Популярные услуги

Главная » Лекции » Экология » Охрана воздушного бассейна » Приоритетные загрязнители городов

Приоритетные загрязнители городов

2021-03-09СтудИзба

3 Приоритетные загрязнители городов

Проблема загрязнения воздуха в городах значительно обострилась в последнее десятилетие в результате интенсивного развития промышленности, энергетики и транспорта. В проблеме охраны окружающей среды она приобрела большое социальное и государственное значение. Первостепенными ее задачами являются контроль и защита воздушного бассейна городов от загрязнения вредными веществами.

Трудности в решении этих задач связаны с быстрым ростом выбросов в атмосферу и неравномерностью из распространения. Основная масса выбросов сосредоточена вблизи из источников - вокруг городов и промышленных центров, общая площадь которых составляет менее десятых долей процента всей площади планеты. В этих сравнительно небольших зонах концентрации примесей на 2-3 и более порядков выше, чем вдали от них.

С развитием городов и их слиянием это положение сохраниться, если суммарная площадь городов увеличится даже на порядок. Вместе с тем в городах многих стран проживает большая часть населения, на здоровье которых, прежде всего сказывается загрязнение атмосферы. По мере роста города, если в нем и не развиваются крупные промышленные объекты, уровень выбросов вредных веществ повышается, поскольку увеличиваются число автомобилей, мощности отопительных, бытовых и других источников. Доля городского населения и жителей крупных городов непрерывно возрастает. Так за последние 100 лет число жителей в городах мира с населением более 100 тыс.чел. увеличилось примерно в 3 раза.

С нарастанием вредных выбросов в городах увеличивается ущерб, который они наносят населению и окружающей среде. Установлена зависимость числа заболеваний хроническим бронхитом, эмфиземой легких, астмой от степени загрязнения воздуха.

3.1 Приоритетные загрязнители

Вещества, загрязняющие атмосферу, могут быть твердыми, жидкими, газообразными и оказывать вредное действие на окружающую среду непосредственно, после химических превращений в атмосфере либо совместно с другими веществами. Они обуславливают изменения природного состава атмосферы, которые сопровождаются серьезными последствиями:

1) опасностями для здоровья людей и животных;

2) разрушением окружающей среды или некоторых ее частей (природных регионов, районов проживания или трудовой деятельности), которое приводит к таким воздействиям на общество, которые не всегда могут быть исчислены в денежном выражении;

Рекомендуемые материалы

3) ухудшением комфортности (например, появлением неприятных запахов, ухудшением видимости).

Указанные последствия являются результатом действия, как самих загрязняющих веществ, так и их сочетания с компонентами атмосферы, усиливающих действие загрязнителей. Эти компоненты атмосферы включают озон, фотохимические окислители, солнечный свет и участвуют в образовании фотохимических смогов.

Из более чем 200 загрязнителей атмосферного воздуха, на которые установлены нормы предельно допустимых концентраций, следует выделить пять основных, определяющие на 90-98% валовой выброс вредных веществ в большинстве городов:1) твердые частицы (пыль, зола, сажа), 2) оксиды серы, 3) оксиды азота, 4) оксиды углерода, 5) углеводороды. Для большинства промышленных регионов характерно следующее весовое соотношение поступления этих веществ в атмосферный воздух: оксид углерода около 50%, оксид серы около 20%, твердые частицы 16-20%, оксиды азота 6-8%, углеводороды 2-5%.

К крупным загрязнителям атмосферного воздуха следует также отнести аммиак, сероводород, сероуглерод, озон, альдегиды, полициклические ароматические углеводороды, хлорорганические соединения, фториды, соединения свинца, кадмия, ртути, ряд многокомпонентных "пахучих" соединений и др.

3.1.1 Твердые частицы

Основными промышленными источниками выбросов в атмосферу твердых частиц являются электростанции, промышленные и отопительные котельные, металлургические и цементные заводы, угле- и рудообогатительные фабрики. Около 60% общего количества аэрозолей, попадающих в атмосферный воздух из промышленных источников во всем мире составляют твердые частицы, поступающие при сжигании угля. Это главным образом зола и пыль, в значительно меньших концентрациях сажа, в отдельных случаях аэрозоли, содержащие микроконцентрации канцерогенных веществ. Выброс золы при сжигании твердых топлив зависит от состава их минеральной части, типа топочного устройства (слоевые, камерные топки с сухим или жидким шлакоудалением) и от эффективной работы пылеулавливающих установок.

