Популярные услуги

Главная » Лекции » Химия » Коллоидная химия » Растворы полимеров как коллоидные системы (молекулярные коллоиды)

Растворы полимеров как коллоидные системы (молекулярные коллоиды)

2021-03-09СтудИзба

Лекция 8. Растворы полимеров как коллоидные системы (молекулярные коллоиды)

Общая характеристика растворов полимеров

Набухание полимеров

Осмотическое давление и вязкость растворов

полимеров

Общая характеристика растворов полимеров

Растворы полимеров сочетают в себе свойства истинных молекулярных растворов и типичных коллоидных систем, причем свойства растворов полимеров также зависят от концентрации, температуры, природы растворителя и полимера.

Сильно разбавленный раствор полимера небольшой молекулярной массы в очень хорошем представляет собой гомогенный молекулярный раствор. С увеличением концентрации или с ухудшением растворяющей способности растворителя, макромолекулы или сворачиваются в относительно плотный клубок – глобулу, или образуют агрегаты из нескольких макромолекул. Оба эти процесса приводят к возникновению новой фазы, т.е. к образованию мицелл. Раствор полимера, содержащий мицеллы, приобретает свойства обычного золя. Агрегативная устойчивость такого золя обусловлена тем, что при образовании мицеллы полярные или неполярные группы полимера определенным образом ориентируются на границе макромолекула-среда, благодаря чему вокруг мицелл возникает сольватная оболочка. Этот процесс аналогичен процессу ориентации при образовании мицелл из молекул ПАВ.

Рекомендуемые материалы

Так же как и в коллоидных растворах ПАВ, в реальных растворах высокомолекулярных соединений в равновесии находятся макромолекулы и их ассоциаты – мицеллы. Крайними случаями этого равновесия являются идеальный молекулярный раствор и лиофобный золь. Между ними возможны различные переходные системы, обладающие одновременно свойствами коллоидных систем и молекулярных растворов. Для таких систем предложен термин – молекулярные коллоиды. При обычных условиях растворы высокомолекулярных соединений по своим свойствам ближе к коллоидным системам и являются термодинамически устойчивыми лиофильными коллоидными системами.

Набухание полимеров

При контакте полимера с растворителем всегда происходит его набухание.

Набухание – это самопроизвольный процесс поглощения низкомолекулярного растворителя высокомолекулярным веществом, сопровождающийся увеличением массы и объема полимера. Набухание часто является начальным этапом растворения высокомолекулярных веществ. Различают ограниченное и неограниченное набухание.

При ограниченном набухании объем и масса полимера достигают определенных значений и дальнейший контакт полимера с растворителем не приводит к каким-либо изменениям. В результате ограниченного набухания полимер превращается в студень.

При неограниченном набухании отсутствует предел набухания, с течением времени полимер поглощает все большее количество жидкости и, в результате, набухание переходит в растворение. Примером ограниченного набухания является набухание резины в бензине; набухание каучука в этом же растворителе неограниченно.

На характер набухания влияет температура. Так желатина, агар, поливиниловый спирт в холодной воде набухают до определенного предела, т.е. ограничено, при нагревании же они набухают неограниченно и растворяются.

Причиной набухания является диффузия низкомолекулярного растворителя в высокомолекулярное вещество. Между макромолекулами полимера обычно имеются небольшие пространства, размер которых соизмерим с размером молекул растворителя. Благодаря этому молекулы низкомолекулярной жидкости достаточно быстро проникают в пространства между макромолекулами, раздвигая молекулярные цепи. Если макромолекулы полимера гибкие, то благодаря их тепловому движения диффузия растворителя облегчается. Полимеры с жесткими молекулярными цепями набухают значительно хуже.

Таким образом, набухание можно представить как процесс одностороннего смешивания, при котором молекулы низкомолекулярного вещества, благодаря большой подвижности, проникают в пространство между молекулами высокомолекулярного вещества.

Для многих систем набухание включает не только диффузию жидкости в полимер, но и сольватацию макромолекул. Обычно при взаимодействии высокомолекулярного вещества с растворителем сольватируется не вся макромолекула, а отдельные ее группы.

У полимеров, макромолекулы которых состоят из полярных и неполярных групп, сольватируются полярные группы. Если же растворитель неполярен, то сольватируются неполярные группы. В зависимости от того, каких групп в полимере больше, он будет набухать в полярном или неполярном растворителе.

