиты наружного слухового прохода. У наземных млекопитающих ушная раковина снабжена специальной мускулатурой и легко двигается по направлению звука. У млекопитающих, ведущих водный и подземный образ жизни, она отсутствует; у человека и высших приматов она подвергается редукции и становится неподвижной. Вместе с тем возникновение устной речи у человека сопряжено с максимальным развитием слуховых центров, особенно в коре мозга, составляющих часть второй сигнальной системы.

Эмбриогенез органа слуха и равновесия у человека идет аналогично филогенезу. На 3 неделе зародышевой жизни с обеих сторон заднего мозгового пузыря появляется из эктодермы слуховой пузырек - зачаток лабиринта. К концу 4 недели из него вырастает слепой ход (ductus endolymphaticus) и 3 полукружных канала. Верхняя часть слухового пузырька, в которую впадают полукружные каналы, представляет зачаток эллиптического мешочка (utriculus), он отделяется в месте отхождения эндолимфатического протока от нижней части пузырька - зачатка будущего сферического мешочка (sacculus). На 5 неделе эмбриональной жизни из переднего отдела слухового пузырька соответствующего саккулюсу, происходит сначала небольшое выпячивание (lagena), вырастающее в закрученный спиралью ход улитки (ductus cochlearis). Первоначально стенки полости пузырька в связи с врастанием периферических отростков нервных клеток из лежащего с передней стороны лабиринта слухового ганглия, превращается в чувствительные клетки (кортиев орган). Прилегающая к перепончатому лабиринту мезенхима превращается в соединительную ткань, создающую вокруг образовавшихся утрикулюса, саккулюса и полукружных каналов в перилимфатические пространства. На 6-м месяце внутриутробной жизни вокруг перепончатого лабиринта с его перилимфатическими пространствами возникает из надхрящницы хрящевой капсулы черепа путем перихондрального окостенения костный лабиринт, повторяющий в общем форму перепончатого.

Среднее ухо - барабанная полость со слуховой трубой - развивается из первого глоточного кармана и латеральной части верхней стенки глотки, следовательно, эпителий слизистой оболочки полостей среднего уха происходит из энтодермы. Находящиеся в барабанной полости слуховые косточки образуются из хряща первой (молоточек и наковальня) и второй (стремя) висцеральных дуг. Наружное ухо развивается из первого жаберного кармана.

У новорожденного ушная раковина относительно меньше, чем у взрослого и не имеет выраженных извилин и бугорков. Только к 12 годам она достигает формы и величины ушной раковины взрослого человека. После 50 - 60 лет наступает омелотворение ее хряща. Наружный слуховой проход у новорожденного короткий и широкий, а костная часть состоит из костного кольца. Величина барабанной перепонки у новорожденного и взрослого практически одинакова. Барабанная перепонка расположена под углом 180° к верхней стенке, а у взрослого - под углом 140°.

Барабанная полость заполнена жидкостью и клетками соединительной ткани, ее просвет мал из-за толстой слизистой оболочки. У детей до 2 - 3 лет верхняя стенка барабанной полости тонкая, имеет широкую каменисто-чешуйчатую щель, заполненную волокнистой соединительной тканью с многочисленными кровеносными сосудами. Задняя стенка барабанной полости сообщается широким отверстием с ячейками сосцевидного отростка. Слуховые косточки, хотя и содержат хрящевые точки, соответствуют размерам взрослого человека. Слуховая труба короткая и широкая (до 2 мм). Форма и размеры внутреннего уха не изменяются в течение всей жизни.

Звуковые волны, встречая сопротивление барабанной перепонки, вместе с ней колеблют рукоятку молоточка, которая смещает все слуховые косточки. Основание стремечка давит на перилимфу преддверия внутреннего уха. Так как жидкость практически несжимаема, то перилимфа преддверия смещает столб жидкости лестницы преддверия, которая через отверстие на верхушке улитки (helicotrema) продвигается в барабанную лестницу. Жидкость ее растягивает вторичную мембрану, закрывающую круглое окно. Благодаря прогибу вторичной мембраны увеличивается полость перилимфатического пространства, что вызывает образование волн в перилимфе, колебания которой передаются эндолимфе. Это приводит к смещению спиральной мембраны, которая растягивает или сгибает волоски чувствительных клеток. Чувствительные клетки находятся в контакте с первым чувствительным нейроном.

8.6.1. Наружное ухо

Наружное ухо (auris externa) – структурное образование органа слуха, к которому относятся ушная раковина, наружный слуховой проход и барабанная перепонка, лежащая на границе наружного и среднего уха.

Ушная раковина (auricula) - структурная единица наружного уха. Основа ушной раковины представлена эластическим хрящом, покрытым тонкой кожей. Ушная раковина имеет воронкообразную форму с углублениями и выступами на внутренней поверхности. Ее свободный край - завиток (helix) - загнут к центру уха. Ниже и параллельно завитку находится противозавиток (anthelix), который внизу около отверстия наружного слухового прохода заканчивается козелком (tragus). Сзади козелка располагается противокозелок (antitragus). В нижней части ушная раковина не содержит хряща и кожа образует складку - мочку или ушную дольку (lobulus auriculare). Сверху, сзади и снизу к хрящевой части наружного слухового прохода прикрепляются рудиментарные поперечнополосатые мышцы, которые фактически утратили функцию, и смещения ушной раковины не происходит.