К природным источникам загрязнения атмосферы твердыми частицами следует относить: 1) вулканические извержения; 2) пылевые бури; 3) лесные пожары; 4) испарение морской соли и др. (около 3760 т/год - 94% от общего количества).

Показателем нормального содержания твердых частиц в атмосфере является среднегодовая концентрация в горных районах от 0,04 до 0,4 мг/м3.

Важным свойством твердых загрязняющих веществ является размер отдельных частиц, необходимый для определения гранулометрического состава пыли.

Пыль состоит из частиц различных размеров, поэтому диапазон существования отдельных частиц в данном образце (гранулометрический состав, дисперсность пыли, и т.п.) обычно изображаются кривой распределения. Иногда вместо размера частиц используют скорость их осаждения (седиментации). Это скорость с которой частицы в восходящем газовом потоке падают под действием гравитационной силы.

В зависимости от размеров (дисперсного состава) частицы бывают:

-45%-50% d<1мкм;

-30%-35% от 1 до 5 мкм;

-5% от 5 до 20 мкм;

- остаток более 20 мкм;

Различают:

1.Диспергационные аэрозоли.

2.Конденсационные аэрозоли.

dдисп.>> dконд., dконд.< 0.5 мкм

Состав диспергационных и конденсационных аэрозолей может быть

в виде отдельных частиц и в виде групп частиц. Аэрозоли из твердых частиц называются пылью. Конденсационные аэрозоли с твердыми и смешанными фазами называются дымами. Диспергационные аэрозоли с жидкой фазой называются туманами.

Диаметр частиц аэрозолей от 0,001 до 1000 мкм. В этом интервале

масса частицы изменяется в 1015 раз.

Параметры частиц:

1. Стоксовский диаметр частицы - это диаметр сферической частицы, которая обладает той же скоростью оседания, что и рассматриваемая частица с той же плотностью.

2. Аэродинамический диаметр-это диаметр такой частицы, которая обладает той же скоростью оседания, что и рассматриваемая частица, но при плотности 1г/см3.

3. Средний диаметр – это диаметр частицы, измеренный с помощью микроскопа с вычислением среднего диаметра.

Дисперсный состав частиц характеризуется несколькими способами:

1. С помощью гистограмм распределения.

2. По числу частиц и массе.

3. Построением распределения в ВЛКС.

В число других важнейших характеристических свойств частиц твердых загрязнений входят: их химический состав, электрический заряд и электросопротивление, слипаемость, абразивное действие, смачиваемость, взрываемость (или воспламеняемость), схватываемость, удельная поверхность, угол естественного откоса, угол скольжения, насыпная и истинная плотность.

В атмосферной пыли можно обнаружить практически все химические элементы, хотя большинство из них присутствуют в следовых количествах.

В таблице 1 приведены сведения об основных токсических веществах, существенная часть которых поступает в атмосферный воздух с продуктами сгорания топлив.


Таблица 1 – Основные загрязнители атмосферного воздуха.

Загрязнители

Основные источники

Среднегодовая концентрация в воздухе, мг/м3

Химические процессы взаимодействия с окружающей средой

Воздействие на здоровье человека

Воздействие на окружающую среду

Природные

Искусственные

Твердые частицы (пыль, зола)

Вулканические извержения, пылевые бури, лесные пожары, испарения морской соли и др. (около 3760 т/год – 94% от общего количества)

Сжигание топлива в промышленных и бытовых установках (около 240*106 т/год)

В городских районах 0,04 - 0,4

В зависимости от химического состава и размера частиц

Зависит от химического состава

Снижение солнечного освещения и видимости, увеличение туманности

Сернистый ангидрид SO2

Вулканические извержения, окисление серы и сульфатов, рассеянных в море (около 150*106 т/год – 70-50% от общего количества).

Сжигание топлива, нефтепереработка, черная и цветная металлургия ((175-150)*106 т/год – до 50%).

В городских районах до 0,5-1 районах с развитой промышленностью и автотранспортом – до 0,2, в других до 0,05.

