Популярные услуги

Тема 8. Основные системы мозга (часть 4)

2021-03-09СтудИзба

8.8. Кожно-кинестетическая сенсорная система.

Рецепторы, расположенные в коже, обеспечивают три типа чувствительности. Это - тактильная, температурная и болевая чувствительность.

Тактильные ощущения (осязание) сигнализируют об особенностях нашего непосредственного окружения и обеспечиваются наличием в коже различных типов механорецепторов. Они имеют различное морфологическое строение и улавливают различные характеристики механических воздействий.

Механорецепторы – сенсорные структуры животных и человека, воспринимающие различные механические раздражения из внешней среды или от внутренних органов. У позвоночных к механорецепторам относятся волосковые рецепторы органов слуха, боковой линии, вестибулярного аппарата, механочувствительные нервные окончания сердечно-сосудистой системы, внутренних органов, кожи, опорно-двигательного аппарата и др.

Механорецепторы делятся на два основных типа. Рецепторы 1-го типа обладают специализированными волосково-реснитчатыми структурами, участвующими в актах первичной рецепции, например, механорецепторы сенсорных органов. Рецепторы 2-го типа менее чувствительны к механическим воздействиям, не имеют специальных структур (ареснитчатые); восприятие стимула в этом случае осуществляет непосредственно механочувствительная мембрана нервного окончания (например, тканевые механорецепторы позвоночных).

Часто нервное окончание заключено в капсулу или связано с чувствительным шипиком или волоском. Например, у птиц и млекопитающих кожные механорецепторы представлены тельцами Мейсснера и Пачини, дисками Меркеля, рецепторами волосяного фолликула и т.д. У беспозвоночных механорецепцию осуществляют сенсорные щетинки, сенсиллы, статоцисты, хордотональные органы и др.

Важную роль в развитии, организации и деятельности механорецепторов играют условия обитания организмов. Так, у всех первичноводных животных развита система органов боковой линии, у организмов, пользующихся эхолокацией (летучие мыши, дельфины), механорецепторы органов слуха адаптированы к восприятию ультразвуков. В волосяном покрове млекопитающих наряду с механорецепторами простых волос появляются механорецепторы сторожевых волос и вибрисс. Развитие опорно-двигательного аппарата обусловило появление проприорецепторов, наиболее совершенных у млекопитающих, а развитие сердечно-сосудистой системы – возникновение и специализацию механорецепторов сердца и барорецепторов сосудов.

К механорецепторам относятся: барорецепторы, свободные нервные окончания, нервные окончания вокруг волос, диски Меркеля, тельца Мейсснера, тельца Пачини, колбы Краузе, тельца Руффини, тельца Гольджи-Маццони, сухожильные органы Гольджи, мышечные веретена.

8.8.1. Барорецепторы

Рекомендуемые материалы

Барорецепторы (baros - тяжесть + recipio - принимаю), бароцепторы, прессорецепторы, - вид механорецепторов, чувствительные нервные окончания в кровеносных сосудах, воспринимающие изменения кровяного давления и рефлекторно регулирующие его уровень; приходят в состояние возбуждения при растяжении стенок сосудов. Барорецепторы имеются во всех сосудах; скопления их сосредоточены преимущественно в рефлексогенных зонах (сердечной, аортальной, синокаротидной, легочной и др.). При повышении кровяного давления барорецепторы посылают в ЦНС импульсы, подавляющие тонус сосудистого центра и возбуждающие центральные образования парасимпатического отдела вегетативной нервной системы, что ведет к понижению давления.

8.8.2. Свободные нервные окончания

Свободные нервные окончания - наиболее распространенный вид кожных рецепторов, связан главным образом с немиелинизированными волокнами, составляющими примерно 80% кожных афферентов. Со свободными окончаниями связаны также и средние мякотные волокна, диаметр которых обычно менее 6 мкм. Хотя исследователи и по сей день употребляют термин “свободные нервные окончания”, строго говоря, окончания не являются таковыми, т. к. они в той или иной степени окружены оболочкой из шванновских клеток и обязательно основной мембраной. Вместе с тем несомненно, что из всех видов афферентных нервных окончаний они более всего свободны от вспомогательных структур.

В дерме на участках, покрытых толстым эпидермисом и имеющих высокие сосочки, основная масса свободных нервных окончаний находится в сосочках. Там же, где слой эпидермиса невелик и его граница с дермой не очень извитая, нервные волокна образуют горизонтальные плексиформные разветвления, расположенные в поверхностных слоях дермы. В эпидермисе большинство свободных нервных окончаний располагается в нижних слоях, однако в некоторых местах, например, в пальцах рук, они наблюдаются в большом количестве и в зернистом слое. В роговом слое окончания постепенно истончаются и атрофируются.

Непрерывный регенеративный рост (вместе с эпидермисом) инфрадермальных нервных волокон обеспечивает восстановление рецепторов. Свободные нервные окончания часто сильно ветвятся, в результате чего одно нервное волокно может иннервировать большую площадь: например, в роговице эта область может достигать 0,5 см2. Области иннервации отдельных нервных волокон обычно значительно перекрывают друг друга.

8.8.3. Нервные окончания вокруг волос

Нервные окончания вокруг волос – разновидность механорецепторов. В волосяном покрове содержатся волоски нескольких видов: обычные, сторожевые и чувствительные волоски – вибриссы (синусные волосы). Наиболее сложно устроены вибриссы, которые отсутствуют у человека, но встречаются у многих приматов и других млекопитающих. Они обычно локализуются на щеках и вокруг ротового отверстия. Волосяные фолликулы богато иннервированы и поэтому волоски являются высокочувствительными механорецепторными образованиями кожи. Нервные окончания, заложенные в обычных волосяных фолликулах, очень многочисленны и представляют собой сеть тонких немиелинизированных нервных волокон, плотно оплетающих структуры волосяной сумки.

Рецепторы волосяного мешочка связаны с мякотными нервными волокнами, большинство из которых имеет диаметр более 6 мкм. Каждый волос иннервируется несколькими волокнами. В свою очередь то же волокно может иннервировать большое количество волос. Так, в ухе кролика одно волокно может иннервировать около 300 волосяных фолликулов (1 см2). Таким образом, зоны иннервации отдельных волокон широко перекрывают друг друга. Каждое немиелизированное волокно в волосяной сумке окружено шванновскими клетками, которые как бы сплющивают нервное окончание, отгораживая его от окружающих образований.