Обычно набухание – избирательное явление, т.е. полимер набухает в жидкостях, близких к нему по химическому строению. Так углеводородные полимеры типа каучуков набухают в неполярных жидкостях – бензине, бензоле. Полимеры, в состав молекул которых входят полярные группы, например, белки, крахмал, набухают в полярных растворителях (воде, спиртах).

Процесс набухания можно разбить на две основные стадии. На первой стадии набухания низкомолекулярный растворитель, диффундируя в высокомолекулярное вещество, сольватирует его макромолекулы. Образование сольватной оболочки молекулы полимера сопровождается выделением тепла, поэтому первая стадия набухания характеризуется положительным тепловым эффектом.

Теплота набухания зависит от природы полимера и растворителя. Она максимальная при набухании в воде полимеров, содержащих большое число полярных групп. При набухании неполярного полимера в неполярной жидкости тепловой эффект очень мал.

Молекулы растворителя в сольватной оболочке плотно упакованы благодаря ориентации их около сольватируемых групп макромолекулы, и, следовательно, растворитель в сольватной оболочке имеет более высокую плотность. В результате сжатия растворителя в сольватных оболочках, на первой стадии набухания, наряду с увеличением объема полимера, наблюдается уменьшение суммарного объема всей системы. Сумма объемов полимера до набухания и поглощаемой полимером жидкости больше, чем объем набухшего полимера. Такое явление уменьшения объема системы при набухании вещества в растворителе называется внутренним сжатием или контракцией.

На второй стадии набухания, протекающей без теплового эффекта, а иногда с отрицательным тепловым эффектом, наблюдается обычно основное увеличение объема полимера. На этой стадии набухания низкомолекулярный растворитель диффундирует в полимер и происходит смешивание больших и гибких макромолекул с молекулами растворителя. Из-за односторонней диффузии, характеризующей эту стадию, ее иногда называют осмотической.

На второй стадии набухания может происходить переход некоторого числа макромолекул в низкомолекулярный растворитель. Ограниченное набухание заканчивается на второй стадии, неограниченное набухание приводит к растворению полимера.

Стадии набухания представлены на рис. 8.1.

На первой стадии набухания (рис. 8.1б) при увеличении объема полимера объем всей системы несколько уменьшается (контракция). На второй стадии объем набухшего полимера по сравнению с первоначальным объемом увеличивается (рис. 8.1в), но при этом возможно и частичное растворение полимера (рис. 8.1г).

Рис. 8.1. Стадии ограниченного набухания:

а – система полимер-растворитель до набухания;

б – первая стадия набухания;

в – вторая стадия набухания;

г – вторая стадия набухания с частичным растворением полимера.   

Набухание полимера характеризуется степенью набухания:

где  - масса полимера до и после набухания.

Степень набухания зависит от прочности межмолекулярных связей в полимере и энергии сольватации. Если для линейного полимера работа, которую надо затратить на разрыв связей слабых ван-дер-ваальсовых сил, меньше, чем энергия сольватации, то набухание будет неограниченным. Если в полимере есть поперечные связи, то энергии сольватации может быть недостаточно для их разрыва. Тогда набухание будет ограниченным и тем меньшим, чем прочнее межмолекулярные связи. Так, натуральный каучук (линейный полимер) неограниченно набухает (растворяется) в бензине, резина (вулканизированный каучук) набухает ограниченно, эбонит (каучук+50% серы) совершенно не набухает.

На степень ограниченного набухания влияет также температура. Если набухание ограничивается только первой, сольватационной стадией, являющейся экзотермическим процессом, то степень набухания с повышением температуры уменьшается. Вторая стадия набухания может быть эндотермическим процессом, тогда степень набухания должна увеличиваться с повышением температуры.

При набухании высокомолекулярного вещества в каком-либо ограниченном пространстве, препятствующем увеличению объема, возникает давление набухания, которое может достигать на начальной стадии нескольких мегапаскалей. Это давление может стать причиной разрыва емкостей, заполненных набухающими материалами. При хранении и перевозке многих пищевых продуктов, таких как зерно, крупа, мука, необходимо учитывать возможность их набухания.

Набухание имеет очень большое значение для многих технологических процессов в пищевой промышленности: в хлебопекарском производстве, производстве мучных кондитерских изделий.

Набухание – обязательный процесс, протекающий при замачивании зерна в производстве солода, являющегося основным сырьем пивоваренных и квасоваренных заводов.