Атмосферное окисление до SO3 приводит к образованию тумана, содержащего пары H2SO4

Заболевания дыхательных путей

Хроническое поражение растений, уничтожение лесов, снижение урожайности Погло

Оксиды азота NOx

Лесные пожары (770*106 т/год – около 93% от общего количества).

Окисление атмосферного азота и азота топлива при высокой температуре – энергетика, промышленность, автомобили (55*106 т/год – 7%)

В процессах горения образуется 95-100% NO, окисляется в воздухе до NO2 озоном. В выбросе отопительных установок, газовых турбин, дизелей 70-90% NO, 10-30% NO2

Уменьшение содержания гемоглобина в крови

щение солнечного света, образование коричневой дымки, смога. Уничтожение лесов.

Оксид углерода CO

Летучие углеводороды и их продукты

Полициклические ароматические углеводороды

Лесные пожары (11*106 т/год), выделения океанов (10*106 т/год).

Лесные пожары, поступления природного метана и природных терпенов (2600*106 т/год – 97%).

-

Неполное сгорание топлива (автомобили, промышленность до (250-350)*106 т/год – 90-95%).

Неполное сгорание органического топлива (автомобили), дожигание отходов, испарение растворителей и продуктов нефтепереработки (80*106 т/год – 3%)

Неполное сгорание органического топлива, выбросы химических, металлургических, нефтеперерабатывающих, асфальтобетонных заводов (100%)

 1-50 (в зависимости от интенсивности автотранспорта, близости металлургических производств)

В районах с развитым автотранспортом и промышленностью – до 3

В районах асфальтобетонных заводов и при сжигании твердого топлива в слое – до 0,01

Медленное окисление до СО2 в нижнем слое атмосферы. В целом химическая инертность по отношению к другим компонентам атмосферы

Реакции СО и О3 с образованием альдегидов, кислот и других соединений

Нет данных

Уменьшение содержания гемоглобина в крови

Раздражающее действие некоторых продуктов окисления углеводородов (альдегидов) на глаза и дыхательные пути

Понижение видимости, некоторые углеводороды могут вызывать заболевания раком

Никакого воздействия на высшие растения при концентрации менее 1 мг/м3.

Поражение растений некоторыми соединениями при концентрации выше 0,02 мг/м3. понижение видимости; частое появление запаха

Нет данных


Основными источниками выбросов в атмосферу твердых частиц являются электростанции, промышленные и отопительные котельные, металлургические и цементные заводы, угле- и рудо обогатительные фабрики. Около 60% общего количества аэрозолей, попадающих в атмосферный воздух из промышленных источников во всем мире, составляют твердые частицы, поступающие при сжигании угля. Это главным образом зола и пыль, в значительно меньших концентрациях сажа, в отдельных случаях аэрозоли, содержащие микроконцентрации канцерогенных веществ. Выброс золы при сжигании твердых топлив зависит от состава их минеральной части, типа топочного устройства (слоевые, камерные топки с сухим или жидким шлакоудалением) и от эффективности работы пылеулавливающих установок.

В связи с использованием низкосортных углей содержание минеральной части имеет тенденцию к повышению от обычных 15-30 до 40-50 %. Однако вследствие непрерывного повышения степени золоулавливания (на лучших энергоблоках ηз≥98%) и увеличения доли газа и мазута в топливном балансе общий уровень содержания пыли в воздухе снижается. Содержание минеральной части и серы в некоторых видах топлив приведено в таблице 2; для малосернистого мазута оно составляет соответственно 0,2 и 0,5%, для высокосернистого 0,2.

Таблица 2 – Содержание минеральной части и серы в углях, %.

Бассейн

Марка (сорт)

Минеральная часть

Сера

Донецкий

Д

Г

А

19,6

15,8

13,3

4,0

3,3

4,0

Карагандинский

ПЖ

Б

ПП

25,0

17,0

33,9

0,8

0,6

1,1

Кузнецкий

Д

Г

5,0

10,0

0,4

0,6

Подмосковный

Б

23,5

2,9

Челябинский

24,9

1,2

Кизеловский

Г

Д

ПП

29,3

26,5

35,6

5,1

4,6

9,5

Экибазтусский

С

36,8

0,8

Канский

Б

10,2

0,5

При сжигании угля с содержанием минеральной части Ар = 16-20 % в камерных топках вынос твердых частиц в рабочей массе топлива за пределы топочной камеры составляет до 20 % от его массы. Вследствие этого эксплуатация камерных топок без систем пылеулавливания невозможна. Меньший вынос твердых частиц за пределы топочного устройства имеет место при применении циклонных топок.