Нервные окончания содержат большое количество митохондрий, микровезикул и гранул, по-видимому, гликогена. Шванновские клетки содержат значительное количество пиноцитозных пузырьков. Вибриссы имеют обычно длинный и тонкий волос, выходящий из фолликула, обладающего рядом характерных морфологических свойств и, прежде всего, наличием кровеносного синуса, который окружает наружную корешковую оболочку. Благодаря существованию синуса вибриссы и получили название синусных волосков. Вибриссы обладают иннервацией, в целом аналогичной, но еще более богатой, чем обычные волоски. Свыше 100 волокон могут проникать внутрь капсулы и образовывать внутри нее свои разветвления. У вибриссы можно обнаружить тельца Меркеля, Гольджи-Маццони, различные ланцетовидные окончания, окончания немиелизированных волокон.

8.8.4. Диски Меркеля

Диски Меркеля – вид механорецепторов, образующихся в нижней части эпидермиса за счет свободных нервных окончаний совместно с модифицированными эпителиальными структурами. Они наиболее часто встречаются в области пальцев рук, где иногда могут быть связаны мякотными нервными волокнами с тельцами Мейсснера. Безмякотные волокна, отходящие от нескольких рецепторов Меркеля, могут объединяться в одно толстое миелинизированное волокно, образуя единую сенсорную структуру довольно сложного строения (тактильная корпускула). Эти структуры встречаются в волосистой коже и представляют собой образования диаметром 100-500 мкм, возвышающиеся над поверхностью кожи. Часто они закрывают выход больших сторожевых волосков, но могут располагаться и вне их. Ядро такого тельца образует плотная коллагеновая ткань.

Рецепторные окончания (тельца Меркеля) локализуются непосредственно под базальной мембраной утолщенного и модифицированного эпидермиса. В одной корпускуле может находиться 30-50 телец Меркеля. Одно мякотное волокно (диаметр 9,5 мкм) может быть связано с 2-3 тактильными корпускулами. В корпускулу могут проникать и тонкие дополнительные миелинизированные волокна. В основании корпускулы имеется обширное скопление капилляров. Основу воспринимающей структуры тактильной корпускулы образует дископодобно расширяющееся окончание афферентного волокна с тесно примыкающей к нему специальной клеткой Меркеля.

Нервное окончание содержит большое количество митохондрий. Клетка Меркеля характеризуется пальцеобразными выростами, проникающими в окружающие структуры. В цитоплазме клетки содержится большое количество гранулированных везикул диаметром 800-1000 ангстрем. Клетки Меркеля имеют десмосомные, а также синапсоподобные контакты с нервным окончанием. Вблизи этих контактов наблюдается скопление гранулированных везикул. Однако типичные синаптические везикулы, которые могли бы рассматриваться как структуры, содержащие медиатор, среди них отсутствуют.

Диски Меркеля в настоящее время являются единственной структурой среди тканевых механорецепторов, у которых на основании морфологических данных можно было бы предполагать наличие специализированных рецептирующих клеток. Существует мнение, что клетки Меркеля, которые проникают в эпидермис во время внутриутробного развития, являются всего лишь своего рода вспомогательной

8.8.5. Тельца Мейсснера

Тельца Мейсснера – вид механорецепторов, обнаруженный в коже, лишенной волосяного покрова. Они располагаются в сосочковом слое дермы и локализуются преимущественно в пальцах рук и ног, ладонях, подошвах, губах, языке, половых органах, сосках. Тельца имеют конусообразную или овальную форму (90-120 мкм в длину). Их длинная ось располагается перпендикулярно поверхности кожи. Снаружи тельце Мейсснера окружено тонкой соединительнотканной капсулой, тесно связанной с окружающими тканями. Собственно тельце образуется большим количеством пластинчатых клеток, между которыми ветвятся нервные волокна, идущие параллельно поверхности кожи.

Одиночный рецептор может иннервироваться 2-6 (до 9) толстыми мякотными волокнами, которые после вхождения в тельце теряют миелин. В свою очередь одно и то же волокно может разветвляться и иннервировать несколько телец. Иногда помимо толстых нервных волокон к рецептору подходят и тонкие волокна, которые рассматриваются некоторыми исследователями как эфферентные структуры.

Нервные окончания в тельце содержат большое количество митохондрий и везикул различного размера. Обилие митохондрий является характерной чертой всех рецепторов, говорящей об очень высоком уровне обменных процессов. Однако кровеносные сосуды, обеспечивающие приток питательных веществ, никогда не проникают в тельца Мейсснера. В пластинчатых клетках телец Мейсснера встречаются неизвестной природы везикулы, расположенные вдоль поверхностной мембраны.

8.8.6. Тельца Пачини

Тельца Пачини - наиболее крупные (у человека 4-5 мм в длину и 1-2 мм в ширину) и одни из наиболее дифференцированных рецепторных образований в тканях. Они локализуются примерно в тех же областях, что и тельца Мейсснера, но располагаются глубже, в нижних слоях дермы и в подкожной жировой клетчатке. Они состоят из многослойной наружной капсулы, внутренней колбы и немиелинизированного нервного окончания, связанного с мякотным нервным волокном. Пространство между пластинами капсулы заполнено ликвором.

Наружная капсула телец Пачини образована концентрически организованными пластинами, расстояния между которыми уменьшаются по мере приближения к внутренней колбе. Каждый слой наружной капсулы образован несколькими плоскими клетками толщиной порядка 0,2 мкм. Края клеток плотно соприкасаются, образуя непрерывную пластину. Слои поддерживаются значительным количеством коллагеновых волокон и базальными мембранами. Соединений между соседними слоями относительно немного. Их значительно больше лишь во внутренних 5 - 10 слоях (зона роста), являющихся переходной областью к внутренней колбе.

На поверхности тельца несколько пластин, тесно связанных друг с другом, образуют единую наружную оболочку всей капсулы рецептора. В ней отсутствуют какие-либо отверстия, что делает ее непроницаемой даже для ионов. Внутренняя колба в тельцах Пачини образована тесно прилегающими друг к другу пластинами (их около 60), которые разделены узкой щелью на две равные симметричные части. В центре пластинчатые структуры вплотную примыкают к нервному волокну, которое на поперечном срезе имеет вид эллипса. Хорошо заметная щель, разделяющая внутреннюю колбу, точно совпадает с направлением большой поперечной оси нервного окончания.

Тельца Пачини иннервируются толстыми мякотными волокнами диаметром от 3 до 13 мкм (в среднем 5-7 мкм). К каждому тельцу подходит одно волокно, которое обычно в месте вхождения во внутреннюю колбу теряет миелин, сужается, а затем вновь увеличивается в размерах. Внутри наружной капсулы миелиновое волокно имеет 1 - 2 перехвата Ранвье. Мякотное нервное волокно внутри наружной капсулы имеет весьма извитой ход, а его протяженность колеблется от 50 до 500 мкм.

