Популярные услуги

Курсовой проект по деталям машин под ключ
Курсовой проект по деталям машин под ключ в бауманке
Все лабораторные под ключ! КМ-1. Комбинационные логические схемы + КМ-2. Комбинационные функциональные узлы и устройства + КМ-3. Проектирование схем
ДЗ по ТММ в бауманке
Любая лабораторная в течение 3 суток! КМ-1. Комбинационные логические схемы / КМ-2. Комбинационные функциональные узлы и устройства / КМ-3. Проектирование схем
КМ-2. Выпрямители. Письменная работа (Электроника семинары)
Допуски и посадки и Сборочная размерная цепь + Подетальная размерная цепь
КМ-3. Типовое задание к теме прямые измерения. Контрольная работа (ИЗ1) - любой вариант!
ДЗ по матведу любого варианта за 7 суток
Любой ДЗ по метрологии, стандартизации и сертификаци
Главная » Лекции » Инженерия » Лекции по телевидению » Обобщенная схема телевизионной системы

Обобщенная схема телевизионной системы

2021-03-09СтудИзба

2. Обобщенная схема телевизионной системы.

Основным назначением телевизионных систем является формирование изображения передаваемых сцен в реальном времени или с использованием видеозаписи, как правило, на значительном от них расстоянии. Вместе с тем телевизионные методы широко используются в системах анализа изображений с целью извлечения полезной информации об изучаемых объектах или процессах.

Наиболее привычным для человека носителем информации об окружающем его мире является видимое излучение (область спектра электромагнитных колебаний с длиной волны l от 380 до 760 нм, непосредственно воспринимаемых глазом). С помощью зрительной системы человек получает наибольший (до 80%) объем информации из внешнего мира. “Соседние” участки спектра — инфракрасный (760—104 нм), ультрафиолетовый (5—380 нм), а также рентгеновский (0,01—5,00 нм) и др., как известно, также несут существенную информацию об окружающих предметах и протекающих процессах, но она не может быть непосредственно зарегистрирована глазом. Для этих целей используют различного рода преобразования невидимого изображения в видимое — визуализацию невидимых изображений. Такое функциональное назначение ТВС стало одним из важнейших в настоящее время.

В качестве примера ТВС рассмотрим систему, назначением которой является формирование изображения передаваемой сцены, предназначенного для восприятия человеком. Функциональная схема подобной ТВС приведена на рис. 2. 1. Источник света (И) освещает передаваемую сцену (С) световым потоком F0.

Отраженный световой поток F оказывается сложной функцией координат х, у, z пространства объектов, длины волны излучения l и времени t. С помощью объектива Об формируется изображение передаваемой сцены Е(x, у, z, l, t)распределение освещенности в координатах х, у, z пространства изображения. Это изображение является входным сигналом ТВС. С помощью фотоэлектрического преобразователя (ФЭП) оно преобразуется в электрический сигнал (сигналы). Этот сигнал после обработки и усиления (ОУ) поступает в канал связи (КС) (радиоканал, кабельная линия связи и т. п.). С выхода канала связи сигнал после дополнительной обработки и усиления (ОУ) поступает на электронно-лучевую трубку ЭЛТ. На экране ЭЛТ (кинескопа) воспроизводится изображение передаваемой сцены.

Для синхронной работы всех узлов системы используется генератор синхронизирующих сигналов — синхрогенератор (СГ), а для отклонения электронных пучков ФЭП и ЭЛТ в системе применены генераторы развертки (ГР).

Таким образом, в рассматриваемой системе, как и в любой другой, предназначенной для передачи информации, предусматривается наличие носителя информации, в параметрах которого закодировано сообщение о передаваемой сцене.

Рис. 2. 1. Функциональная схема ТВС.

Рекомендуемые материалы

Телевизионная система является сложной многозвенной системой передачи информации, сигнал которой на различных участках может иметь различную физическую природу (световое излучение, поток электронов и др.).

Какие параметры сигнала — носителя информации можно использовать для передачи сообщений в ТВС? Это может быть видимое излучение — белый свет с равномерным или близким к нему распределением мощности по спектру излучения. Как известно, белый свет может быть представлен в виде суммы большого числа монохроматических составляющих со случайными амплитудами, частотами, фазами, направлениями распространения и поляризацией. Хотя использование этого излучения ограничено вследствие случайности его параметров, однако и в этом случае можно проектировать достаточно эффективные ТВС, основанные на модуляции таких параметров, как амплитуда излучения и его спектральный состав.