Содержание золы в уносе (остальная зола удаляется со шлаком) составляет для пылеугольных топок с сухим шлакоудалением 85-93%, с жидким шлакоудалением 60- 70%, для циклонных топок 10-15%, цепных решеток 20-30%.

Зависимость для годового выброса частиц Мтв, т/год:

                                        (3.1)

где В - расход топлива, т/год; Ар - зольность на рабочую массу, %; аун - доля золы в уносе; q4ун - потери теплоты от механической неполноты сгорания с уносом; Qнр - низшая теплота сгорания, кДж/кг; η3-КПД золоулавливания.

Унос частиц золы и несгоревшего топлива в газоходы с потоком продуктов сгорания зависит от кинетической энергии движения основного потока, размеров и формы частиц топлива.

Определения максимального диаметра уносимых частиц зависимости от wг - скорости потока продуктов сгорания,  и  – соответственно плотности продуктов сгорания и частиц топлива:

dтmax = ƒ ( γг, γт, wг).                                                                                 (3.2)

Вредное действие пыли на организм человека зависит от ряда факторов (концентрация в воздухе, химический состав, размеры частиц, дисперсность, твердость, электрозаряженность пылинок).

Дисперсность твердых частиц имеет большое значение также в связи с худшим улавливанием более мелких частиц. Имеются различные данные о гранулометрическом составе золы твердых топлив. Средние значения для золы отечественных топлив находятся в пределах 4-125 мкм. В таблице 3 приводятся усредненные данные для разных топочных устройств.

Таблица 3 – Фракционный состав летучей золы в дымовых газах котельных установок, %.

Размер частиц золы, мкм

Цепные решетки

Пылеугольные топки с сухим шлакоудалением

Циклонные топки

0-20

10-20

20-30

30-40

40-74

74-149

>149

-

11

-

-

12

30

47

25

24

16

14

13

6

2

72

15

6

2

-

5

-

Итого:

100

100

100

Наряду с дисперсностью пыли весьма существенное значение имеет и ее химический состав. Например, содержание оксидов кремния в пыли более 10 % делает ее опасной для здоровья человека.

При отсутствии средств пылеулавливания в котельных установках малой производительности со слоевыми топками, выброс твердых частиц в атмосферу соизмерим с выбросом их на ТЭЦ. Однако при слоевом сжигании только 3% выбрасываемых частиц имеет d<10 мкм, а при пылеугольном - не менее 20-45 %. Выбросы твердых частиц в атмосферу все еще являются одним из наиболее серьезных видов загрязнений, вносимых процессами горения в атмосферу городов.

Если для крупных котельных установок совершенствование системы пылеулавливания и строительство высоких труб позволяют в значительной мере уменьшить остроту проблемы, то для малых отопительных и промышленных котельных установок со слоевыми топками практически единственным радикальным решением является перевод их на мазут или природный газ. При отсутствии систем пылеулавливания твердое топливо (уголь) поставляет в атмосферу в 100-200 раз больше твердых частиц, чем жидкое топливо.

При сжигании жидкого топлива выделяется значительное количество мелкодисперсной сажи, обладающей большей токсичностью, чем обычная пыль, и оказывающей неблагоприятное влияние на прозрачность атмосферы.

Максимальные концентрации твердых частиц в продуктах сгорания мазута в котлах ТП-170, БКЗ-210 и ПК-10 составляли 0,073- 0,076 г/м3. С возрастанием тепловых напряжений топочного объема отмечалась тенденция к росту количества твердых частиц.

При коэффициенте избытка воздуха в топке с αт<1,06 значения q4 и соответствующие концентрации твердых частиц могут в 3-5 раз превышать средние значения. Если принять потери q4 в случае жидкого топлива 0,10-0,12%, то и тогда количество твердых частиц, выбрасываемых в атмосферу, соответствует 0,17-0,20% от массы топлива.