Немиелинизированное нервное окончание не ветвится, а у телец правильной формы, которые чаще встречаются в брыжейке, чем в подкожных тканях, оно идет прямо в середине внутренней колбы, вплоть до ее дистального конца, где оканчивается утолщением или дихотомическим разветвлением. В области внутренней колбы нервное волокно имеет форму эллиптического цилиндра, поперечные размеры которого у телец правильной формы довольно постоянны: большая поперечная ось - 5,5-5,7 мкм, а малая поперечная ось - 2,5-2,6 мкм.

8.8.7. Колбы Краузе

Колбы Краузе – инкапсулированные механорецепторы, расположенные в подсосочковом слое дермы. Они представляют собой сферические, окруженные соединительнотканной капсулой образования, внутри которых нервные волокна образуют сложную систему переплетений.

8.8.8. Тельца Руффини

Тельца Руффини - инкапсулированные механорецепторы, расположенные в глубине дермы, представляют собой веретенообразные структуры, окруженные капсулой. Сложно переплетенные коллагеновые волокна составляют основу рецептора. Они тесно связаны как с коллагеновыми пучками окружающих тканей, так и с многочисленными разветвлениями афферентного нервного волокна. Одно основное волокно (диаметр 5 - 10 мкм) связано с несколькими кустиковидными образованиями. Внутрь капсулы рецептора может проникать дополнительное волокно. Внутрикапсулярное пространство достаточно велико и заполнено жидкостью неизвестного состава.

8.8.9. Тельца Гольджи-Маццони

Тельца Гольжжи-Маццони - инкапсулированные механорецепторы, сходные с тельцами Пачини, однако имеющие меньшие размеры. Некоторые авторы рассматривают тельца Гольджи-Маццони не как самостоятельные рецепторы, а как разновидности колб Краузе и телец Пачини.

8.8.10. Сухожильные органы Гольджи

Сухожильные органы Гольджи - механорецепторы опорно-двигательного аппарата, располагаются в сухожилиях обычно на границе мышечной и сухожильной тканей, в опорных участках капсул суставов, в наружных и внутренних суставных связках. Сухожильные органы представляют собой основные нервные окончания сухожилий, имеющие очень большое значение при осуществлении двигательных актов.

Сухожильные органы описаны у всех групп позвоночных. Сложность их строения возрастает в ходе эволюции. Это выражается в развитии капсулы, которой снабжены рецепторы у птиц и млекопитающих, увеличении количества разветвлений основного нервного волокна, оплетающих элементов сухожильных тканей. Сухожильные органы Гольджи представляют собой структуру вытянутой веретенообразной или цилиндрической формы, размер которой у человека в длину достигает 1 мм. К рецептору подходит одиночное толстое мякотное волокно (8-15 мкм в диаметре), а также более тонкое миелинизированное волоконце, функция которого неизвестна. Некоторые исследователи полагают, что эти волоконца при участии свободных нервных окончаний, оплетающих рецептор, могут обеспечивать появление болевого ощущения при значительных деформациях.

Основное волокно распадается вблизи концевого органа на ряд веточек, которые в свою очередь образуют многочисленные кустиковидные разветвления, оплетающие сухожильные волокна. Сухожильные волокна, проникающие в капсулу рецептора, мельче и не так плотно упакованы в пучки, как снаружи. Нервные окончания обычно отделены от сухожильных волокон цитоплазмой шванновских клеток и материалом основной мембраны и лишь в отдельных местах прямо контактируют с ними. Капсула рецептора покрыта соединительной тканью и элементами оболочки нервного волокна.

К рецептору подходят кровеносные сосуды. К сухожильному органу часто примыкают свободные нервные окончания и различные инкапсулированные рецепторы: пачиниподобные тельца, тельца Гольджи - Маццони. В ряде случаев сухожильные органы соединены последовательно с мышечными веретенами. При таком расположении сухожильные органы Гольджи должны включаться в работу при активации интрафузальных мышечных волокон.

8.8.11. Мышечные веретена

Мышечные веретена – механорецепторы, неравномерно распределяемые в теле животных и человека. В отдельных мышцах, таких как экстраокулярные мышцы у кошки и кролика они вообще отсутствуют (встречаются в аналогичных мышцах у человека). Всего 1-2 веретена обнаружены в мелких мышцах хвоста крысы. В крупных мышцах человека их может быть до нескольких сот. Наибольшая плотность обнаружена в небольших мышцах рук, совершающих тонкие высококоординированные движения.

Как и в других рецепторах, в мышечном веретене имеются вспомогательные структуры, представленные специализированными поперечнополосатыми мышечными волокнами, получившими название интрафузальных (в отличие от обычных экстрафузальных волокон мышечной ткани), а также капсулой рецептора, заполненной жидкостью. Расположение мышечных веретен таково, что они включены как бы параллельно основным экстрафузальным волокнам скелетной мышцы. При сокращении экстрафузальных мышц интрафузальные волокна с окружающими их нервными волокнами испытывают меньшую нагрузку, т.е. разгружаются. Сухожильные органы, напротив, расположены последовательно с экстрафузальными волокнами и при их сокращении испытывают возрастающую нагрузку.

Интрафузальные волокна получают моторную иннервацию, благодаря которой они активно участвуют в деятельности мышечных рецепторов. Собственно рецептирующими элементами веретена являются окончания тонких нервных волоконец, оплетающих структуры интрафузальных мышц в их центральной зоне. Основу веретена составляют пучки параллельно распложенных интрафузальных волокон. Число волокон, их размер может сильно варьировать. Так у рептилий имеется всего одно волокно, у земноводных (лягушки) – 3-12, у млекопитающих (кошки) – 2-13. Диаметр волокон может колебаться от 6 до 28 мкм, при этом в составе даже одного пучка могут оказаться как толстые, так и тонкие волокна. Длина волокон может достигать нескольких миллиметров.

Волокна, входящие в состав веретена, могут начинаться от разных экстрафузальных волокон, но сходятся они у дистального конца. В 50-х годах 20 века было впервые обнаружено существование двух типов веретен. Обнаруженные различия между веретенами относились к строению экваториальной области интрафузальных волокон. В полярных областях интрафузальных волокон хорошо видны ядра, рассеянные в основном по периферии волокна, как это имеет место в обычных экстрафузальных мышечных волокнах. Ближе к центральной области, где волокно покрывается капсулой, в нем появляются дополнительные ядра, располагающиеся преимущественно в центре, аналогично тому, как это бывает в сердечной или в развивающейся скелетной мышце. Концентрация ядер достигает максимума в центре волокна. Это и послужило основанием называть центральную зону волокна областью ядерной сумки. Следует заметить, что никакой специальной сумки для ядер, иной, чем сарколемма самого волокна, нет. Волокна такого типа получили наименование волокон с ядерной сумкой – ЯС-волокон.

