Популярные услуги

Курсовой проект по деталям машин под ключ
ДЗ по ТММ в бауманке
Курсовой проект по деталям машин под ключ в бауманке
Все лабораторные под ключ! КМ-1. Комбинационные логические схемы + КМ-2. Комбинационные функциональные узлы и устройства + КМ-3. Проектирование схем
КМ-3. Типовое задание к теме прямые измерения. Контрольная работа (ИЗ1) - любой вариант!
КМ-4. Типовое задание к теме косвенные измерения. Контрольная работа - любой вариант за 5 суток.
Любая лабораторная в течение 3 суток! КМ-1. Комбинационные логические схемы / КМ-2. Комбинационные функциональные узлы и устройства / КМ-3. Проектирование схем
КМ-2. Выпрямители. Письменная работа (Электроника семинары)
Допуски и посадки и Сборочная размерная цепь + Подетальная размерная цепь
КМ-3. Задание по Matlab/Scilab. Контрольная работа - любой вариант за 3 суток!
Главная » Лекции » Инженерия » Автоматизированный электропривод » Электромеханические свойства электропривода постоянного тока

Электромеханические свойства электропривода постоянного тока

2021-03-09СтудИзба

3. Электромеханические свойства электропривода постоянного тока

3.1. Классификация электродвигателей постоянного тока (ЭПТ) по способу возбуждения

ДПТ конструктивно состоит из двух основных частей: подвижной части (якоря) и неподвижной части (статора), в которой находится обмотка возбуждения двигателя. Двигатель питается постоянным напряжением. В зависимости от способа включения обмотки возбуждения различают 4 основных типа электродвигателей.

1. ДПТ с независимым возбуждением (рис. 3.1, а). В данном случае источники питания цепи якоря двигателя и цепи обмотки возбуждения (ОВ) являются разными, иногда с разным уровнем напряжения. В связи с этим поведение тока возбуждения не зависит от цепи якоря (при пренебрежении влиянием реакции якоря), что при неизменности тока возбуждения делает характеристики двигателя линейными.

2. При параллельном способе включения обмотки возбуждения и якоря включают в одну сеть параллельно друг другу (рис. 3.1, б). При условии наличия сети бесконечной мощности напряжение на зажимах обмоток остаётся постоянным и характеристики ДПТ с ПВ аналогичны характеристикам ДПТ с НВ. Поэтому часто ограничиваются рассмотрением ДПТ с независимым возбуждением.

3. У ДПТ с последовательным возбуждением имеется последовательная (сериесная) обмотка, которая включается последовательно с обмоткой якоря двигателя (рис. 3.1, в). Такое включение приводит к тому, что поток, создаваемый ОВ, зависит от тока двигателя, который в процессе работы и переходных процессов подвергается значительным изменениям. Данный тип двигателя обладает нелинейной механической характеристикой.

4. ДПТ со смешанным возбуждением. В этом случае двигатель имеет две обмотки возбуждения: последовательную и параллельную, и результирующий магнитный поток складывается из двух составляющих. Подключение цепи якоря выполняется так же, как на рис. 3.1, в, а обмотки возбуждения, как на рис. 3.1, а, б.

3.2. Механическая и электромеханическая характеристики ДПТ с НВ

Найдем формулу механической характеристики двигателя. Согласно второму закону Кирхгофа для цепи якоря получаем:

,

где  – суммарное сопротивление якорной цепи,  – суммарная индуктивность якорной цепи.

Подставив в уравнение соотношения для ЭДС и момента двигателя  и , получим

,

где  – конструктивный коэффициент двигателя, определяемый по формуле

,

где p – число пар полюсов двигателя; N – число активных проводников в обмотке якоря, a – число пар параллельных ветвей в обмотке якоря.

Оставив в левой части скорость двигателя, получим общее выражения для механической характеристики ДПТ с НВ

.

Если момент двигателя постоянный, то , и уравнение механической характеристики двигателя будет иметь следующий вид:

.                                                                  (3.1)

Или в другом виде

 ,

где  – скорость идеального холостого хода.

Вид характеристики показан на рис. 3.2, а.

           

Описание: Фрагмент21

Описание: Фрагмент22

а

б

Рис. 3.2. Естественные (а) и искусственные (б) механические характеристики ДПТ с НВ

Электромеханическую механическую характеристику можно получить, подставив в механическую характеристику двигателя (3.1) выражение для момента :

.

Рассматривая уравнение, можно заключить, что обе механические характеристики при постоянном потоке линейны. Положение каждой характеристики может быть охарактеризовано двумя точками: точкой идеального холостого хода (; ) и точкой короткого замыкания ().

Найдем модуль статической жесткости характеристики, для чего решим уравнение механической характеристики относительно момента:

.

Тогда

.

