Популярные услуги

Биологические мембраны

2021-03-09СтудИзба

Биологические мембраны
Строение, свойства, функции

Резюме

Биологические мембраны, наряду с цитоскелетом, формируют структуру живой клетки. Клеточная или цитоплазматическая мембрана окружает каждую клетку. Ядро окружено двумя ядерными мембранами: наружной и внутренней.
Все внутриклеточные структуры: митохондрии, эндоплазматический ретикулум, аппарат Гольджи, лизосомы, пероксисомы, фагосомы, синаптосомы и т представляют собой замкнутые мембранные везикулы (пузырьки).
Каждый тип мембран содержит специфический набор белков - рецепторов и ферментов; но основа любой мембраны - бимолекулярный слой липидов (липидный бислой), который во всякой мембране выполняет две главные функции: барьера для ионов и молекул и структурной основы ( матрицы) для функционирования рецепторов и ферментов.

Введение

Если рассмотреть электронную микрофотографию ультратонкого среза живой ткани (после его фиксации и соответствующего прокрашивания), то первое, что обращает на себя внимание, - это тонкие двойные линии, которые "вырисовывают" контуры клетки и внутриклеточных органелл.

Это - срезы через биологические мембраны - тончайшие плёнки, состоящие из двойного слоя молекул липидов и встроенных в этот слой белков. По сути дела, именно мембраны (наряду с цитоскелетом), формируют структуру живой клетки.

Клеточная или цитоплазматическая мембрана окружает каждую клетку. Ядро окружено двумя ядерными мембранами: наружной и внутренней. Все внутриклеточные структуры: митохондрии, эндоплазматический ретикулум, аппарат Гольджи, лизосомы, пероксисомы, фагосомы, синаптосомы и т представляют собой замкнутые мембранные везикулы (пузырьки).

История изучения свойств и строения мембран

Термин "мембраны" как окружающей клетку невидимой плёнки, служащей барьером между содержимым клетки и внешней средой и одновременно - полупроницаемой перегородкой, через которую могут проходить вода и некоторые растворенные в ней вещества, был впервые использован, по-видимому, ботаниками фон Молем и независимо К. фон Негели (1817-1891) в 1855 г для объясненеия явлений плазмолиза.
В 1877 г. ботаник В. Пфеффер (1845-1920) опубликовал свой труд “Исследования осмоса” (Leipzig), где постулировал существование клеточных мембран, основываясь на сходстве между клетками и осмометрами, имеющими искусственные полупроницаемые мембраны, которые были приготовлены незадолго до этого М. Траубе.

Рекомендуемые материалы

Дальнейшее изучение осмотических явлений в растительных клетках датским ботаником Х. де Фризом (1848-1935) послужило фундаментом при создании физико-химических теорий осмотического давления и электролитической диссоциации датчанином Я. Вант-Гоффом (1852-1911) и шедским ученым С. Аррениусом (1859-1922 ).
В 1888 году немецкий физико-химик В. Нернст (1864-1941) вывел уравнение диффузионного потенциала. В 1890 году немецкий физико-химик и философ В. Оствальд (1853-1932) обратил внимание на возможную роль мембран в биоэлектрических процессах.

Между 1895 и 1902 годами Э. Овертон (1865-1933) измерил проницаемость клеточной мембраны для большого числа соединений и показал прямую зависимость между способностью этих соединений проникать через мембраны и их растворимостью в липидах.
Это было чётким указанием на то,что именно липиды формируют плёнку, через которую проходят в клетку вещества из окружающего раствора.
В 1902 году Ю. Бернштейн (1839-1917) привлек для объяснения электрических свойств живых клеток мембранную гипотезу.

В 1925 году Гортер и Грендел показали, что площадь монослоя липидов, экстрагированных из мембран эритроцитов, в два раза больше суммарной площади эритроцитов. Гортер и Грендел экстрагировали липиды из гемолизированных эритроцитов ацетоном, затем выпаривали раствор на поверхности воды и измеряли площадь образовавшейся мономолекулярной пленки липидов.
На основе результатов этих исследований было сделано предположение, что липиды в мембране располагаются в виде бимолекулярного слоя. Это предположение подтвердили исследования электрических параметров биологических мембран (Коул и Кёртис, 1935 год): высокое электрическое сопротивление, порядка 107 Омм2 и большая электроемкость 0,51 '/м2.

Вместе с тем имелись экспериментальные данные, которые свидетельствовали о том, что биологическая мембрана содержит в своем составе и белковые молекулы.
Эти противоречия экспериментальных результатов были устранены Даниелли и Давсоном, предложившими в 1935 году так сказать "бутербродную" модель строения биологических мембран, которая с некоторыми несущественными изменениями продержалась в мембранологии в течении почти 40 лет. Согласно этой модели, на поверхности фосфолипидного бислоя в мембранах располагаются белки.