У волокон другого типа, которые в большинстве случаев являются более тонкими и короткими, концентрация ядер в экваториальной области меньше, и они располагаются в ряд, образуя цепочки. Такие волокна получили название волокон с ядерной цепочкой – ЯЦ-волокон. У некоторых животных, например, кроликов, ЯЦ-волокна отсутствуют. У ЯС-волокон экваториальная зона отделена от остального волокна переходной областью (область миотрубки). Какой-либо резкой границы между миотрубкой и обычными частями интрафузального волокна нет.

У волокон обоих типов центральная ядерная область невелика, достигает всего лишь 300 мкм (у человека длина 100-250 мкм), а при растяжении – 500 мкм. В обоих случаях миофибриллы в центральной области истончаются и образуют очень тонкий слой. В ЯЦ-волокнах миофибриллы содержатся в большем количестве, чем в ЯС-волокнах. Вблизи экваториальной области отмечается наличие эластической ткани. Число ЯЦ- и ЯС-волокон сильно варьирует в разных мышцах и у разных животных. Например, в крупных веретенах человека, где общее число волокон достигает 14, 3-4 волокна относятся к ЯС-волокнам, а остальные – к ЯЦ-волокнам. ЯЦ-волокна чаще встречаются у животных, обладающих более тонкой координацией движений.

Центральная область обычных волокон, входящих в состав одного веретена, окружена капсулой. Величина ее может достигать у человека 5 мм. ЯС-волокна и длинные ЯЦ-волокна могут простираться далеко за пределы капсулы. Наибольшего размера (80-200 мкм) капсула достигает в средней части. Упругость капсулы, так же как и интрафузальных волокон, увеличивается за счет эластических волокон.

В центральной области веретена, где капсула отходит от интрафузальных волокон, имеется периаксональное пространство, заполненное жидкостью. По мнению ряда исследователей, это пространство связано с лимфатической системой, и его поэтому можно назвать лимфатическим. Однако во внутрикапсулярной жидкости обнаружено большое количество кислых мукополисахаридов. Такое отличие в составе лимфы и жидкости капсулы заставляет предположить, что гиалуроновые кислоты образуются оболочкой веретена. Таким образом, можно полагать, что между лимфатическим пространством и внутрикапсулярным пространством имеется диффузный барьер, затрудняющий проникновение веществ через капсулу веретен.

8.8.12. Терморецепция

Терморецепция (therme - тепло + recipio - принимаю) - восприятие изменений температуры нервной тканью, сопровождающееся возникновением нервных импульсов с последующей передачей сигналов в ЦНС. Доказано наличие терморецепторов у пойкилотермных животных, включая беспозвоночных. У гомойотермных животных и человека терморецепторы распределены как на поверхности тела (кожа, подкожные сосуды), так и во внутренних органах (верхние дыхательные пути, пищеварительный тракт). Терморецепторы (центральные термосенсоры) обнаружены в разных отделах мозга (в гипоталамусе, ретикулярной формации, спинном мозге). Изменение температуры окружающей среды воспринимается как изменение активности терморецепторов разных типов: механохолодовых, холодовых, тепловых. Температурные ощущения возникают вследствие интеграции в ЦНС импульсов от терморецепторов разных типов.

Морфология терморецепторов

Наряду с подробным изучением в последние десятилетия функциональных свойств терморецепторов морфологический субстрат температурной чувствительности продолжал оставаться в значительной мере «белым пятном» в изучении сенсорных систем. Обнаружение в конце XIX века точечного распределения на коже человека участков, высоко чувствительных к теплу и холоду, позволило постулировать наличие в коже двойного набора самостоятельных рецепторов.

Согласно ставшей классической концепции Фрея, специфичной температурной чувствительностью обладают инкапсулированные нервные окончания в коже. Несмотря на шаткость гистологических обоснований, простая и стройная концепция, утверждающая, что колбы Краузе – это холодовые рецепторы, а тельца Руффини – тепловые, оказалась на редкость долговечной. Лишь в 50-х годах XX века начали появляться гистологические исследования, опровергающие эту мнимую аксиому.

После развенчания колб Краузе и телец Руффини как инкапсулированных нервных окончаний, специфически реагирующих на температуру, многие авторы начали склоняться к мнению, что все терморецепторы представлены свободными безмякотными терминалями сенсорных систем, не связанными со специализированными структурами. Правдоподобность этого допущения подкреплялась тем, что импульсы от многих терморецепторов проводятся безмякотными волокнами С. Морфологические исследования подтвердили обилие свободных нервных окончаний в коже.

Несомненным шагом вперед в изучении морфологии терморецепторов было более подробное морфофункциональное исследование так называемых осязательных телец, впервые обнаруженных Меркелем в 1880 г. С помощью применения электронной микроскопии было установлено, что они относятся к медленноадаптирующимся механорецепторам (тип SAI) и реагируют на деформацию поверхности кожи, а также на ступенчатое ее охлаждение. В коже кошки эти рецепторы образуют группы, расположенные под эпидермисом на глубине 30-40мкм, причем каждый из них снабжается одной из веточек сенсорного миелинового волокна. Теряя миелин, каждая терминаль заканчивается нервной пластинкой диаметром 8-10мкм и толщиной 1-3мкм. Описаны также медленноадаптирующиеся механорецепторы типа SAII, реагирующие на быстрое охлаждение.

Рецепторы кожных и подкожных сосудов обнаруживают не менее специфическую чувствительность к охлаждению, чем кожные холодовые рецепторы, хотя в сосудистой стенке и отсутствуют структуры, подобные найденным в коже. Экспериментальные данные указывают на то, что проведение холодовых импульсов от сосудов осуществляют тонкие миелиновые волокна Аσ, поскольку скорость проведения от крупных подкожных вен составляет 8-15м/с, а от мелких подкожных сосудов – 4-13м/с. О структуре тепловых рецепторов в коже млекопитающих до сих пор ничего не известно.

Проводящие пути терморецепции

Согласно классической концепции, обоснованной клинико-анатомическими и анатомо-гистологическими исследованиями, у человека термическая чувствительность обеспечивается спиноталамическим трактом: первый заднекорешковый нейрон контактирует со вторым нейроном в задних рогах спинного мозга. Аксон этого нейрона переходит на уровне того же или смежных сегментов на противоположную сторону и направляется краниально, заканчиваясь в передних ядрах таламуса.

Весь путь проведения импульсов от терморецепторов до соматосенсорного представительства в коре полушарий был прослежен применительно к тригеминальной зоне. То, что регистрация импульсной активности в клетках гассерова узла у обезьян при раздражении холодовых рецепторов языка в точности воспроизводила ритмическую и фазовую активность рецепторов, вполне понятно, но и отведение потенциалов отдельных клеток вентромедиальной зоны таламуса у кошек и мартышек саймири показало учащение спонтанной активности таламических нейронов на протяжении всего времени охлаждения языка.