С учетом статической жесткости уравнение механической характеристики можно записать следующим образом:

.

3.2.1. Построение механической характеристики ДПТ с НВ

            Для построения МХ двигателя НВ достаточно знать лишь две точки, так как МХ представляют собой прямые линии. Эти две точки могут быть любыми, однако построение характеристики удобно производить по точкам, одна из которых соответствует номинальному электромагнитному моменту двигателя и номинальной скорости (), а другая – скорости идеального холостого хода (). Номинальная скорость двигателя определяется по паспортным данным

.

Номинальный момент вычисляется по формуле

.

Коэффициент kФ можно найти следующим образом:

.

В случае, когда сопротивление якоря не известно, его можно приближенно вычислить, приняв, что половина всех потерь в двигателе при номинальной нагрузке связана с потерями в меди якоря, поэтому

,

откуда

.

Скорость идеального холостого хода

.

3.3. Понятие естественной и искусственной механических характеристик. Влияние параметров на вид механической характеристики ДПТ с НВ

Если характеристика получена при номинальных параметрах двигателя (), то такую характеристику называют естественной. Естественная механическая характеристика показана на рис 3.2, а. Она определяет его рабочую скорость и показывает, как она изменяется при изменениях нагрузки в статических режимах работы.

Уравнение естественной МХ двигателя

.

 Искусственные механические характеристики получаются в тех случаях, когда характеристика строится не для номинального режима работы. На рис. 3.2, б показаны искусственные механические характеристики при . Такие характеристики называют реостатными. При возрастании сопротивления в якорной цепи жесткость механических характеристик уменьшается.

Реостатные МХ можно получить по формуле

.

Соответственно, добавочное сопротивление ограничивает ток (момент) короткого замыкания

.

Скорость идеального холостого хода  остаётся неизменным, так как она не зависит от сопротивления в цепи якоря.

Кроме изменения сопротивления в якорной цепи возможно также изменение магнитного потока двигателя и напряжения на якоре двигателя.

Изменение магнитного потока двигателя Ф возможно только в сторону уменьшения (). Увеличение магнитного потока связано со значительным возрастанием тока возбуждения двигателя, что приведет к перегреву двигателя.

При изменении магнитного потока уменьшается момент короткого замыкания

,

и возрастает скорость идеального холостого хода двигателя

.

Механические характеристики для этого случая показаны на рис. 3.3, а.

Изменение напряжения на якоре двигателя возможно в сторону уменьшения от номинального вниз. При этом величина падения скорости  не изменяется

,

а величина скорости идеального холостого хода уменьшается пропорционально

.

Механические характеристики для этого случая показаны на рис. 3.3, б.

Описание: Фрагмент23

Описание: Фрагмент24

а

б

Рис. 3.3. Искусственные МХ при Ф=var (а) и U=var (б)

3.4. Особенности пуска двигателя постоянного тока с независимым возбуждением

            При включении в сеть ДПТ в начальный момент якорь неподвижен, а, следовательно, . В этих условиях ток якоря (пусковой ток) ограничивается только электрическим сопротивлением обмоток и щеточных контактов в цепи якоря

.                                                              (3.2)

Так как величина сопротивления якоря мала, пусковой ток двигателя может в 10-40 раз превышать номинальный ток двигателя. Такое превышение начального пускового тока недопустимо, так как ведет к перегреву обмоток, появлению слишком большого пускового момента, который оказывает на якорь и подвижную часть электропривода ударное воздействие, что может привести к механическому повреждению движущихся частей электропривода. При больших значениях тока нарушаются нормальные условия коммутации, что может привести к повреждению коллектора.

Уменьшение пускового тока, как видно из (3.2), возможно двумя способами: снижением напряжения питающей сети или повышением сопротивления якорной цепи.

При введении в цепь якоря внешнего сопротивления начальный пусковой ток будет определяться выражением

.

Таким образом, можно подобрать сопротивление резистора, при котором начальный пусковой ток  не превысит допустимого значения, который обычно составляет два номинальных значения . Выбранное сопротивление, правда, удовлетворит только началу пуска, так как в обмотке якоря начнет индуцироваться ЭДС двигателя при вращении, величина которой пропорциональна скорости вращения.

Чтобы поддерживать пусковой ток, а, следовательно, и пусковой момент на прежнем уровне, необходимо уменьшить сопротивление резистора. С этой целью в цепь якоря включают резистор переменного сопротивления, называемый пусковым реостатом со ступенчатой регулировкой сопротивления. В настоящее время ручной пуск применяется для управления крановыми двигателями, с целью создания пониженных скоростей подъема или спуска. На других механизмах, в основном, применяется автоматизированный пуск посредством контакторов, которые в процессе пуска шунтируют элементы пускового реостата при переключении его ступеней.