Для каждого конкретного момента времени реакция ФЭП на воздействующее излучение описывается зависимостью его выходного сигнала ic от функции распределения мощности излучения Р(L) с учетом спектральной чувствительности ФЭП  e(L):

где с — постоянный коэффициент, определяющий чувствительность ФЭП: l1 - l2 диапазон спектральной чувствительности.

Выходной сигнал большинства ФЭП, как и реакция зрительной системы человека (ощущение), может быть определен соотношением (1.1) при соответствующей спектральной чувствительности e(l). Для глаза это спектральная чувствительность или кривая относительной видности n(l). Ощущение оказывается пропорциональным воздействующему световому потоку.

Классификация изображений

Объект, например излучающий (светящийся), может быть описан функцией яркости L (х, у, z, l, t), где х, у, z — пространственные координаты; l—длина волны излучения; t —время. Аналогично может быть описано изображение этого объекта L (x, у, z, L, t) — телевизионное (оптическое) или как функция освещенности Е (х, у, z, l, t), построенное той или иной изображающей системой в координатах х, у, z пространства изображений.

Из оптики известно, что изображением точечного объекта, создаваемым идеальной оптической системой, является точка, в которую сходятся лучи, исходящие от рассматриваемого точечного объекта. Если принять каждую точку поверхности объекта, отражающую свет от постороннего источника, за локальный источник света, то совокупность изображений этих точек дает изображение объекта.

Совокупность точек, изображение которых можно получить с помощью отображающей системы, образует пространство объектов, а совокупность точечных изображений этих объектов — пространство изображений.

Соответствие световых характеристик изображения, например телевизионного L (x, у, z, l, t) и объекта L(x, у, z, l, t), определяется оператором Р{.}, отражающим свойства отображающей системы L(x, у, z, l, t) =P{L (x, у, z, l, t)}. Любая реальная отображающая система вносит определенные искажения, т, е. Р{.}¹1.

Изображения, отражающие свойства объектов сцены, могут быть динамическими (изменяющимися во времени) и статическими. Статические изображения описываются функцией яркости L (x, у, z, l), не зависящей от времени.

По отношению к пространственным координатам различают изображения объемные и плоские. Плоские изображения описываются функцией двух пространственных координат L (x, у, l, t).

Обратите внимание на лекцию "2.1. Корпоративные информационные системы".

Зависимость от L позволяет разделить изображения по этому параметру на три группы: цветные, ахроматические и монохроматические. Спектр излучения каждого элемента цветного изображения или более крупных его фрагментов различен: L (x, у, z, l, t); спектр излучения каждого элемента ахроматического изображения одинаков: L(l)=const. Монохроматические изображения являются частным случаем ахроматических, когда спектр каждого элемента изображения представляет собой узкую спектральную зону около центральной длины волны. Например, запись L(x, у, l, t) означает, что изображение плоское цветное динамическое.

В процессе взаимодействия с исследуемыми объектами, как уже отмечалось, происходит модуляция не только амплитуды электромагнитной волны, а следовательно, и интенсивности, но и ее фазы. Пространственно-временная картина модуляции фазы несет информацию об изучаемых объектах, что послужило основанием для создания голографических телевизионных и других систем регистрации.

Следует отметить, что приведенная классификация не накладывает ограничений на области определения функции L (l). Такие изображения могут рассматриваться в рентгеновской, ультрафиолетовой, видимой, инфракрасной и других областях спектра электромагнитного излучения.

Из физической природы излучения следует, что функция яркости или освещенности всегда конечна и положительна, т. е. 0<L<Lmax, где Lmax—максимальная яркость в поле изображения. Функцию яркости можно представить и в дискретной форме— в виде соответствующих матриц чисел. Например, плоское ахроматическое статическое изображение в дискретной форме может быть представлено в виде матрицы nx´ny, т. е. L (i,j), где i = 1,nx; j = 1,ny. Представленное таким образом изображение называют дискретным с числом элементов n = nx´ny.

При цифровой обработке изображений, передаче информации об изображении по каналу связи и в ряде других случаев удобно, если функция L принимает значения только из конечного набора чисел L={L1,L2Lk}. Такое изображение называют квантованным. Частным случаем квантованного является двоичное изображение L={0, 1}. С двоичными изображениями особенно часто приходится встречаться в измерительной телевизионной технике.