В производстве кукурузного крахмала осуществляется замачивание кукурузного зерна с целью размягчения зерна и создания оптимальных условий для его измельчения и последующего выделения крахмала. На последней стадии замачивания зерно поглощает до 45% воды и увеличивается в объеме.

Осмотическое давление и вязкость растворов

 полимеров

Наличие в растворах высокомолекулярных соединений вытянутых гибких макромолекул влияет на такие свойства растворов, как осмотическое давление и вязкость.

Осмотическое давление растворов низкомолекулярных веществ подчиняется закону Вант-Гоффа, который может быть записан в такой форме:

где   – массовая концентрация раствора;

       - масса одного моля растворенного вещества.

Уравнение для осмотического давления растворов высокомолекулярных соединений содержит дополнительный член, учитывающий взаимодействие гибких макромолекул в растворе друг с другом и с растворителем:

где  – постоянная, зависящая от природы растворителя и  растворенного вещества.

Разделив правую и левую часть уравнения на , получим:

Графическая зависимость величины  от  имеет вид прямой, не проходящей через начало координат (рис. 8.2). Отрезок, отсекаемый этой прямой на оси ординат, равен . На изучении зависимости осмотического давления от концентрации раствора основан один из самых распространенных методов определения молекулярной массы высокомолекулярных соединений. По этому методу измеряют осмотическое давление раствора полимера при нескольких массовых концентрациях, строят графическую зависимость  от , по графику находят  и рассчитывают . Определяемая молекулярная масса полимера будет средней величиной.

По вязкости растворы высокомолекулярных веществ резко отличаются от растворов низкомолекулярных веществ и золей. При одной и той же концентрации вязкость растворов полимеров значительно больше вязкости растворов низкомолекулярных веществ, и, с увеличением концентрации, она быстро возрастает (рис. 8.3).

Рис. 8.2. Зависимость  от концентрации  раствора

полимера.

Рис. 8.3. Зависимость вязкости раствора от его

концентрации:

1 - для раствора низкомолекулярного вещества;

2 - для золя; 3 - для раствора полимера.

Такая высокая вязкость растворов высокомолекулярных соединений, даже при низкой концентрации, объясняется наличием в системе длинных гибких макромолекул. Вязкость жидкости можно определить как сопротивление жидкости передвижению одного ее слоя относительно другого. Громадные, вытянутые и гибкие макромолекулы увеличивают силу трения между слоями, т.е. увеличивают вязкость.

Для характеристики вязкости очень разбавленных растворов полимеров, в которых макромолекулы не взаимодействуют друг с другом, Штаудингером предложено следующее уравнение:

где  – вязкость раствора и растворителя соответственно;

         - удельная вязкость раствора;

           - константа, имеющая определенное значение для каждого полимергомологического ряда. Константу К определяют, измеряя молекулярную массу наиболее низкомолекулярных членов данного полимергомологического ряда каким-нибудь другим независимым методом, например, криоскопическим;

         - молекулярная масса полимера;

           - концентрация раствора, выраженная в «основных молях» на литр. «Основной моль» - число граммов полимера, равное молекулярной массе мономера, из которого построена макромолекула.

Согласно уравнению Штаудингера вязкость раствора прямо пропорциональна молекулярной массе растворенного полимера и концентрации раствора. На этой зависимости основан один из методов определения молекулярной массы полимеров.

Вязкость раствора полимера зависит от природы растворителя.

Бесплатная лекция: "8. Мировой океан как часть географической оболочки" также доступна.

Чем лучше полимер растворяется в данном растворителе, тем более вытянуты макромолекулы и тем больше вязкость раствора.

С увеличением концентрации вязкость растворов полимеров возрастает непропорционально, и течение концентрированных растворов уже не подчиняется законам Ньютона и Пуазейля. Это проявляется в том, что вязкость этих растворов не является постоянной, а уменьшается с увеличением скорости течения растворов.

При увеличении скорости течения разбавленных растворов полимеров гибкие макромолекулы распрямляются и ориентируются по направлению течения. В результате снижается гидродинамическое сопротивление движущейся жидкости и уменьшается вязкость раствора.

В растворах достаточно высокой концентрации появляются ассоциаты макромолекул, также имеющие вытянутую форму. Эти ассоциаты и макромолекулы, взаимодействуя друг с другом, могут образовывать пространственные структуры, затрудняющие течение. При увеличении скорости течения эти структуры разрушаются и вязкость растворов полимеров снижается. Разрушение сравнительно непрочных полимерных структур можно вызвать и чисто механическим путем – встряхиванием, перемешиванием.