Таким образом, вопреки значительной конвергенции на центральных нейронах импульсов от рецепторов различной модальности при отведении от таламуса на фоне имеющейся нейронной активности удается отчетливо различить характерные реакции периферических холодовых рецепторов.

Ряд исследователей изучали поступление импульсов от тепловых и холодовых рецепторов мошонки крысы к нейронам задних рогов спинного мозга и к нейронам вентробазальных ядер таламуса. 72% изученных таламических нейронов реагировали на изменение кожной температуры только в пределах 31-40оС, причем 82% из них реагировали на согревание кожи учащением импульсов, а 18% - урежением. Авторы отмечают, что поступающая с периферии информация, достигая таламического уровня, подвергается существенной переработке.

В следующей работе в соматосенсорной зоне коры крысы было обнаружено 66 нейронов (из 165 изученных), отвечающих за термическое раздражение мошонки, причем также в зоне 32-41оС. В отличие от таламических нейронов, преобладающей реакцией корковых нейронов на согревание кожи было урежение импульсации.

Отмечены интересные особенности реакции нейронов сенсомоторной зоны коры кролика в ответ на термические раздражения кожи. 73% обследованных нейронов реагировали на термические раздражения латеральной поверхности бедра кролика. При этом нейроны с более высокой частотой фоновой импульсации отражали свойства периферических холодовых рецепторов, а нейроны с малой частотой импульсации – свойства тепловых рецепторов.

Глубокие термочувствительные структуры

Поиски нервных центров, ответственных за поддержание постоянства температуры тела, были начаты более ста лет назад с использованием методов перерезок, экстирпаций и раздражения. В итоге выяснилось, что за регуляцию теплоотдачи ответственна передняя область гипоталамуса, тогда как ядра его заднего отдела осуществляют регуляцию теплообразования и нередко обозначаются как «центр сохранения тепла».

К переднему отделу гипоталамуса относятся парные паравентрикулярные супраоптические и супрахиазменные ядра, а также медиальные преоптические ядра. К заднему отделу гипоталамуса – области мамиллярных тел – относятся медиальные, латеральные и промежуточные ядра.

Первые экспериментальные факты, показывающие, что реакции терморегуляции могут быть вызваны изменениями температуры мозга, были получены в опытах с согреванием или охлаждением крови в сонных артериях кроликов и собак. Авторы этих работ не сомневались, что на изменения температуры крови реагируют нейроны, омываемые этой кровью. Значительно позже было развито представление о наличии в переднем отделе гипоталамуса истинных терморецепторов, реагирующих на повышение температуры.

Центры заднего отдела гипоталамуса, согласно этой концепции, не обладают термической чувствительностью и представляют собой синаптические реле, к которым стекаются афферентные импульсы от кожных холодовых рецепторов и тепловых рецепторов медиальной преоптической области, причем последние оказывают тормозящее влияние.

Локальное изменение температуры переднего отдела гипоталамуса в термонейтральных условиях внешней среды вызывает адекватные физиологические реакции терморегуляции. Нагреванием гипоталамуса стимулируется тепловая одышка, периферическая вазодилатация и тормозится холодовая дрожь, если она имела место, в результате чего ректальная температура снижается. Наоборот, охлаждением гипоталамуса можно вызвать вазоконстрикцию, повышение теплопродукции, дрожь и торможение имевшейся у животного тепловой одышки, приводящие к повышению ректальной температуры.

Начало изучению термочувствительности спинного мозга было положено в лаборатории Тауэра в 1964г. При изучении механизмов терморегуляции авторы отошли от обычной схемы сопоставления: температура мозга – температура кожи. У собак, погруженных в ванну, поддерживали устойчивую кожную и мозговую температуру, а реакции терморегуляции вызывали введением в желудок холодной либо нагретой воды. В дальнейшем, для изучения термочувствительности спинного мозга была разработана методика эпидурального введения, а позже и хронической имплантации в позвоночный канал термода с проточной водой.

Перерезка задних корешков спинного мозга, исключающая возможность рефлекторных влияний с периферии, не препятствовала появлению дрожи при охлаждении спинного мозга. Локальное согревание спинного мозга кроликов вызывало периферическую вазодилатацию и учащение дыхания. Таким образом, выяснилось, что изменения температуры спинного мозга отражаются на обеих сторонах терморегуляции – теплообразовании и теплоотдаче.

В результате экспериментальной работы ряда авторов выяснилось, что не только сенсорные элементы, но и мотонейроны передних рогов спинного мозга чувствительны к локальным изменениям температуры. Умеренное охлаждение (до 36,2оС) снижает порог ортодромной и антидромной стимуляции α-мотонейронов, и это повышение возбудимости связано с деполяризующим действием холода, уменьшающего исходную величину мембранного потенциала. Противоположное действие согревания до 39-40оС выражается в гиперполяризации мотонейрона и снижении его возбудимости.

8.8.13. Ноцицепция

Ноцицептивная чувствительность (noceo – повреждаю + receptivus – восприимчивый) – чувствительность к действию раздражителя, вызывающего в организме ощущение боли. Полагают, что возникающая в ответ на раздражение боль как комплексная функция в наиболее полной мере свойственна только организму человека. У животных также возникают подобные процессы, но они не идентичны тем, которые наблюдаются у человека. Раздражение воспринимается как экстеро-, так и интерорецепторами (ноцицепторами).

Некоторые исследователи относят к ним специализированные, свободные немиелизированные нервные окончания и считают, что они специфичны, подобно фото- или фонорецепторам; другие считают, что ноцицептивным может быть любое возбуждение по достижении раздражителем определенного порога. Предполагают, что по характеру возникновения возбуждения ноцицепторы относятся к хеморецепторам. Химическими раздражителями при этом служат вещества, которые до раздражения находятся в клетке (брадикинины, ионы калия). Ноцицептивное возбуждение передается в ЦНС по тонким безмякотным волокнам типа С, но не исключена возможность участия в этом процессе волокон типа А и В. Существуют вариации ноцицептивной чувствительности до полного ее отсутствия, наблюдаемого при аналгии.

Боль - психофизиологическая реакция животных и человека на повреждающий раздражитель, вызывающий в организме органические или функциональные нарушения. Важнейший компонент боли - субъективные ощущения, носящие характер страдания. Боль - врожденная сигнальная реакция, но в течение жизни условнорефлекторные компоненты могут облегчать или усиливать ее.

Принято рассматривать боль как нейрофизиологический феномен, имеющий периферический и центральный механизмы, причем последние играют ведущую роль в формировании боли. С развитием электрофизиологических методов было установлено, что кроме проведения возбуждения спинной мозг выполняет функции модулятора афферентных возбуждений, в частности болевых. Особую роль при этом играют клетки так называемой желатинозной субстанции, находящейся в боковых рогах спинного мозга.