Функции биологических мембран

В таблице 1 перечислены функции цитоплазматических и некоторых внутриклеточных мембран.
Во всех живых клетках биологические мембрану выполняют функцию барьера, отделяющего клетку от окружающей среды, и разделяющего внутренний объем клетки на сравнительно изолированные "отсеки" (compartments).

Сами по себе перегородки, разделяющие клетки на отсеки, построены из двойного слоя липидных молекул (называемого часто липидным бислоем) и практически непроницаемы для ионов и полярных молекул, растворимых в воде.

Но в этот липидный бислой встроены многочисленные белковые молекулы и молекулярные комплексы, одни из которых обладают свойствами селективных (т. е. избирательных) каналов для ионов и молекул, а другие - насосов, способных активно перекачивать ионы через мембрану. Барьерные свойства мембран и работа мембранных насосов создают неравновестное распределение ионов между клеткой и внеклеточной средой, что лежит в основе процессов внутриклеточной регуляции и передачи сигналов в форме электрического импульса между клетками.

Вторая функция, общая для всех мембран - это функция "монтажной платы" или матрицы, на которой располагаются в определенном порядке белки и белковые ансамбли, образующие системы переноса электронов, запасания энергии в форме АТФ, регуляции внутриклеточных процессов гормонами, поступающими извне и внутриклеточными медиаторами, узнавания других клеток и чужеродных белков, рецепции света и механических воздействий и т

Гибкая и эластичная пленка, которой по существу являются все мембраны, выполняет и определенную механическую функцию, сохраняя клетку целой при умеренных механических нагрузках и нарушениях осмотического равновесия между клеткой и окружающей средой.

Общие для всех мембран функции барьера для ионов и молекул и матрицы для белковых ансамблей обеспечиваются главным образом липидным бислоем, который устроен в принципе одинаково во всех мембранах.

Однако набор белков индивидуален для каждого типа мембран, что позволяет мембранам участвовать в выполнении самых разных функций в различных клетках и клеточных структурах. Некоторые из этих фукнкций упомянуты в таблице 1.

Строение мембран
Общая схема строения мембран

Согласно современным предтавлениям, все клеточные и внутриклеточные мембраны устроены сходным образом: основу мембраны составляет двойной молекулярный слой липидов (липидный бислой) на котором и в толще которого находятся белки ( см. рис. 1).

pic_1

Липиды мембран

Липидные бислои образуются амфифильными молекулами фосфолипидов и сфингомиелина в водной фазе. Амфифильными эти молекулы называют потому, что они состоят из двух частей, различных по своей растворимости в воде: полярной "головки", обладающей высоким сродством к воде, т. е. гидрофильной, и "хвоста", образуемого неполярными углеводородными цепями жирных кислот; эта часть молекулы обладает низким сродством к воде, т. е. гидрофобна.

В состав липидов мембран входят в основном фосфолипиды, сфингомиелины и холестерин. Например, в мембранах эритроцитов человека их содержание, составляет, соответственно 36, 30 и 22 % по весу; еще 12% приходится на гликолипиды (Котык А. и Яначек К. Мембранный транспорт, Москва, МИР, 1980 г., стр. 45).

Примером амфифильной молекулы может служить молекула фосфатидилэтаноламина, структура которой показана на рис. 2. Как и другие фосфолипиды, фосфатидилэтаноламин, в химическом отношении представляет собой сложные эфиры трехатомного спирта глицерина с двумя жирными кислотами; к третьей гидроксильной группе присоединен ортофосфат, а к нему - небольшая органическая молекула, характерная для каждого вида фосфолипидов. В рассматриваемом случае это этаноламин, но могут быть также холин, инозитол, серин и некоторые другие молекулы.

В состав липидного слоя мембран входят также холестерин и сфингомиелины; последние близки к фосфолипидам по химическому строению и физическим свойствами.

Химия фосфолипидов

С химической точки зрения фосфолипид состоит из четырёх частей: глицерина, двух жирных кислот с длинной углеводородной цепью, фосфорной кислоты и особой для каждого фосфолипида группы, которую мы будем называть характеристической группой. Трёхатомный спирт - глицерин связывает через сложно-эфирную связь две жирные кислоты и остаток фосфорной кислоты

Рис. 4. Скелетные формулы одной из жирных кислот и фосфорной кислоты

Фосфолипиды различаются как составом жирных кислот, так и структурой характеристической группы. В фосфатидилэтаноламине такой группой является остаток этаноламина. В других фосфолипидах такой группой может быть остаток холина, серина и другие полярные молекулы (см. рис. 5).

pic_5

Рис. 5. Характеристические (полярные) группы фосфолипидов

Белки мембран

Белки мембран принято делить на интегральные и периферические. Интегральные белки имеют обширные гидрофобные участки на поверхности и нераствориммы в воде.