Рассмотрим процесс пуска двигателя с применением пускового реостата на три ступени (Z=3). Контроль пуска обычно выполняется в функции тока. Ток, соответствующий моменту  называют током переключения. Значения пусковых токов обычно принимают (в зависимости от механизма и применяемого двигателя) равными:

.

Для двигателей краново-металлургической серии значение пусковых токов может быть увеличено. Расчет пусковых ступеней может быть выполнен графически и аналитически.

Описание: Фрагмент25

Описание: Фрагмент26

Рис. 3.4. Схема включения пусковых сопротивлений

Рис. 3.5. Пусковая диаграмма ДПТ с НВ

В относительных единицах, значения сопротивления ступеней можно рассчитать по отрезкам:

, отсюда ;

, отсюда ;

, отсюда ,

где номинальное сопротивление двигателя

.

Суммарное сопротивление реостата

.

Аналитический метод

При расчете форсированного режима пуска обычно величину пускового тока принимают близкой или равной предельно-допустимому по паспортным данным, то есть

.

В этом случае задаются числом ступеней пускового реостата Z и рассчитывают величину , определяющую рациональное соотношение между токами  и :

.

Затем рассчитывают значение тока переключений

.

Если режим пуска нормальный, то задаются величиной тока переключений, а соотношение  рассчитывают из соотношения

.

После этого определяют начальный пусковой ток

.

Расчет сопротивлений ступеней выполняют по формулам:

; ; .

Пример расчёта приведён в [4, с.55].

3.5. Тормозные режимы двигателя постоянного тока с независимым возбуждением. Механические характеристики ДПТ с НВ в тормозных режимах

Кроме двигательных режимов электродвигатели также могут работать в тормозных режимах. Тормозной режим характеризуется тем, что скорость вращения и момент двигателя имеют разные знаки. Быстрота и точность, с какой будут протекать переходные процессы остановки или реверса во многом определяют производительность механизма, а иногда и качество вырабатываемого продукта. Возможны три варианта электрического торможения:

1) рекуперативное торможение;

2) динамическое торможение;

3)  торможение противовключением.

Каждый тормозной режим является генераторным, так как энергия поступает в машину с вала, преобразуется в электрическую и либо отдаётся в сеть, либо затрачивается на нагрев элементов якорной цепи, обладающих активным сопротивлением, и рассеивается в окружающую среду.

3.5.1. Рекуперативное торможение

Такой режим возникает, когда скорость двигателя больше скорость идеального холостого хода двигателя, то есть выполняется условие

.

При этом ЭДС двигателя становится больше напряжения сети (), и ток двигателя меняет направление. При этом двигатель работает генератором и отдает энергию в сеть. Электромагнитный момент двигателя при этом противодействует внешнему вращающему моменту.

Данный вид торможения является наиболее экономичным, так как энергия возвращается в сеть. Применение этого способа является эффективным энергосберегающим средством. Этот режим целесообразен, когда привод работает с частыми пусками и остановками. Например, электротранспорт. При движении под уклон также возникают благоприятные условия для возникновения этого режима торможения.

            Схема включения двигателя для данного режима показана на рис. 3.6, а, а характеристики представлены на рис. 3.7 (характеристика 1).

3.5.2. Динамическое торможение

Необходимость в таком торможении возникает, когда после отключения двигателя от сети его якорь продолжает вращаться под действием запаса кинетической энергии. Если по технологии требуется более быстрый останов двигателя, чем время остановки на выбеге, используется динамическое торможение.

            При данном способе торможения якорь двигателя замыкается на тормозное сопротивление, а обмотка возбуждения остаётся подключенной в сеть для создания тормозного момента. Вырабатываемая при этом энергия переходит в тепловую и рассеивается в окружающее пространство. В этом режиме ток двигателя меняет знак, так как он начинает протекать под действием ЭДС двигателя, которая направлена всегда встречно напряжению сети

.

Величину тормозного сопротивления можно определить из формулы

.

При этом слишком малое значение тормозного момента ведет к затягивания процесса торможения, а слишком большой ток отрицательно сказывается на работе щеточно-коллекторного аппарата двигателя.

            Схема включения двигателя для данного режима показана на рис. 3.6, б, а характеристики на рис. 3.7 (характеристика 2).

Описание: Фрагмент27_1

а

б

в

Рис. 3.6. Схемы включения двигателя в тормозных режимах работы

(а-рекуперативное, б-динамическое, в-противовключение)

            Описание: Фрагмент26_1

Рис. 3.7. Механические характеристики ДПТ с НВ в тормозных режимах

3.5.3. Торможение противовключением

Для уменьшения времени торможения или реверса иногда применяют данный режим. Реализация этого режима возможна на работающем двигателе при смене полярности питающего напряжения. В этом случае направления ЭДС двигателя и напряжения сети совпадает

Если Вам понравилась эта лекция, то понравится и эта - 63 Право на секрет производства.