Наружный слуховой проход (meatus acusticus externus) – структурное образование наружного уха. Наружная треть наружного слухового прохода состоит из хряща (cartilago meatus acustici), относящегося к ушной раковине; две трети его длины образованы костной частью височной кости. Наружный слуховой проход имеет неправильную цилиндрическую форму. Открываясь на боковой поверхности головы, он направляется по фронтальной оси в глубину черепа и имеет два изгиба: один – в горизонтальной, другой – в вертикальной плоскости. Подобная форма слухового прохода обеспечивает прохождение к барабанной перепонке только отраженных от его стенок звуковых волн, что уменьшает ее растяжение. Весь слуховой проход покрыт тонкой кожей, в наружной трети которой находятся волосы и сальные железы (gll. cereminosae). Эпителий кожи наружного слухового прохода переходит на барабанную перепонку.

Барабанная перепонка (membrana tympani) - образование, расположенное на границе наружного и среднего уха. Барабанная перепонка развивается вместе с органами наружного уха. Она представляет собой овальную, размером 11х9 мм, тонкую полупрозрачную пластинку. Свободный край этой пластинки вставлен в барабанную борозду (sulcus tympanicus) в костной части слухового прохода. Укрепляется в борозде фиброзным кольцом не по всей окружности. Со стороны слухового прохода перепонка покрыта плоским эпителием, а со стороны барабанной полости эпителием слизистой оболочки.

Основа перепонки состоит из эластических и коллагеновых волокон, которые в верхней ее части замещены волокнами рыхлой соединительной ткани. Эта часть плохо натянута и называется pars flaccida. В центральной части перепонки волокна располагаются циркулярно, а в передней, задней и нижней периферической ее частях - радиально. Там, где волокна ориентированы радиально, перепонка натянута и в отраженном свете блестит. У новорожденных барабанная перепонка расположена почти поперечно к диаметру наружного слухового прохода, а у взрослых - под углом 45°. В центральной части она вогнута и называется пупком (umbo membranae tympani), где со стороны среднего уха прикрепляется рукоятка молоточка.

8.6.2. Среднее ухо

Среднее ухо (auris media) - структурное образование органа слуха. Состоит из барабанной полости с заключенными в нее слуховыми косточками и слуховой трубы, сообщающей барабанную полость с носоглоткой.

Барабанная полость

Барабанная полость (cavum tympani) - структурное образование среднего уха, заложена в основании пирамиды височной кости между наружным слуховым проходом и лабиринтом (внутренним ухом). Она содержит цепь из трех мелких слуховых косточек, передающих звуковые колебания от барабанной перепонки к лабиринту. Барабанная полость имеет неправильную кубовидную форму и небольшую величину (объем около 1 см3). Стенки, ограничивающие барабанную полость, граничат с важными анатомическими образованиями: внутренним ухом, внутренней яремной веной, внутренней сонной артерией, ячейками сосцевидного отростка и полостью черепа.

Передняя стенка барабанной полости (paries caroticus) - стенка, близко прилежащая к внутренней сонной артерии. В верхней части этой стенки находится внутреннее отверстие слуховой трубы (ostium tympanicum tubae anditivae), которая у новорожденных и детей раннего возраста широко зияет, чем объясняется частое проникновение инфекции из носоглотки в полость среднего уха и далее в череп.

Перепончатая стенка барабанной полости (paries membranaceus) - латеральная стенка, образована барабанной перепонкой и костной пластинкой наружного слухового прохода. Верхняя, куполообразно расширенная часть барабанной полости образует надбарабанный карман (recessus epitympanicus), содержащий две косточки: головку молоточка и наковальню. При заболевании патологические изменения среднего уха наиболее выражены в надбарабанном кармане.

Сосцевидная стенка барабанной полости (paries mastoideus) - задняя стенка, отграничивает барабанную полость от сосцевидного отростка. Содержит ряд возвышений и отверстий: пирамидальное возвышение (eminentia pyramidalis), в котором находится мышца стремени (m. stapedius); выступ бокового полукружного канала (prominentia canalis semicircularis lateralis); выступ лицевого канала (prominentia canalis facialis); сосцевидную пещеру (antrum mastoideum), граничащую с задней стенкой наружного слухового прохода.

Покрышечная стенка барабанной полости (paries tegmentalis) - верхняя стенка, имеет куполообразную форму (pars cupularis) и отделяет полость среднего уха от полости средней черепной ямки.

Яремная стенка барабанной полости (paries jugularis) – нижняя стенка, отделяет барабанную полость от ямки внутренней яремной вены, где располагается ее луковица. В задней части яремной стенки имеется шиловидный выступ (prominentia styloidea), след от давления шиловидного отростка.

Слуховые косточки (ossicula auditus) - образования внутри барабанной полости среднего уха, соединенные суставами и мышцами, обеспечивающие проведение воздушных колебаний различной интенсивности. К слуховым косточкам относятся молоточек, наковальня и стремя.

Молоточек (malleus) – слуховая косточка. У молоточка выделяют шейку (collum mallei) и рукоятку (manubribm mallei). Головка молоточка (caput mallei) соединяется наковальне-молоточковым суставом (articulatio incudomallearis) с телом наковальни. Рукоятка молоточка срастается с барабанной перепонкой. А к шейке молоточка прикрепляется мышца, натягивающая барабанную перепонку (m. tensor tympani).

Мышца, натягивающая барабанную перепонку (m. tensor tympani) – поперечнополосатая мышца, берет начало от стенок мышечно-трубного канала височной кости и прикрепляется к шейке молоточка. Оттягивая внутрь барабанной полости рукоятку молоточка, напрягает барабанную перепонку, поэтому барабанная перепонка напряжена и вогнута в полость среднего уха. Иннервация мышцы от V пары черепных нервов.