При повреждающем (ноцицептивном) раздражении кожи и внутренних органов в головном мозге возникает восходящий поток активации, обуславливающий генерализованное возбуждение коры больших полушарий. В обеспечении этого процесса особую роль играет ретикулярная формация. Важное значение придают и другим подкорковым структурам: таламусу, гипоталамусу, лимбической системе. Коре больших полушарий отводится решающая роль в осознании боли и в проекции болевого ощущения на определенную область тела.

Эмоциональные компоненты - функции преимущественно подкорковых образований. В механизмах обработки поступающей с периферии информации важную роль играют ацетилхолин-, норадреналин-, серотонинергические системы. Биологическое значение боли определяется тем, что она вызывает оборонительную реакцию, направленную на сохранение целостности живого организма. Сигнальное, охранительное значение боль имеет до определенного предела, за которым она превращается в фактор, способствующий развитию болезненных изменений в организме. В нейрохимических механизмах регуляции боли важная роль принадлежит нейропептидам - эндорфинам и энкефалинам.

Эндорфины, эндогенные морфины – пептиды с морфиноподобным действием, вырабатывающиеся в ЦНС позвоночных (преим. в лимбической системе, гипофизе, гипоталамусе); участвуют в нейрохимических механизмах болеутоления, уменьшают двигательную активность желудочно-кишечного тракта. Выделены в чистом виде из гипофиза. По химическому строению совпадают с С-концевыми фрагментами полипептидного гормона гипофиза b-липотропина. Известны альфа-эндорфин (фрагмент с 61 по 76 аминокислотный остаток b-липотропина; мол. масса 1746), β-эндорфин (фрагмент 61-91; мол. масса 3699) и γ-эндорфин (фрагмент 61-77; мол. масса 1859).

Молекулы всех эндорфинов содержат структуру метионин-энкефалина (фрагмент 61-65 b-липотропина), также проявляющего морфиноподобное действие. Эндорфины образуются при протеолизе высокомолекулярного белка-предшественника проопиомеланокорт ина, в состав молекулы которого входят структуры кортикотропина, меланоцитстимулирующего гормона и b-липотропина. В ткани мозга эндорфины, как морфин и энкефалины, связываются с опиатными рецепторами.

Обезболивающее действие эндорфинов наблюдается лишь при их введении непосредственно в мозг. Наибольшая морфиноподобная активность – у β-эндорфинов. Предполагают, что эндорфины могут быть медиаторами или модуляторами торможения боли. Действуя на ЦНС, эндорфины вызывают седативный (успокаивающий) и каталептический (оцепеняющий) эффекты. Эндорфины могут стимулировать или подавлять секрецию гормонов гипофиза. В нервных процессах регуляции боли и обезболивания, наряду с эндорфинами и энкефалинами может участвовать субстанция Р, вырабатывающаяся в нервной системе и кишечнике.

Энкефалины – пептиды с морфиноподобным действием, вырабатывающиеся в ЦНС позвоночных (преимущественно в лимбической системе, гипофизе и гипоталамусе). Участвуют в нейрохимических процессах обезболивания, уменьшают двигательную активность желудочно-кишечного тракта. Найдены также в эндокринных клетках и нервных волокнах желудка и кишечника.

Известны метионин-энкефалин (молекулярная масса 574) и лейцин-энкефалин (молекулярная масса 556); оба построены из 5 аминокислотных остатков и различаются лишь С-концевыми остатками (метионин или лейцин). Метионин-энкефалин идентичен по химической структуре фрагменту 61-65 гипофизарного гормона β-липотропина. Энкефалины связываются, как морфин и эндорфины, с опиатными рецепторами. Обезболивающее действие энкефалинов обнаруживается лишь при их введении непосредственно в мозг. Предполагают, что энкефалины – специфические медиаторы торможения боли.

8.8.14. Центральная часть Кожно-кинестетической сенсорной системы

Все кожные рецепторы являются окончаниями псевдоуниполярных чувствительных нейронов, расположенных в спинномозговых ганглиях. По афферентным волокнам (дендритам) этих нейронов информация поступает сначала к телу нейрона, а затем по его аксону в задние рога соответствующего сегмента спинного мозга.

В каждый задний корешок спинного мозга входят афференты, собирающие информацию с определенного участка кожи. Такой участок кожи называется дерматомом. Смежные дерматомы перекрываются, т.е. информация от одного учаска кожи может поступать в смежные сегменты спинного мозга.

Дерматомы лица и шеи иннервируются тройничным и лицевым нервами.

Первичная обработка сигнала производится нейронами задних рогов сегмента спинного мозга (или соответствующими ядрами черепно-мозговых нервов). От этих нейронов информация может поступать к мотонейронам и вегетативным (симпатическим) нейронам своего сегмента; короткими путями к соседним сегментам; и, наконец, поступать в протяженные восходящие пути спинного мозга (Голля и Бурдаха для тактильных и температурных воздействий и спиноталамичесие для болевых воздействий).

По трактам Голля и Бурдаха сигналы достигают одноименных ядер продолговатого мозга, затем переключаются в таламусе (вентробазальное ядро) и соматотопически проецируются в контрлатеральную постцентральную извилину.

Спиноталамические пути, к которым присоединяются болевые афференты тройничного и лицевого нервов, переключаются в таламусе и проецируются так же в постцентральную кору.

8.9. Вкусовая сенсорная система.

Вкусовая система (systema gustatorium), вкусовой анализатор, - сложная морфофункциональная система, обеспечивающая тонкий анализ химических раздражителей, действующих на органы вкуса животных и человека.

Вкус - ощущение, возникающие при действии растворов химических веществ на рецепторы органов вкуса. Основные вкусовые ощущения - кислое, соленое, сладкое, горькое - определяются как конфигурацией молекул веществ, адсорбирующихся на специфических рецепторах органов вкуса, так и деятельностью вкусовой системы. Все сложные вкусовые ощущения образуются комбинацией основных.

Кислый вкус определяется концентрацией свободных водородных ионов и взаимодействием кислот со слюной. При одинаковых рН слабая кислота - более эффективный раздражитель, чем сильная. Хлористый натрий - единственное вещество, обладающее чисто соленым вкусом. При возрастании молекулярной массы неорганических солей их вкус меняется от соленого к горькому.

Сладкий вкус вызывают различные вещества (сахара, спирты, аминокислоты и др.), содержащие в молекуле парные гликольные группы. Ощущение горького определяется содержанием в молекуле парных группировок -NO2, N º, -SH, -CS- и др. Многие вещества имеют смешанный вкус, например, горький и сладкий. Однако строгого соответствия между химическими и физическими свойствами веществ и их вкусом не обнаружено. Сложное ощущение вкуса - результат одновременного поступления в нервные центры информации от разных вкусовых, обонятельных, а также болевых, тактильных, температурных рецепторов ротовой полости. Так, жгучий и острый вкус зависят от раздражения болевых рецепторов ротовой полости.