Высокие концентрации твердых частиц в продуктах сгорания жидкого топлива (до 2,6 кг/т) в малых котлах объясняются, по-видимому, наличием значительного количества не догоревших в зонах горения, обедненных кислородом, коксосажевых частиц.

При сжигании мазута в малых установках концентрация твердых частиц может быть той же, что и при сжигании угля с применением системы пылеулавливания, а при сжигании газа - в среднем на два порядка ниже.

Описание: 1.tif

Рисунок 1 - Зависимость обеспечивающей одинаковую концентрацию в воздухе степени очистки от мощности ТЭС и приведенной зольности топлива. Приведенная зольность, кг* %/МДж.

1-0.48

2-0,72

3 - 1,2

4 - 2,41

5 - 4.6 кг* %/МДж.

В качестве системы золоулавливания применяются электрофильтры, а также мокрые золоуловители (центробежные и мокропрутковые скрубберы), позволяющие довести эффективность системы пылеулавливания до 98-99 % (рис. 1).

 Выпускаются 2-, 3- и 4-польные электрофильтры типа УГ с высотой коронирующих электродов 4,2; 7,5 и 12 м, площадью активного сечения от 10 до 74 м2. Электрофильтры УГ при скорости газов 1,5 м/с обеспечивают ηз =95-98 %. Разработаны электрофильтры, обеспечивающие ηз до 99,5 %.

Средние эксплуатационные значения ηз пылеочистных устройств с учетом размеров частиц приведены в табл. 4.

Таблица 4 – Эффективность очистки газообразных выбросов от взвешенных частиц.

Устройство

Размер частицы, мкм

Эффективность очистки η3, %

Осадительная камера

Циклон

Мультициклон

Тканевый фильтр

Скруббер

Электрофильтр

100

30

10-15

0,5

0,5

0,1

40-50

50-60

90-95

до 99

75-85

96-99

На ряде ТЭЦ, широко применяются золоуловители типа МП-ВТИ (мокропрутковые), а также ПВ УОРГРЭС (с трубой Вентури) и др. Они применимы для улавливания золы с содержанием СаО+МgO<20% (при большем содержании золы прутковая решетка быстро забивается и выходит из строя). КПД золоуловителя МП-ВТИ 90 – 97%. При девятирядных двухступенчатых решетках степень очистки в скруббере диаметром 3100 мм достигает 97%.

Одной из основных характеристик, определяющих возможность применения мокрых золоуловителей, является расход воды, который в различных аппаратах изменяется от 0,1 до 1 л на 1 м3 очищаемых газов. Мокрые золоуловители имеют несколько меньший КПД, чем лучшие электрофильтры, но широко применяются на электростанциях ввиду меньшей стоимости и значительно меньших размеров.

Если расчетные значения ηз составляют для новых станций 98-99,5%, то реальные эксплуатационные показатели их часто не выше 95-97 %.

В связи с широким использованием газомазутных котлов на ГРЭС, а особенно на ТЭЦ, размещенных вблизи жилых кварталов, достаточно остро стоит вопрос о резком снижении (в конечном итоге о полной ликвидации) выбросов твердых частиц (сажи) при сжигании жидких топлив.

Разрабатываются горелочные устройства и режимы сжигания жидкого топлива, при работе которых не образуются сажистые частицы (без увеличения выброса оксидов азота и других токсичных веществ), а также - системы пылеулавливания.

На ряде мазутных котлов паропроизводительностью более 480 т/ч применялись механические золоуловители и электрофильтры. Так, фирма «ЗАМ» (США) разработала недорогой механический золоуловитель для мазутных котлов с ηз==85-88%. Конструкция аппарата позволяет быстро очищать его во время остановки котельного агрегата. Поскольку уловленные частицы состоят на 91% из углерода, их можно дожигать в топке. Для котлов малой производительности применяют рукавные фильтры из стеклоткани или тефлона. Как отечественные, так и зарубежные аппараты для очистки дымовых газов мазутных котлов от сажи нуждаются в дальнейшем совершенствовании.

3.1.2. Оксид углерода.