Наковальня (incus) – слуховая косточка, имеет длину 6-7 мм, состоит из тела (corpus incudis) и двух ножек: короткой (crus breve) и длинной (crus langum). Длинная ножка несет чечевицеобразный отросток (processus lenticularis), сочленяется наковальне-стременным суставом с головкой стремени (articulatio incudostapedia).

Стремя (stapes) - слуховая косточка, имеет головку (caput stapedis), переднюю и заднюю ножки (crura anterius et posterius) и основание (basis stapedis). К задней ножке прикрепляется стременная мышца. Основание стремени вставлено в овальное окно преддверия лабиринта. Кольцевая связка (lig. anulare stapedis) в виде перепонки, находящейся между основанием стремени и краем овального окна обеспечивает подвижность стремени при воздействии воздушных волн на барабанную перепонку.

Мышца стремени (m. stapedius) – поперечнополосатая мышца, начинается в толще пирамидального возвышения сосцевидной стенки барабанной полости и прикрепляется к задней ножке стремени. Сокращаясь, выводит из отверстия основание стремени. Иннервация от VII пары черепных нервов. При сильных колебаниях слуховых косточек вместе с мышцей, натягивающей барабанную перепонку, удерживает слуховые косточки, уменьшая их смещение.

Слуховая труба

Слуховая труба (tuba auditiva), евстахиева труба, - образование среднего уха, служащее для доступа воздуха из глотки в барабанную полость, что поддерживает одинаковое давление с наружной и внутренней стороны барабанной перепонки. Слуховая труба состоит из костной и хрящевой частей, соединяющихся между собой. Костная часть (pars ossea), длиной 6 - 7 мм и диаметром 1 - 2 мм, находится в височной кости. Хрящевая часть (pars cartilaginea), выполненная эластическим хрящом, имеет длину 2,3 - 3 мм и диаметр 3 - 4 мм, расположена в толще латеральной стенки носоглотки.

От хрящевой части слуховой трубы берут начало мышца, напрягающая небную занавеску (m. tensor veli palatini), небно-глоточная мышца (m. palatopharyngeus), мышца, поднимающая небную занавеску (m. levator veli palatini). Благодаря этим мышцам при глотании раскрывается слуховая труба и выравнивается давление воздуха в носоглотке и среднем ухе. Внутренняя поверхность трубы покрыта мерцательным эпителием; в слизистой оболочке имеются слизистые железы (gll. tubariae) и скопление лимфатической ткани. Она хорошо развита и образует трубную миндалину в устье носоглоточного отверстия трубы.

8.6.3. Внутреннее ухо

Внутреннее ухо (auris interna) - структурное образование, относящееся как к органу слуха, так и к вестибулярному аппарату. Внутреннее ухо состоит из костного и перепончатого лабиринтов. Эти лабиринты образуют преддверие, три полукружных канала (вестибулярный аппарат) и улитку, относящуюся к органу слуха.

Улитка (cochlea) - орган слуховой системы, является частью костного и перепончатого лабиринта. Костная часть улитки состоит из спирального канала (canalis spiralis cochleae), ограниченного костным веществом пирамиды. Канал имеет 2,5 круговых хода. В центре улитки расположен полый костный стержень (modiolus), находящийся в горизонтальной плоскости. В просвет улитки со стороны стержня выдается костная спиральная пластинка (lamina spiralis ossea). В ее толще находятся отверстия, через которые к спиральному органу проходят кровеносные сосуды и волокна слухового нерва.

Спиральная пластинка улитки вместе с образованиями перепончатого лабиринта разделяет полость улитки на 2 части: лестницу преддверия (scala vestibuli), соединяющуюся с полостью преддверия, и барабанную лестницу (scala tympani). Место перехода лестницы преддверия в барабанную лестницу называется просветленным отверстием улитки (helicotrema). В барабанную лестницу открывается окошечко улитки. Из барабанной лестницы берет начало водопровод улитки, проходящий через костное вещество пирамиды. На нижней поверхности заднего края пирамиды височной кости находится наружное отверстие водопровода улитки (apertura externa canaliculi cochleae).

Улитковая часть перепончатого лабиринта представлена улитковым протоком (ductus cochlearis). Проток начинается от преддверия в области улиткового углубления (recessus cochlearis) костного лабиринта и заканчивается слепо около верхушки улитки. На поперечном разрезе улитковый проток имеет треугольную форму, и большая его часть располагается ближе к наружной стенке. Благодаря улитковому ходу полость костного хода улитки разделяется на 2 части: верхнюю - лестницу преддверия и нижнюю - барабанную лестницу.

Наружная (сосудистая полоска) стенка улиткового хода срастается с наружной стенкой костного хода улитки. Верхняя (paries vestibularis) и нижняя (membrana spiralis) стенки улиткового хода являются продолжением костной спиральной пластинки улитки. Они берут начало от ее свободного края и расходятся к наружной стенке под углом 40 - 45°. На нижней стенке располагается звуковоспринимающий аппарат - спиральный орган (кортиев орган).

Спиральный орган (organum spirale) находится на протяжении всего улиткового хода и расположен на спиральной мембране, которая состоит из тонких коллагеновых волокон. На этой мембране расположены чувствительные волосковые клетки. Волоски этих клеток погружены в желатинозную массу, названную покровной мембраной (membrana tectoria). Когда звуковая волна вспучивает базиллярную мембрану, стоящие на ней волосковые клетки качаются из стороны в сторону и их волоски, погруженные в покровную мембрану, сгибаются или растягиваются на диаметр атома водорода. Эти изменения положения волосковых клеток величиной с атом вызывают стимул, который порождает генераторный потенциал волосковых клеток.