С липидами мембран они связаны гидрофобными взаимодействиями и частично погружены в толщу липидного бислоя, а зачастую и пронизывают бислой, оставляя на поверхности сранительно небольшие гидрофильные участки.

Отделить эти белки от мембраны удается только с помощью детергентов, типа додецилсульфата или солей желчных кислот, которые разрушают липидный слой и переводят белок в растворимую форму (солюбилизируют его) образуя с ним ассоциаты. Все дальнейшие операции по очистке интегральных белков осуществляются также в присутствии детергентов.

pic_1

Периферические белки связаны с поверхностью липидного бислоя электростатическими силами и могут быть отмыты от мембраны солевыми растворами.

Самосборка мембранных структур

Данные рентгеноструктурного анализа и другие показавают, что молекулы фосфолипидов имеют форму сплюснутого с боков цилиндра, а по длине как бы делятся на две неравные части: небольшую "голову", состоящую из полярных групп, и длинный "хвост", образованный углеводородными цепями жирных кислот, входящих в состав фосфолипида (см. Рис. 6).

pic_6

Рис. 6. Молекулярная структура фосфатидилхолина (лецитина) Левая часть молекулы, содержащая атомы кислорода, фосфора и азота и заряженные группы (триметиламин и фосфат) активно взаимодействует с молекулами воды (гидрофильны); правая часть состоит из углеводородных цепей жирных кислот, и отталкивает воду (гидрофобна).

Такое строение молекулы приводит к тому, что в водных растворах фосфолипидные молекулы самособираются в бислойную мембрану. В мембране "жирные хвосты" упрятаны внутрь, а снаружи в контакте с водным окружением оказываются полярные "головы" этих молекул.

Рис. 7. Самосборка фосфолипидных молекул в липидных везикулы в водном растворе. Каждая фосфолипидная молекула состоит из полярной группы и жирнокислотных хвостов. В водном растворе происходит самосборка мембран (справа) и замыкание мембран с образованием липидных пузырьков, называемых липосомами (слева).

Модельные мембраны. Липосомы

Изучение физических свойств липидного слоя мембран осуществляется преимущественно на двух видах искусственных мембранных структур, образованных синтетическими фосфолипидами или липидами, выделенными из биологических источников: липосомах и бислойных липидных мембранах (БЛМ).

Липосомы - это липидные везикулы (пузырьки), образующиеся из фосфолипидов в водных растворах. Чтобы получить липосомы, спиртовый раствор фосфолипидов впрыскивают в большой объем водного раствора.Фосфолипиды, нерастворимые в воде, образуют мелкие пузырьки, стенки которых состоят из одного липидного бислоя (однослойные липосомы).

pic_7

Рис. 7. Самосборка фосфолипидных везикул в водном растворе Каждая фосфолипидная молекула состоит из полярной головки и жирнокислотных хвостов. В водном растворе головки выставляются науржу, а хвосты прячутся внутрь; получаются мембранные везикулы.

Можно сначала высушить раствор фосфолипидов в органическом растворителе (например, хлороформе) в пробирке, добавить в пробирку водный раствор и хорошенько потрясти пробирку. Липиды переходят в водный раствор, теперь уже в виде многослойных липосом.

Суспензию липосом обычно используют для изучения физических свойств липидного бислоя как вязкость, поверхностный заряд или диэлектрическая проницаемость, а также для изучения проницаемости для незаряженных молекул.

БЛМ

Для изучения ионной проницаемости липидного слоя мембран используют БЛМ. Для приготовления БЛМ (см. рис. 8) в стаканчик с раствором электролита помещают второй, тефлоновый стаканчик , в стенку которого сделано отверстие, диаметром около 1 мм.

pic_8

Бесплатная лекция: "9. Кинетика ферментативных реакций" также доступна.

Рис. 8. Приготовление бимолекулярных липидных мембран (БЛМ) В стеклянный стакан (1) помещают раствор электролита (2) и опускают тефлоновый сосуд 3 с отверстием в стенке (4). В отверстии формируют БЛМ (см. следующий рисунок).
С помощью капилляра в отверстие вводят маленькую каплю раствора фосфолипида в жидком углеводороде, гептане или гексане. Молекулы фосфолипидов собираются на поверхности капли таким образом, что полярные головки молекул обращены в водную среду, а гидрофобные хвосты - внутрь капли. Постепенно растворитель уходит из капли и улетучивается, а капля превращается в липидную пленку.