Приведенная классификация иллюстрирует подход к описанию изображений, развиваемый в телевизионной технике, технике обработки изображений и других областях. Такой подход оказывается наиболее эффективным при изучении изображения как объекта исследований в измерительных ТВС, как формы представления информации и при оценке искажений, вносимых ТВС в процессе передачи информации об изображении по каналам связи.

Свежие статьи
Популярно сейчас
Зачем заказывать выполнение своего задания, если оно уже было выполнено много много раз? Его можно просто купить или даже скачать бесплатно на СтудИзбе. Найдите нужный учебный материал у нас!
Ответы на популярные вопросы
Да! Наши авторы собирают и выкладывают те работы, которые сдаются в Вашем учебном заведении ежегодно и уже проверены преподавателями.
Да! У нас любой человек может выложить любую учебную работу и зарабатывать на её продажах! Но каждый учебный материал публикуется только после тщательной проверки администрацией.
Вернём деньги! А если быть более точными, то автору даётся немного времени на исправление, а если не исправит или выйдет время, то вернём деньги в полном объёме!
Да! На равне с готовыми студенческими работами у нас продаются услуги. Цены на услуги видны сразу, то есть Вам нужно только указать параметры и сразу можно оплачивать.
Отзывы студентов
Ставлю 10/10
Все нравится, очень удобный сайт, помогает в учебе. Кроме этого, можно заработать самому, выставляя готовые учебные материалы на продажу здесь. Рейтинги и отзывы на преподавателей очень помогают сориентироваться в начале нового семестра. Спасибо за такую функцию. Ставлю максимальную оценку.
Лучшая платформа для успешной сдачи сессии
Познакомился со СтудИзбой благодаря своему другу, очень нравится интерфейс, количество доступных файлов, цена, в общем, все прекрасно. Даже сам продаю какие-то свои работы.
Студизба ван лав ❤
Очень офигенный сайт для студентов. Много полезных учебных материалов. Пользуюсь студизбой с октября 2021 года. Серьёзных нареканий нет. Хотелось бы, что бы ввели подписочную модель и сделали материалы дешевле 300 рублей в рамках подписки бесплатными.
Отличный сайт
Лично меня всё устраивает - и покупка, и продажа; и цены, и возможность предпросмотра куска файла, и обилие бесплатных файлов (в подборках по авторам, читай, ВУЗам и факультетам). Есть определённые баги, но всё решаемо, да и администраторы реагируют в течение суток.
Маленький отзыв о большом помощнике!
Студизба спасает в те моменты, когда сроки горят, а работ накопилось достаточно. Довольно удобный сайт с простой навигацией и огромным количеством материалов.
Студ. Изба как крупнейший сборник работ для студентов
Тут дофига бывает всего полезного. Печально, что бывают предметы по которым даже одного бесплатного решения нет, но это скорее вопрос к студентам. В остальном всё здорово.
Спасательный островок
Если уже не успеваешь разобраться или застрял на каком-то задание поможет тебе быстро и недорого решить твою проблему.
Всё и так отлично
Всё очень удобно. Особенно круто, что есть система бонусов и можно выводить остатки денег. Очень много качественных бесплатных файлов.
Отзыв о системе "Студизба"
Отличная платформа для распространения работ, востребованных студентами. Хорошо налаженная и качественная работа сайта, огромная база заданий и аудитория.
Отличный помощник
Отличный сайт с кучей полезных файлов, позволяющий найти много методичек / учебников / отзывов о вузах и преподователях.
Отлично помогает студентам в любой момент для решения трудных и незамедлительных задач
Хотелось бы больше конкретной информации о преподавателях. А так в принципе хороший сайт, всегда им пользуюсь и ни разу не было желания прекратить. Хороший сайт для помощи студентам, удобный и приятный интерфейс. Из недостатков можно выделить только отсутствия небольшого количества файлов.
Спасибо за шикарный сайт
Великолепный сайт на котором студент за не большие деньги может найти помощь с дз, проектами курсовыми, лабораторными, а также узнать отзывы на преподавателей и бесплатно скачать пособия.
Популярные преподаватели
Нашёл ошибку?
Или хочешь предложить что-то улучшить на этой странице? Напиши об этом и получи бонус!
Бонус рассчитывается индивидуально в каждом случае и может быть в виде баллов или бесплатной услуги от студизбы.
Предложить исправление
Добавляйте материалы
и зарабатывайте!
Продажи идут автоматически
5138
Авторов
на СтудИзбе
442
Средний доход
с одного платного файла
Обучение Подробнее