Одна из причин высокой чувствительности волосковых клеток заключается в том, что в эндолимфе поддерживается положительный заряд около 80 мВ относительно перилимфы. Разность потенциалов обеспечивает перемещение ионов через поры мембраны и передачу звуковых раздражений. При отведении электрических потенциалов от разных частей улитки обнаружено 5 различных электрических феноменов. Два из них - мембранный потенциал слуховой рецепторной клетки и потенциал эндолимфы - не обусловленный действием звука, они наблюдаются и при отсутствии звука. Три электрических явления - микрофонный потенциал улитки, суммационный потенциал и потенциалы слухового нерва - возникают под влиянием звуковых раздражений.

Мембранный потенциал слуховой рецепторной клетки регистрируется при введении в нее микроэлектрода. Также как и в других нервных или рецепторных клетках, внутренняя поверхность мембран слуховых рецепторов заряжена отрицательно (- 80 мВ). Так как волоски слуховых рецепторных клеток омываются положительно заряженной эндолимфой (+ 80 мВ), то между внутренней и наружной поверхностью их мембраны разность потенциалов достигает 160 мВ. Значение большой разности потенциалов состоит в том, что она резко облегчает восприятие слабых звуковых колебаний. Потенциал эндолимфы, регистрируемый при введении одного электрода в перепончатый канал, а другого - в область круглого окна, обусловлен деятельностью сосудистого сплетения (stria vascularis) и зависит от интенсивности окислительных процессов. При нарушениях дыхания или подавлении тканевых окислительных процессов цианидами потенциал эндолимфы падает или исчезает. Если ввести в улитку электроды, соединить их с усилителем и громкоговорителем и воздействовать звуком, то громкоговоритель точно воспроизводит этот звук.

Описываемое явление получило название микрофонного эффекта улитки, а регистрируемый электрический потенциал назван кохлеарным микрофонным потенциалом. Доказано, что он генерируется на мембране волосковой клетки в результате деформации волосков. Частота микрофонных потенциалов соответствует частоте звуковых колебаний, а амплитуда в определенных границах пропорциональна интенсивности звуков, действующих на ухо. В ответ на сильные звуки большой частоты отмечают стойкий сдвиг исходной разности потенциалов. Это явление получило название суммационного потенциала. В результате возникновения в волосковых клетках при действии на них звуковых колебаний микрофонного и суммационного потенциалов происходит импульсное возбуждение волокон слухового нерва. Передача возбуждения с волосковой клетки на нервное волокно происходит, по-видимому, как электрическим, так и химическим путем.

8.6.4. Проводящий путь слухового анализатора

Проводящий путь слухового анализатора (tractus n. cochlearis) осуществляет связь кортиева органа с вышележащими отделами ЦНС. Первый нейрон находится в спиральном узле (gangl. spirale), расположенном в основании полого улиткового веретена. Дендриты чувствительных клеток спирального узла проходят по каналам костной спиральной пластинки к спиральному органу и оканчиваются у наружных волосковых клеток. Аксоны спирального узла составляют слуховой нерв, вступающий в области мостомозжечкового угла в ствол мозга, где и заканчиваются синапсами с клетками дорсального и вентрального ядер.

Аксоны вторых нейронов от клеток дорсального ядра образуют мозговые полоски (striae medullares ventricule quarti), находящиеся в ромбовидной ямке на границе моста и продолговатого мозга. Большая часть мозговой полоски переходит на противоположную сторону и около средней линии погружается в вещество мозга, подключаясь к латеральной петле (lemniscus laterales); меньшая часть присоединяется к латеральной петле своей стороны. Аксоны вторых нейронов от клеток вентрального ядра участвуют в образовании трапециевидного тела (corpus trapezoideum). Большая часть аксонов переходит на противоположную сторону, переключаясь в верхней оливе и ядрах трапециевидного тела. Меньшая часть волокон оканчивается на своей стороне.

Аксоны ядер верхней оливы и трапециевидного тела (III нейрон) участвуют в образовании латеральной петли, в которой имеются волокна II и III нейронов. Часть волокон II нейрона прерывается в ядре латеральной петли (nucl. lemnisci proprius lateralis). Волокна II нейрона латеральной петли переключаются на III нейрон в медиальном коленчатом теле. Волокна III нейрона латеральной петли, пройдя мимо медиального коленчатого тела, заканчиваются в нижнем двухолмии среднего мохга, где формируется tr. tectospinalis. Те волокна латеральной петли, которые относятся к нейронам верхней оливы, из моста проникают в верхние ножки мозжечка и затем достигают его ядер, а другая часть аксонов верхней оливы направляется к мотонейронам спинного мозга. Аксоны III нейрона, расположенные в медиальном коленчатом теле, формируют слуховое сияние, которое заканчивается в поперечной извилине Гешля височной доли.

Низкие звуки воспринимаются клетками передних отделов верхней височной извилины, высокие звуки - в ее задних отделах. Нижнее двухолмие является рефлекторным двигательным центром, через который подключается tr. tectospinalis. Благодаря этому при раздражении слухового анализатора рефлекторно подключается спинной мозг для выполнения автоматических движений, чему способствует и подключение верхней оливы с мозжечком; подключается также медиальный продольный пучок, объединяющий функции двигательный ядер черепных нервов.

8.6.5. Центральное представительство слухового анализатора

Главным таламическим релейным ядром для слуховой информации является медиальное коленчатое тело. Как и в соматосенсорной и зрительной системах, область проекции релейных клеток на кору соответствует первичной слуховой коре. Первичной областью коры в соответствии с классификацией Вулси являются зона AI, которая окружена вторичными зонами AII, Ep, AIII, I и T (в настоящее время чаще для обозначения последних двух зон используются термины «инсуло-темпоральная кора» или зона I-T), и зона SII (SF).