Увеличение концентрации полимера в растворе может привести к образованию настолько прочной структуры, что раствор потеряет текучесть, т. е. превратится в студень.

Повышение температуры увеличивает интенсивность молекулярного движения, препятствует образованию ассоциатов и структур и, следовательно, снижает вязкость растворов полимеров.  

Свежие статьи
Популярно сейчас
Почему делать на заказ в разы дороже, чем купить готовую учебную работу на СтудИзбе? Наши учебные работы продаются каждый год, тогда как большинство заказов выполняются с нуля. Найдите подходящий учебный материал на СтудИзбе!
Ответы на популярные вопросы
Да! Наши авторы собирают и выкладывают те работы, которые сдаются в Вашем учебном заведении ежегодно и уже проверены преподавателями.
Да! У нас любой человек может выложить любую учебную работу и зарабатывать на её продажах! Но каждый учебный материал публикуется только после тщательной проверки администрацией.
Вернём деньги! А если быть более точными, то автору даётся немного времени на исправление, а если не исправит или выйдет время, то вернём деньги в полном объёме!
Да! На равне с готовыми студенческими работами у нас продаются услуги. Цены на услуги видны сразу, то есть Вам нужно только указать параметры и сразу можно оплачивать.
Отзывы студентов
Ставлю 10/10
Все нравится, очень удобный сайт, помогает в учебе. Кроме этого, можно заработать самому, выставляя готовые учебные материалы на продажу здесь. Рейтинги и отзывы на преподавателей очень помогают сориентироваться в начале нового семестра. Спасибо за такую функцию. Ставлю максимальную оценку.
Лучшая платформа для успешной сдачи сессии
Познакомился со СтудИзбой благодаря своему другу, очень нравится интерфейс, количество доступных файлов, цена, в общем, все прекрасно. Даже сам продаю какие-то свои работы.
Студизба ван лав ❤
Очень офигенный сайт для студентов. Много полезных учебных материалов. Пользуюсь студизбой с октября 2021 года. Серьёзных нареканий нет. Хотелось бы, что бы ввели подписочную модель и сделали материалы дешевле 300 рублей в рамках подписки бесплатными.
Отличный сайт
Лично меня всё устраивает - и покупка, и продажа; и цены, и возможность предпросмотра куска файла, и обилие бесплатных файлов (в подборках по авторам, читай, ВУЗам и факультетам). Есть определённые баги, но всё решаемо, да и администраторы реагируют в течение суток.
Маленький отзыв о большом помощнике!
Студизба спасает в те моменты, когда сроки горят, а работ накопилось достаточно. Довольно удобный сайт с простой навигацией и огромным количеством материалов.
Студ. Изба как крупнейший сборник работ для студентов
Тут дофига бывает всего полезного. Печально, что бывают предметы по которым даже одного бесплатного решения нет, но это скорее вопрос к студентам. В остальном всё здорово.
Спасательный островок
Если уже не успеваешь разобраться или застрял на каком-то задание поможет тебе быстро и недорого решить твою проблему.
Всё и так отлично
Всё очень удобно. Особенно круто, что есть система бонусов и можно выводить остатки денег. Очень много качественных бесплатных файлов.
Отзыв о системе "Студизба"
Отличная платформа для распространения работ, востребованных студентами. Хорошо налаженная и качественная работа сайта, огромная база заданий и аудитория.
Отличный помощник
Отличный сайт с кучей полезных файлов, позволяющий найти много методичек / учебников / отзывов о вузах и преподователях.
Отлично помогает студентам в любой момент для решения трудных и незамедлительных задач
Хотелось бы больше конкретной информации о преподавателях. А так в принципе хороший сайт, всегда им пользуюсь и ни разу не было желания прекратить. Хороший сайт для помощи студентам, удобный и приятный интерфейс. Из недостатков можно выделить только отсутствия небольшого количества файлов.
Спасибо за шикарный сайт
Великолепный сайт на котором студент за не большие деньги может найти помощь с дз, проектами курсовыми, лабораторными, а также узнать отзывы на преподавателей и бесплатно скачать пособия.
Популярные преподаватели
Добавляйте материалы
и зарабатывайте!
Продажи идут автоматически
5160
Авторов
на СтудИзбе
439
Средний доход
с одного платного файла
Обучение Подробнее