Минимальные (пороговые) концентрации растворов, вызывающие ощущение вкуса неодинаковы для различных веществ (например, 0,01 - 0,05% для повареной соли; 0,4% для сахара; 0,00005% для хинина). При продолжительном действии вещества на рецептор вследствие адаптации понижается вкусовая чувствительность к этому веществу. Адаптация к сладким и соленым веществам происходит быстрее, чем к горьким и кислым.

В ходе эволюции вкус формировался как механизм, определяющий поведенческие реакции, направленные на качественный выбор пищи. У животных (насекомые, некоторые рыбы, птицы, многие млекопитающие) и человека, питающихся смешанной и растительной пищей, сладкие вещества вызывают положительные, горькие - отрицательные реакции. Положительная вкусовая реакция на сладкие вещества не свойственна диким хищникам, отрицательная вкусовая реакция - насекомоядным. Недостаток тех или иных веществ повышает вкусовую чувствительность к ним и стимулирует их повышенное потребление.

Вкусовая система состоит из периферического отдела, проводникового и центрального (в структурах продолговатого мозга, зрительных бугров и коры больших полушарий). Первичное кодирование вкусовых сигналов происходит на уровне хеморецепторов, но основную роль в появлении вкусовых ощущений играют центральные структуры вкусовой системы.

8.9.1. Орган вкуса

Орган вкуса (organa gustatorium), вкусовые луковицы, - орган, воспринимающий химические, вкусовые раздражения. У большинства беспозвоночных органы вкуса еще не дифференцированы и служат органами общего химического чувства (вкуса и обоняния). У насекомых органы вкуса представлены сенсиллами, расположенными на щупиках и антеннах (жужелицы), ротовых придатках (слепни), на лапках ног (двукрылые, чешуекрылые). У круглоротых органы вкуса находятся на боковой поверхности щупалец. Для позвоночных характерна корреляция между способом питания животного, числом и распределением вкусовых органов (например, у рыб в полости рта около 20 тыс. вкусовых луковиц, у пресмыкающихся около 200, у птиц от 50 до 400, у млекопитающих до 200 тыс.). У рыб, которые с помощью вкуса не только определяют пригодность пищи, но и отыскивают ее, вкусовые органы могут располагаться, кроме ротовой полости, по всему телу, особенно на губах, усиках, жабрах. У наземных позвоночных в связи с выходом на сушу вкусовые органы исчезают с поверхности тела и локализуются в полости рта, на языке, небе, в гортани и глотке. Восприятие вкусовых веществ связано с экологическими особенностями вида. Так, многие птицы (например, перепелы, чайки, скворцы), питающиеся насекомыми или мелкими животными, безразличны к сахарам и чувствительны к горьким веществам; а попугаи, колибри, питающиеся нектаром или фруктами предпочитают сахара.

Желобоватые сосочки языка млекопитающих чувствительны к горьким веществам, а грибовидные - к сахарам. У всех позвоночных органы вкуса, состоящие из 10-15 рецепторных и нескольких опорных постоянно обновляющихся клеток, находятся в толще многослойного эпителия слизистой оболочки, с поверхностью которой они сообщаются вкусовым каналом. Общая продолжительность жизни рецепторных клеток от 3 до 28 суток. Во вкусовых органах обнаружены белок, образующий специфические комплексы с сахарами, и ферменты, меняющие активность под влиянием вкусовых веществ. На этом основано предположение, что вкусовые вещества соединяются с молекулами особых “вкусовых” белков, что вызывает возбуждение рецепторной клетки, передающееся в ЦНС посредством проводникового отдела вкусовой системы.

Основным органом вкуса у человека является язык, но в действительности в нем имеются только нервные окончания периферических отростков чувствительных клеток, находящихся в физиологической связи с эпителиальными клетками вкусовых почек (caliculi gustatorii), или луковиц. Вкусовые луковицы большей частью располагаются в эпителиальном слое грибовидных, желобоватых и листовидных сосочков языка; редкие вкусовые луковицы выявлены в слизистой оболочке губ, мягкого неба и надгортанника. Общее число луковиц - 2000.

Вкусовая луковица имеет форму эллипса. На верхушке луковицы есть вкусовой ход, или вкусовая пора (porus gustatorius), которая открыта в полость вкусовой ямки, сообщающейся с поверхностью сосочка. Во вкусовую ямку затекает жидкость, содержащая растворенные вещества, которые раздражают вкусовые клетки. Эти клетки преобразуют вкусовое раздражение в нервный импульс, передаваемый в ЦНС.

Эпителий языка на III месяце внутриутробного развития врастает в мезенхиму. В результате этой инвагинации эпителия формируются желобоватые и грибовидные сосочки. В конце II месяца развития эмбриона на языке появляются клеточные пучки, относящиеся к эмбриональной нервной глии. На IV месяце к этим клеткам прорастают нервные волокна черепных нервов. Группа нейроэпителиальных образований обособляется от окружающей ткани к VI мес., формируя луковицы, у которых появляются вкусовые поры. В основании вкусовых луковиц выявляется нервное сплетение, оплетающее чувствительные клетки. У новорожденного вкусовые поры сформированы и отмечается высокая функциональная дифференцировка вкусовых веществ.

8.9.2. Проводящий путь вкусового анализатора

Проводящий путь вкусового анализатора (tractus gustus) - проводит информацию о химическом составе пищи, употребляемой человеком. Рецепторы вкусового анализатора находятся в физиологической связи с эпителиальными клетками вкусовых луковиц, расположенных в слизистой оболочке языка, губ, мягкого неба и надгортанника. Специализированные рецепторы восприятия соленого расположены преимущественно на кончике языка, кислого - на его краях, сладкого и горького - в основании языка и в мягком небе.

ТЕМА 15. Порядок расследования и учета несчастных случаев на производстве - лекция, которая пользуется популярностью у тех, кто читал эту лекцию.

Нервные окончания барабанной струны (chorda tympani) начинаются от вкусовых луковиц слизистой оболочки ротовой полости, расположенных преимущественно в передних 2/3 языка. Волокна идут в составе язычного нерва, затем покидают его и образуют барабанную струну, которая достигает нейронов, расположенных в узле коленца (gangl. geniculi), находящихся в коленце канала лицевого нерва. Аксоны клеток узла коленца переключаются в ядрах моста - nucl. tr. solitarii VII пары черепных нервов.