Топографическое представительство в первичной соматосенсорной коре навело на мысль, что в слуховой коре имеются соответствующие представительства самой улитки (кохлеотопия) или мест локализации тонов вдоль улитки (тонотопия). В последние годы, исходя из результатов электрофизиологических исследований тонотопической организации нейронов, в слуховой области коры ростральнее зоны AI была выделена область, получившая название переднего слухового поля, а зона Ер была разделена на заднее и задневентральное поля – AAF, PAF, VPAF.

У человека корковым слуховым центром является поперечная височная извилина Гешля, включающая в себя в соответствии с цитоархитектоническим делением Бродмана поля 22, 41, 42, 44, 52 коры больших полушарий.

При использовании метода дегенерации терминалей было установлено, что основная часть волокон от задних отделов медиального коленчатого тела оканчивается в зоне AI слуховой области коры. Более точное распределение афферентных связей, идущих в слуховую область коры, было установлено с использованием траспорта активных веществ. Так, Андерсеном было установлено, что инъекция пероксидазы хрена в любую часть зоны AI метит группу нейронов, расположенных рострокаудально в вентролатеральном и овоидальном ядрах медиального коленчатого тела.

Следует отметить, что существует топическая организация этих связей, определяющих частотную топику слуховой области коры и медиального коленчатого тела. Аксоны клеток вентральной части медиального коленчатого тела оканчиваются только на клетках III и IV слоев слуховой области коры, на этих же клеточных элементах оканчиваются аксоны клеток дорсального ядра колечатого тела. Аксоны клеток медиальной части коленчатого тела оканчиваются на клетках I и IV слоев слуховой области коры. В общем виде принято считать, что каждая из зон слуховой области получает основную афферентацию от определенной части медиального коленчатого тела и незначительную афферентацию от других частей таламического уровня слуховой системы.

В заключение необходимо отметить наличие как внутрикорковых, так и межполушарных связей слуховой области коры. Так, каждая из основных зон слуховой области коры связана с другими зонами, организованными тонотопически. Кроме того, имеется гомотопическая организация связей между аналогичными зонами слуховой коры двух полушарий. При этом основная часть связей (94%) гомотопически оканчивается на клетках III и IV слоев и лишь незначительная часть – в V и VI слоях.

8.7. Вестибулярная сенсорная система.

Вестибулярный аппарат - система образований, включенная в костный (labyrinthus osseus) и перепончатый (labyrinthus membranaceus) лабиринт. Костный лабиринт вестибулярного аппарата образует преддверие и три полукружных канала.

Преддверие (vestibulum) - полость, которая сообщается сзади 5 отверстиями с полукружными каналами и спереди - с отверстиями канала улитки. На лабиринтной стенке барабанной полости, т. е. на латеральной стенке преддверия, имеется отверстие преддверия (fenestra vestibuli), где помещается основание стремени. На этой же стенки преддверия находится другое отверстие улитки (fenestra cochlea), затянутое вторичной мембраной.

Полость преддверия внутреннего уха разделяется гребешком (crista vestibuli) на два углубления: эллиптическое углубление (recessus ellipticus), - заднее, сообщается с полукружными каналами; сферическое углубление (recessus sphericus), - переднее, находится ближе к улитке. Из эллиптического углубления берет начало водопровод преддверия (aqueductus vestibuli) небольшим отверстием (apertura interna). Водопровод преддверия проходит через кость пирамиды и заканчивается в ямке на задней поверхности отверстием.

Костные полукружные каналы (canales semicirculares ossei) располагаются взаимно перпендикулярно в трех плоскостях. Однако они не параллельны основным осям головы, а находятся под углом 45° к ним. При наклоне головы вперед движется жидкость переднего полукружного канала, расположенного вертикально в сагиттальной плоскости. При наклоне головы вправо или влево возникают токи жидкости в заднем полукружном канале. Он находится также вертикально во фронтальной плоскости. При вращении головой движения жидкости происходят в боковом полукружном канале, лежащем в горизонтальной плоскости. Пять отверстий ножек каналов сообщаются с преддверием, так как один конец переднего канатика и один конец заднего канатика соединяются в общую ножку.

8.7.1. Перепончатый лабиринт

Перепончатый лабиринт вестибулярного аппарата располагается внутри костного и почти повторяет его очертания. Преддверие состоит из сферического мешочка (sacculus), находящегося в сферическом углублении костного лабиринта, и эллиптического мешочка (utriculus), лежащего в эллиптическом углублении. Мешочки сообщаются один с другим посредством соединяющего протока, который продолжается в эндоплазматический проток, заканчивающийся в соединительнотканном мешочке. В эллиптический мешочек также открываются полукружные каналы.

В стенках перепончатого лабиринта преддверия в области мешочков имеются участки чувствительных клеток - пятна (maculae). Поверхность этих клеток (макул) покрыта студенистой мембраной, содержащей кристаллы карбоната кальция - отолиты, которые раздражают рецепторы гравитации движением жидкости при изменении положения головы. В полукружных каналах желеобразная масса больше напоминает мембранную перегородку. Эта структура, купула, кристаллов не содержит. Слуховое пятно маточки является местом, где происходит восприятие раздражений, связанных с изменением положения тела по отношению к центру земного притяжения, а также вибрационных колебаний. На месте впадения полукружных каналов имеются расширения перепончатого лабиринта (ampullae).