В такой пленке полярные головки фосфолипидов обращены в водную фазу, а неполярные углеводородные цепи жирных кислот сливаются в сплошную вязкую фазу во внутренней части липидной мембраны. По многим свойствам эта пленка сходна с липидным слоем биологических мембран.

pic_9

Рис. 9. Образование БЛМ в отверстии в стенке тефлонового сосуда

A - вносим с помощью капилляра (4) каплю раствора фосфолипида в гептане (5) в отверстие в стенке сосуда (3).
B - капля закрывает просвет отверстия.
C - постепенно растворитель уходит и образуется БЛМ
D - БЛМ при очень большом увеличении

Если липосомы широко используются для изучения таких свойств липидного слоя мембран как микровязкость (методом флуоресцентных и спиновых зондов), фазовые переходы в липидах (методом микрокалориметрии) и химические реакции в липидном слое, то БЛМ идеально подходит для изучения ионной проницаемости путем измерения электрической проводимости мембраны и образующихся на ней потенциалов.

Свежие статьи
Популярно сейчас
Как Вы думаете, сколько людей до Вас делали точно такое же задание? 99% студентов выполняют точно такие же задания, как и их предшественники год назад. Найдите нужный учебный материал на СтудИзбе!
Ответы на популярные вопросы
Да! Наши авторы собирают и выкладывают те работы, которые сдаются в Вашем учебном заведении ежегодно и уже проверены преподавателями.
Да! У нас любой человек может выложить любую учебную работу и зарабатывать на её продажах! Но каждый учебный материал публикуется только после тщательной проверки администрацией.
Вернём деньги! А если быть более точными, то автору даётся немного времени на исправление, а если не исправит или выйдет время, то вернём деньги в полном объёме!
Да! На равне с готовыми студенческими работами у нас продаются услуги. Цены на услуги видны сразу, то есть Вам нужно только указать параметры и сразу можно оплачивать.
Отзывы студентов
Ставлю 10/10
Все нравится, очень удобный сайт, помогает в учебе. Кроме этого, можно заработать самому, выставляя готовые учебные материалы на продажу здесь. Рейтинги и отзывы на преподавателей очень помогают сориентироваться в начале нового семестра. Спасибо за такую функцию. Ставлю максимальную оценку.
Лучшая платформа для успешной сдачи сессии
Познакомился со СтудИзбой благодаря своему другу, очень нравится интерфейс, количество доступных файлов, цена, в общем, все прекрасно. Даже сам продаю какие-то свои работы.
Студизба ван лав ❤
Очень офигенный сайт для студентов. Много полезных учебных материалов. Пользуюсь студизбой с октября 2021 года. Серьёзных нареканий нет. Хотелось бы, что бы ввели подписочную модель и сделали материалы дешевле 300 рублей в рамках подписки бесплатными.
Отличный сайт
Лично меня всё устраивает - и покупка, и продажа; и цены, и возможность предпросмотра куска файла, и обилие бесплатных файлов (в подборках по авторам, читай, ВУЗам и факультетам). Есть определённые баги, но всё решаемо, да и администраторы реагируют в течение суток.
Маленький отзыв о большом помощнике!
Студизба спасает в те моменты, когда сроки горят, а работ накопилось достаточно. Довольно удобный сайт с простой навигацией и огромным количеством материалов.
Студ. Изба как крупнейший сборник работ для студентов
Тут дофига бывает всего полезного. Печально, что бывают предметы по которым даже одного бесплатного решения нет, но это скорее вопрос к студентам. В остальном всё здорово.
Спасательный островок
Если уже не успеваешь разобраться или застрял на каком-то задание поможет тебе быстро и недорого решить твою проблему.
Всё и так отлично
Всё очень удобно. Особенно круто, что есть система бонусов и можно выводить остатки денег. Очень много качественных бесплатных файлов.
Отзыв о системе "Студизба"
Отличная платформа для распространения работ, востребованных студентами. Хорошо налаженная и качественная работа сайта, огромная база заданий и аудитория.
Отличный помощник
Отличный сайт с кучей полезных файлов, позволяющий найти много методичек / учебников / отзывов о вузах и преподователях.
Отлично помогает студентам в любой момент для решения трудных и незамедлительных задач
Хотелось бы больше конкретной информации о преподавателях. А так в принципе хороший сайт, всегда им пользуюсь и ни разу не было желания прекратить. Хороший сайт для помощи студентам, удобный и приятный интерфейс. Из недостатков можно выделить только отсутствия небольшого количества файлов.
Спасибо за шикарный сайт
Великолепный сайт на котором студент за не большие деньги может найти помощь с дз, проектами курсовыми, лабораторными, а также узнать отзывы на преподавателей и бесплатно скачать пособия.
Популярные преподаватели
Нашёл ошибку?
Или хочешь предложить что-то улучшить на этой странице? Напиши об этом и получи бонус!
Бонус рассчитывается индивидуально в каждом случае и может быть в виде баллов или бесплатной услуги от студизбы.
Предложить исправление
Добавляйте материалы
и зарабатывайте!
Продажи идут автоматически
5138
Авторов
на СтудИзбе
443
Средний доход
с одного платного файла
Обучение Подробнее