Во вкусовых луковицах задней 1/3 языка располагаются вкусовые рецепторы языкоглоточного нерва. Дендриты достигают клеток, лежащих в его нижнем узле. Аксоны переключаются в ядрах продолговатого мозга - nucl. tr. solitarii IX пары черепных нервов. В слизистой оболочке губ, щек и языка имеются также редко расположенные вкусовые луковицы волокон тройничного нерва. Волокна от рецепторов языка вступают в язычный нерв, от щек и губ - в щечные и достигают клеток тройничного нерва. Аксоны узла переключаются в nucl. tr. solitarii VII пары черепных нервов.

Волокна II нейрона от nucl. tr. solitarii VII и IX нервов переходят на противоположную сторону, подсоединяются к волокнам медиальной петли и вместе с ней направляются к вентральному и медиальному ядрам таламуса. Имеются и неперекрещенные волокна II нейрона, которые следуют к таламусу своей же стороны, оканчиваясь в вентральном и медиальном ядрах. В таламусе располагаются третьи нейроны, аксоны которых проходят через заднюю ножку внутренней капсулы и оканчиваются в коре поля 43, в гиппокампе и крючке.

8.10. Анатомические основы глазодвигательной функции.

Глазодвигательная система - система поперечнополосатых мышц глазного яблока, приводящая в движение глаз. К наружным поперечнополосатым мышцам относятся 4 прямые мышцы - верхняя, нижняя, медиальная и латеральная, а также две косые: верхняя и нижняя. Все мышцы глазного яблока, кроме нижней косой, начинаются в окружении отверстия зрительного канала и верхней глазничной щели, где образуется общее сухожильное кольцо (anulus tendineus communis). Через это кольцо проходят в глазницу зрительный нерв, глазная артерия, глазодвигательный нерв, носоресничный и отводящий нервы. Четыре прямые мышцы вплетаются сухожилиями в белочную оболочку (склеру) впереди экватора глазного яблока.

При сокращении верхней и нижней мышц зрачок перемещается в сагиттальной плоскости вверх и вниз, при сокращении латеральной и медиальной прямых мышц - во фронтальной плоскости. Верхняя косая мышца прилежит к верхнемедиальной части глазницы; ее тонкое сухожилие перекидывается через соединительнотканный блок, прикрепленный к блоковой ямке или костному выступу. Затем сухожилие мышцы направляется вниз назад и латерально, прикрепляясь к белочной оболочке глазного яблока на верхнелатеральной части позади экватора.

При сокращении верхней косой мышцы ось глаза перемещается вниз и латерально. Нижняя косая мышца начинается от латеральной окружности ямки для слезного мешка и направляется под глазное яблоко, прикрепляясь с латеральной стороны позади экватора. При сокращении нижней косой мышцы зрачок отводится вверх и латерально. Сочетанная работа всех наружных мышц глазного яблока обеспечивает его вращение по окружности.

Свежие статьи
Популярно сейчас
Как Вы думаете, сколько людей до Вас делали точно такое же задание? 99% студентов выполняют точно такие же задания, как и их предшественники год назад. Найдите нужный учебный материал на СтудИзбе!
Ответы на популярные вопросы
Да! Наши авторы собирают и выкладывают те работы, которые сдаются в Вашем учебном заведении ежегодно и уже проверены преподавателями.
Да! У нас любой человек может выложить любую учебную работу и зарабатывать на её продажах! Но каждый учебный материал публикуется только после тщательной проверки администрацией.
Вернём деньги! А если быть более точными, то автору даётся немного времени на исправление, а если не исправит или выйдет время, то вернём деньги в полном объёме!
Да! На равне с готовыми студенческими работами у нас продаются услуги. Цены на услуги видны сразу, то есть Вам нужно только указать параметры и сразу можно оплачивать.
Отзывы студентов
Ставлю 10/10
Все нравится, очень удобный сайт, помогает в учебе. Кроме этого, можно заработать самому, выставляя готовые учебные материалы на продажу здесь. Рейтинги и отзывы на преподавателей очень помогают сориентироваться в начале нового семестра. Спасибо за такую функцию. Ставлю максимальную оценку.
Лучшая платформа для успешной сдачи сессии
Познакомился со СтудИзбой благодаря своему другу, очень нравится интерфейс, количество доступных файлов, цена, в общем, все прекрасно. Даже сам продаю какие-то свои работы.
Студизба ван лав ❤
Очень офигенный сайт для студентов. Много полезных учебных материалов. Пользуюсь студизбой с октября 2021 года. Серьёзных нареканий нет. Хотелось бы, что бы ввели подписочную модель и сделали материалы дешевле 300 рублей в рамках подписки бесплатными.
Отличный сайт
Лично меня всё устраивает - и покупка, и продажа; и цены, и возможность предпросмотра куска файла, и обилие бесплатных файлов (в подборках по авторам, читай, ВУЗам и факультетам). Есть определённые баги, но всё решаемо, да и администраторы реагируют в течение суток.
Маленький отзыв о большом помощнике!
Студизба спасает в те моменты, когда сроки горят, а работ накопилось достаточно. Довольно удобный сайт с простой навигацией и огромным количеством материалов.
Студ. Изба как крупнейший сборник работ для студентов
Тут дофига бывает всего полезного. Печально, что бывают предметы по которым даже одного бесплатного решения нет, но это скорее вопрос к студентам. В остальном всё здорово.
Спасательный островок
Если уже не успеваешь разобраться или застрял на каком-то задание поможет тебе быстро и недорого решить твою проблему.
Всё и так отлично
Всё очень удобно. Особенно круто, что есть система бонусов и можно выводить остатки денег. Очень много качественных бесплатных файлов.
Отзыв о системе "Студизба"
Отличная платформа для распространения работ, востребованных студентами. Хорошо налаженная и качественная работа сайта, огромная база заданий и аудитория.
Отличный помощник
Отличный сайт с кучей полезных файлов, позволяющий найти много методичек / учебников / отзывов о вузах и преподователях.
Отлично помогает студентам в любой момент для решения трудных и незамедлительных задач
Хотелось бы больше конкретной информации о преподавателях. А так в принципе хороший сайт, всегда им пользуюсь и ни разу не было желания прекратить. Хороший сайт для помощи студентам, удобный и приятный интерфейс. Из недостатков можно выделить только отсутствия небольшого количества файлов.
Спасибо за шикарный сайт
Великолепный сайт на котором студент за не большие деньги может найти помощь с дз, проектами курсовыми, лабораторными, а также узнать отзывы на преподавателей и бесплатно скачать пособия.
Популярные преподаватели
Нашёл ошибку?
Или хочешь предложить что-то улучшить на этой странице? Напиши об этом и получи бонус!
Бонус рассчитывается индивидуально в каждом случае и может быть в виде баллов или бесплатной услуги от студизбы.
Предложить исправление
Добавляйте материалы
и зарабатывайте!
Продажи идут автоматически
5139
Авторов
на СтудИзбе
441
Средний доход
с одного платного файла
Обучение Подробнее