Перепончатый лабиринт с помощью соединительнотканных волокон подвешен к стенкам костного лабиринта. Он имеет слуховые гребешки (cristae ampullares), формирующие складки в каждой ампуле. Направление гребешка всегда перпендикулярно по отношению к полукружному каналу. Гребешки имеют волоски рецепторных клеток. При изменении положения головы, когда происходит перемещение эндолимфы в полукружных каналах, возникает раздражение рецепторных клеток слуховых гребешков. Это вызывает рефлекторное сокращение соответствующей мускулатуры, выравнивающей положение тела и осуществляющей координацию движений наружных глазных мышц. Преддверие перепончатого лабиринта и часть полукружных каналов содержат чувствительные клетки, находящиеся в слуховых пятнах и слуховых гребешках, где воспринимаются токи эндолимфы. Из этих образований берет начало статокинетический анализатор, заканчивающийся в коре головного мозга.

В сенсорном эпителии макул и полукружных каналов находятся два морфологически различных типа рецепторных клеток, которые, очевидно, существенно не различаются своими физиологическими свойствами. Оба типа клеток несут на свободной поверхности субмикроскопические волоски (реснички), поэтому называются волосковыми. С помощью электронного микроскопа можно различить стереоцилии (по 60-80 на каждой рецепторной клетке) и киноцилии (по одной).

Рецепторы – это вторичные сенсорные клетки, т.е. они не несут собственных нервных отростков, а иннервируются афферентными волокнами нейронов вестибулярного ганглия, образующими вестибулярный нерв. На рецепторных клетках оканчиваются также эфферентные волокна. Афференты передают в ЦНС информацию об уцровне возбуждения рецепторов, а эфференты изменяют чувствительность последних, однако значение этого влияния до сих пор не совсем ясно.

Регистрация активности одиночных афферентных волокон вестибулярного нерва показала их относительно высокую регулярную активность покоя, т.е. импульсацию и в отсутствие внешних стимулов. Если желеобразную массу экспериментально сдвигать относительно сенсорного эпителия, такая активность увеличивается или уменьшается в зависимости от направления смещения. Эти изменения происходят следующим образом. Поскольку реснички погружены в желеобразную массу, при движении последней они отклоняются. Сдвиг пучка ресничек и служит адекватным стимулом для рецептора. Когда сдвиг направлен в сторону киноцилии, активируется соответствующее афферентное волокно: скорость его импульсации возрастает. При сдвиге в противоположную сторону частота импульсов снижается. Сдвиг в направлении, перпендикулярном данной оси, активности не изменяет.

Информация передается от рецепторной клетки в окончание афферентного нерва за счет рецепторного потенциала и неидентифицированного пока нейромедиатора. Наиболее существенно здесь то, что сдвиг (изгибание) ресничек – это адекватный стимул для вестибулярных рецепторов, увеличивающий или уменьшающий (в зависимости от своего направления) активность афферентного нерва. Таким образом, наблюдается морфологическая (по расположению ресничек) и функциональная (по характеру воздействия на активность) ориентация рецепторной клетки.

8.7.2. Рецепция в макулах

Реснички рецепторных клеток погружены в отолитовую мембрану, у которой за счет присутствия кристаллов кальцита плотность существенно выше, чем у эндолимфы, заполняющей остальную внутреннюю полость саккулуса (сферического мешочка) и утрикулуса (эллиптического мешочка, маточки). Значит, вследствие повсеместно присутствующего гравитационного ускорения всякий раз, когда сенсорный эпителий отолитового аппарата не занимает совершенно горизонтального положения, сила тяжести вызывает скольжение по нему всей отолитовой мембраны. Это перемещение изгибает реснички, т.е. действует адекватный стимул.

Таким образом, когда человек стоит вертикально, а его голова находится в «нормальном» положении, макула утрикулуса расположена почти горизонтально и отолитовая мембрана не прикладывает сдвигового усилия к покрытому ею сенсорному эпителию. При наклоне головы макула утрикулуса оказывается под углом к горизонту, ее реснички изгибаются и рецепторы стимулируются. В зависимости от направления наклона частота импульсации афферентного нерва либо увеличивается, либо снижается.

Ситуация с макулой саккулуса в принципе аналогична, но она при нормальном положении головы расположена почти вертикально. Таким образом, при любой ориентации черепа каждая из отолитовых мембран по-своему воздействует на сенсорный эпителий и возникает специфическая картина возбуждения нервных волокон. Поскольку в каждой макуле две популяции рецепторных клеток с противоположно ориентированными ресничками, нельзя сказать, что наклон головы в данном направлении активирует афференты. Напротив, в любом случае одни волокна активируются, а другие тормозятся. Такого положения головы, при котором активность всех нервных волокон упала бы до нуля, не существует.

Центральные компоненты вестибулярной системы, оценивая тип возбуждения вестибулярного нерва, информируют организм об ориентации черепа в пространстве. Обеспечение таких сведений – важнейшая функция отолитовых органов. Гравитационное ускорение – лишь одна особая форма линейных ускорений; естественно макулы реагируют и на другие виды ускорений. Однако ускорение силы тяжести настолько велико, что в его присутствии прочие линейные ускорения, встречающиеся в повседневной жизни (например, при разгоне автомобиля), играют для вестибулярной системы подчиненную роль и даже могут неправильно интерпретироваться ЦНС.

8.7.3. Рецепция в полукружных каналах

Второй вид адекватных стимулов для ресничек вестибулярных рецепторов воспринимается в полукружных каналах. Хотя реальная форма каналов не идеальная окружность, они действуют как замкнутые круговые трубки, заполненные эндолимфой. В области ампулы их наружная стенка выстлана сенсорным эпителием; здесь купула с глубоко утопленными в ней ресничками рецепторных клеток выступает в эндолимфу. Не содержащая минеральных включений купула полукружных каналов обладает точно такой же плотностью, что и эндолимфа. Следовательно, линейное ускорение (включая гравитационное) на этот орган не влияет; при прямолинейном движении и различных ориентациях головы взаиморасположение полукружных каналов, купулы и ресничек остается неизменным.