,

что без ограничения тока якоря приводит к большим величинам тока якоря, что является недопустимым.

            Величина тормозного сопротивления выбирается по формуле

.

            Торможение противовключением применяется в основном для реверса двигателя. Для точного останова двигателя данным режим не удобен, так как требуется довольно точная настройка аппаратуры для того, чтобы остановить двигатель в точке нулевой скорости. Если же двигатель не отключить от сети, то он перейдет в двигательный режим, и в дальнейшем разгонится до номинальной скорости при наличии номинального момента на валу двигателя. Для точной остановки двигателя используется режим динамического торможения.

Схема включения двигателя для данного режима показана на рис. 3.6, в, а характеристики на рис. 3.7 (характеристика 3).

Свежие статьи
Популярно сейчас
Как Вы думаете, сколько людей до Вас делали точно такое же задание? 99% студентов выполняют точно такие же задания, как и их предшественники год назад. Найдите нужный учебный материал на СтудИзбе!
Ответы на популярные вопросы
Да! Наши авторы собирают и выкладывают те работы, которые сдаются в Вашем учебном заведении ежегодно и уже проверены преподавателями.
Да! У нас любой человек может выложить любую учебную работу и зарабатывать на её продажах! Но каждый учебный материал публикуется только после тщательной проверки администрацией.
Вернём деньги! А если быть более точными, то автору даётся немного времени на исправление, а если не исправит или выйдет время, то вернём деньги в полном объёме!
Да! На равне с готовыми студенческими работами у нас продаются услуги. Цены на услуги видны сразу, то есть Вам нужно только указать параметры и сразу можно оплачивать.
Отзывы студентов
Ставлю 10/10
Все нравится, очень удобный сайт, помогает в учебе. Кроме этого, можно заработать самому, выставляя готовые учебные материалы на продажу здесь. Рейтинги и отзывы на преподавателей очень помогают сориентироваться в начале нового семестра. Спасибо за такую функцию. Ставлю максимальную оценку.
Лучшая платформа для успешной сдачи сессии
Познакомился со СтудИзбой благодаря своему другу, очень нравится интерфейс, количество доступных файлов, цена, в общем, все прекрасно. Даже сам продаю какие-то свои работы.
Студизба ван лав ❤
Очень офигенный сайт для студентов. Много полезных учебных материалов. Пользуюсь студизбой с октября 2021 года. Серьёзных нареканий нет. Хотелось бы, что бы ввели подписочную модель и сделали материалы дешевле 300 рублей в рамках подписки бесплатными.
Отличный сайт
Лично меня всё устраивает - и покупка, и продажа; и цены, и возможность предпросмотра куска файла, и обилие бесплатных файлов (в подборках по авторам, читай, ВУЗам и факультетам). Есть определённые баги, но всё решаемо, да и администраторы реагируют в течение суток.
Маленький отзыв о большом помощнике!
Студизба спасает в те моменты, когда сроки горят, а работ накопилось достаточно. Довольно удобный сайт с простой навигацией и огромным количеством материалов.
Студ. Изба как крупнейший сборник работ для студентов
Тут дофига бывает всего полезного. Печально, что бывают предметы по которым даже одного бесплатного решения нет, но это скорее вопрос к студентам. В остальном всё здорово.
Спасательный островок
Если уже не успеваешь разобраться или застрял на каком-то задание поможет тебе быстро и недорого решить твою проблему.
Всё и так отлично
Всё очень удобно. Особенно круто, что есть система бонусов и можно выводить остатки денег. Очень много качественных бесплатных файлов.
Отзыв о системе "Студизба"
Отличная платформа для распространения работ, востребованных студентами. Хорошо налаженная и качественная работа сайта, огромная база заданий и аудитория.
Отличный помощник
Отличный сайт с кучей полезных файлов, позволяющий найти много методичек / учебников / отзывов о вузах и преподователях.
Отлично помогает студентам в любой момент для решения трудных и незамедлительных задач
Хотелось бы больше конкретной информации о преподавателях. А так в принципе хороший сайт, всегда им пользуюсь и ни разу не было желания прекратить. Хороший сайт для помощи студентам, удобный и приятный интерфейс. Из недостатков можно выделить только отсутствия небольшого количества файлов.
Спасибо за шикарный сайт
Великолепный сайт на котором студент за не большие деньги может найти помощь с дз, проектами курсовыми, лабораторными, а также узнать отзывы на преподавателей и бесплатно скачать пособия.
Популярные преподаватели
Добавляйте материалы
и зарабатывайте!
Продажи идут автоматически
5193
Авторов
на СтудИзбе
433
Средний доход
с одного платного файла
Обучение Подробнее