Иной эффект у углового (вращательного) ускорения. При повороте головы полукружные каналы, естественно, поворачиваются вместе с ней, однако эндолимфа в силу своей инерции в первый момент остается на месте. Возникает разность давлений по обе стороны купулы, соединенной со стенкой канала и образующей водонепроницаемую преграду, в результате чего она отклоняется в сторону, противоположную движению. Это вызывает сдвиговое усилие, приложенное к ресничкам, и, таким образом, изменяет активность афферентного нерва.

В горизонтальных каналах все рецепторы ориентированы так, что киноцилии обращены к утрикулусу, поэтому активность афферентов увеличивается, когда купула отклоняется в ту же сторону (утрикулопетально). В левом горизонтальном полукружном канале это происходит при вращении влево. В вертикальных каналах афференты активируются при утрикулофугальном отклонении купулы (от утрикулуса). Импульсация всех этих волокон, приходящих из трех каналов с каждой стороны, также оценивается ЦНС и дает информацию об угловых ускорениях, действующих на голову. Именно потому, что голова может вращаться вокруг трех пространственных осей – наклоняться вперед и назад, влево и вправо и поворачиваться вокруг длинной оси тела, необходимо именно три полукружных канала, лежащих в трех взаимоперпендикулярных плоскостях.При вращении вокруг какой-либо диагональной оси стимулируется более одного канала. Мозг при этом выполняет векторный аналих информации, определяя истинную ось вращения.

8.7.4. Проводящий путь вестибулярного аппарата

Проводящий путь статокинетического аппарата (tractus vestibularis) осуществляет передачу импульсов при изменении положения головы и тела, участвуя совместно с другими анализаторами в ориентировочных реакциях организма относительно окружающего пространства. Первый нейрон статокинетического аппарата находится в преддверном ганглии, залегающем на дне внутреннего слухового прохода. Дендриты биполярных клеток преддверного узла формируют преддверный нерв, образованный 6 ветвями: верхними, нижними, боковыми и задними ампулярными, утрикулярными и саккулярными. Они контактируют с чувствительными клетками слуховых пятен и гребешков, расположенных в ампулах полукружных каналов, в мешочке и маточке преддверия перепончатого лабиринта.

Чувствительные клетки слуховых пятен и гребешков воспринимают смещение эндолимфы полукружных каналов и преддверия перепончатого лабиринта при малейшем изменении положения головы, при прямолинейном ускорении и вращении в 3-х плоскостях. Аксоны, т. е. отростки биполярных клеток преддверного узла, образуют вестибулярную часть VIII пары черепных нервов совместно с улитковым нервом, который покидает пирамиду височной кости через внутреннее слуховое отверстие, в мостомозжечковом углу проникает в вещество дорсальной части моста и продолговатого мозга, достигая верхнего, латерального, медиального и спинального ядер. Незначительное число волокон, минуя ядра, направляется непосредственно в мозжечок к язычку, вершине, узелку, язычку червя, ядру шатра.

Лекция "19 - Общие закономерности системы кровообращения" также может быть Вам полезна.

Первичные афференты вестибулярного нерва оканчиваются главным образом в области вестибулярных ядер продолговатого мозга. С каждой стороны их по четыре, отличающихся друг от друга как анатомически, так и функционально: верхнее (Бехтерева), медиальное (Швальбе), латеральное (Дейтерса) и нижнее (Роллера) ядра. Приходящие в них импульсы от вестибулярных рецепторов сами по себе не обеспечивают точной информации о положении тела в пространстве, поскольку угол поворота головы из-за подвижности шейных суставов не зависит от ориентации туловища. ЦНС должна учитывать и положение головы относительно туловища. Следовательно, вестибулярные ядра получают дополнительную афферентацию от шейных рецепторов мышц и суставов. В вестибулярные ядра поступают соматосенсорные сигналы и от других суставов (ног, рук).

Между 4 вестибулярными ядрами существуют связи, а также двусторонние связи с ядрами ретикулярной формации. От преддверного латерального ядра начинается преддверно-спинномозговой путь (tractus vestibulospinalis), который проходит в передней части бокового канатика спинного мозга и заканчивается на мотонейронах передних столбов. Часть аксонов нейронов латерального ядра направляется в медиальный продольный пучок одноименной и противоположной сторон, который объединяет в одно целое функцию III, IV, V, VI пар черепных нервов. В свою очередь от медиального и спинального вестибулярных ядер аксоны направляются к ядрам глазодвигательного нерва противоположной стороны, а от верхнего ядра - к глазодвигательному ядру той же стороны. От медиального ядра аксоны идут к ядру отводящего нерва.

Таким образом, аксоны II нейрона 4 вестибулярных ядер образуют связи с мозжечком через вестибуломозжечковый путь (tractus vestibulocerebellaris), со спинным мозгом (передние столбы) через вестибулоспинальный путь (tractus vestibulospinalis), с ретикулярной формацией (среднего, заднего и продолговатого мозга) через вестибулоретикулярный путь (tractus vestibuloreticularis), с ядрами покрышки среднего мозга - через вестибулопокрышечный путь (tractus vestibulotectalis), с медиальным продольным пучком через одноименный тракт, непосредственно с ядрами III, IV, VI пар черепных нервов и ядрами таламуса.

Аксоны верхнего, латерального, медиального и спинального ядер преддверного нерва, помимо описанных связей, образуют внутренние дуговые волокна (fibrae arcuatae internae) в продолговатом мозге и, подсоединившись к пучку медиальной петли, достигают латерального ядра таламуса, где и образуют синаптические контакты с III нейроном. От таламуса волокна направляются в корковые центры равновесия, находящиеся в средней височной извилине, лобной и теменной долях. Вероятнее всего, эти клетки рассеяны по всей коре головного мозга.

Множество связей дают возможность вестибулярной системе играть центральную роль в генерировании двигательной эфферентации, обеспечивающей поддержание нужного положения тела и соответствующие глазодвигательные реакции. При этом вертикальная поза и походка определяются главным образом отолитовым аппаратом, а полукружные каналы управляют в основном направлением взгляда. Именно афферентация от полукружных каналов вместе с глазодвигательными механизмами обеспечивает зрительный контакт с окружающей средой при движениях головы. При ее вращении или наклоне глаза движутся в противоположном направлении, поэтому изображение на сетчатке не меняется. Горизонтальные компенсаторные движения глаз контролируются горизонтальным полукружным каналом, вертикальные – передним вертикальным каналом, вращение – задним вертикальным каналом.

Еще одна важная часть ЦНС, участвующая в этих процессах, - мозжечок, в который направляются некоторые первичные вестибулярные афференты (так называемый прямой сенсорный мозжечковый путь) помимо вторичных, о которых говорилось выше. Все они у млекопитающих оканчиваются в мозжечке мшистыми волокнами на клетках узелка и клочка, относящихся к древнему мозжечку, и частично язычка и около клочка старого мозжечка.

Свежие статьи
Популярно сейчас
Зачем заказывать выполнение своего задания, если оно уже было выполнено много много раз? Его можно просто купить или даже скачать бесплатно на СтудИзбе. Найдите нужный учебный материал у нас!
Ответы на популярные вопросы
Да! Наши авторы собирают и выкладывают те работы, которые сдаются в Вашем учебном заведении ежегодно и уже проверены преподавателями.
Да! У нас любой человек может выложить любую учебную работу и зарабатывать на её продажах! Но каждый учебный материал публикуется только после тщательной проверки администрацией.
Вернём деньги! А если быть более точными, то автору даётся немного времени на исправление, а если не исправит или выйдет время, то вернём деньги в полном объёме!
Да! На равне с готовыми студенческими работами у нас продаются услуги. Цены на услуги видны сразу, то есть Вам нужно только указать параметры и сразу можно оплачивать.
Отзывы студентов
Ставлю 10/10
Все нравится, очень удобный сайт, помогает в учебе. Кроме этого, можно заработать самому, выставляя готовые учебные материалы на продажу здесь. Рейтинги и отзывы на преподавателей очень помогают сориентироваться в начале нового семестра. Спасибо за такую функцию. Ставлю максимальную оценку.
Лучшая платформа для успешной сдачи сессии
Познакомился со СтудИзбой благодаря своему другу, очень нравится интерфейс, количество доступных файлов, цена, в общем, все прекрасно. Даже сам продаю какие-то свои работы.
Студизба ван лав ❤
Очень офигенный сайт для студентов. Много полезных учебных материалов. Пользуюсь студизбой с октября 2021 года. Серьёзных нареканий нет. Хотелось бы, что бы ввели подписочную модель и сделали материалы дешевле 300 рублей в рамках подписки бесплатными.
Отличный сайт
Лично меня всё устраивает - и покупка, и продажа; и цены, и возможность предпросмотра куска файла, и обилие бесплатных файлов (в подборках по авторам, читай, ВУЗам и факультетам). Есть определённые баги, но всё решаемо, да и администраторы реагируют в течение суток.
Маленький отзыв о большом помощнике!
Студизба спасает в те моменты, когда сроки горят, а работ накопилось достаточно. Довольно удобный сайт с простой навигацией и огромным количеством материалов.
Студ. Изба как крупнейший сборник работ для студентов
Тут дофига бывает всего полезного. Печально, что бывают предметы по которым даже одного бесплатного решения нет, но это скорее вопрос к студентам. В остальном всё здорово.
Спасательный островок
Если уже не успеваешь разобраться или застрял на каком-то задание поможет тебе быстро и недорого решить твою проблему.
Всё и так отлично
Всё очень удобно. Особенно круто, что есть система бонусов и можно выводить остатки денег. Очень много качественных бесплатных файлов.
Отзыв о системе "Студизба"
Отличная платформа для распространения работ, востребованных студентами. Хорошо налаженная и качественная работа сайта, огромная база заданий и аудитория.
Отличный помощник
Отличный сайт с кучей полезных файлов, позволяющий найти много методичек / учебников / отзывов о вузах и преподователях.
Отлично помогает студентам в любой момент для решения трудных и незамедлительных задач
Хотелось бы больше конкретной информации о преподавателях. А так в принципе хороший сайт, всегда им пользуюсь и ни разу не было желания прекратить. Хороший сайт для помощи студентам, удобный и приятный интерфейс. Из недостатков можно выделить только отсутствия небольшого количества файлов.
Спасибо за шикарный сайт
Великолепный сайт на котором студент за не большие деньги может найти помощь с дз, проектами курсовыми, лабораторными, а также узнать отзывы на преподавателей и бесплатно скачать пособия.
Популярные преподаватели
Добавляйте материалы
и зарабатывайте!
Продажи идут автоматически
5160
Авторов
на СтудИзбе
439
Средний доход
с одного платного файла
Обучение Подробнее