Одной из наиболее значительных групп токсичных веществ, попадающих в атмосферный воздух, являются продукты неполного сгорания топлива: оксид углерода (СО), альдегиды (главным образом, HCHO), органические кислоты (уксусная кислота (CH3COOH) и др.) и углеводороды. В этой группе наибольшее значение имеет оксид углерода. Если содержание пыли, оксидов серы и оксидов азота в атмосферном воздухе городов определяется уровнем выброса токсичных веществ с продуктами сгорания топлива, сжигаемого в топках котлов и печах, то содержание оксида углерода на улицах больших городов на 75 - 97 % определяется автотранспортом.

Оксид углерода составляет около половины от общего весового количества всех вредных веществ, поступающих в воздушный бассейн городов. Более половины этого количества (десятки миллионов тонн в год) составляют выбросы автомобильного транспорта, остальное - агломерационные производства черной металлургии и другие, более мелкие источники (отопительные котлы, вагранки и др.).

Оксид углерода - высокотоксичное вещество. Уже при концентрации СО в воздухе порядка 0,01 - 0,02 об.% при вдыхании в течении нескольких часов возможно отравление, а концентрация 0,2 об.% (2,4 мг/м3) через 30 мин приводит к обморочному состоянию.

Свойства СО:

· 4 класс опасности. ПДК=3мг/м3

· Т кипения = -191 °С.

· Т плавления = -205 °С.

· Плотность при нормальных условиях = 1,25 кг/м3.

· Растворимость в воде = 0.44 г/100 см3 воды при Т=0 °С.

Источники:

· автотранспорт и двигатели внутреннего сгорания

· коксохимическое производство

· производство чугуна (процессы, которые происходят при большом недостатке окислителя.)

Оксид углерода и другие продукты неполного сгорания.

Одной из наиболее значительных групп токсичных веществ, попадающих в атмосферный воздух, являются продукты неполного сгорания топлива: оксид углерода СО, альдегиды (главным образом, НСНО), органические кислоты (уксусная (СН3СООН) и др.) и углеводороды. В этой группе наибольшее значение имеет оксид углерода. Если содержание пыли, оксидов серы и оксидов азота в атмосферном воздухе городов определяется уровнем выброса токсичных веществ с продуктами сгорания топлива, сжигаемого в топках котлов и печах, то содержание оксида углерода на улицах больших городов на 75-97 % определяется автотранспортом.

Оксид углерода составляет около половины от общего весового количества всех вредных веществ, поступающих в воздушный бассейн городов. Более половины этого количества (десятки миллионов тонн в год) составляют выбросы автомобильного транспорта, остальное - агломерационные производства черной металлургии и другие, более мелкие источники (отопительные котлы, вагранки и др.).

Оксид углерода - высокотоксичное вещество. Уже при концентрации СО в воздухе порядка 0,01-0,02 об.% при вдыхании в течение нескольких часов возможно отравление, а концентрация 0,2 об, % (2,4 мг/м3) через 30 мин приводит к обморочному состоянию.

Оксид углерода вступает в реакцию с гемоглобином крови, образуя карбоксигемоглобин (СО)Hb. К настоящему времени обычное содержание (СО)Hb у жителей крупных городов составляет: у некурящих 1,2-1,9%, а у курящих в 2 раза больше. Содержание (СО)Hb в крови, не зависящее от внешних источников, составляет 0,4%. Однако за 3-4 ч после окончания вдыхания СО кровь здорового человека наполовину очищается от (СО)Hb.

Схема образования и выгорания СО при горении углеводородов имеет следующий характер: на начальном участке выгорания углеводородов идет накопление оксида углерода, а затем его окисление по длине камеры сгорания. Так, при горении метана в факеле и общей длине факела L=10d (где d - диаметр воздушного канала) на расстоянии (0-2)d обычно происходит накопление СО от О до 2-3%, а на последующем участке - (2-10)d, т.е. постепенное снижение концентрации до конечных значений 0,1-0,01 % в зависимости от совершенства организации процесса горения.Однако в действительности накопление СО при горении происходит в результате быстрых реакций:

СН3+О→НСНО+Н;

НСНО+М→СНО+Н;

СНО+М→СО+Н;

СНО+ОН→СО+Н2О.

Окисление СО в топочной камере в результате реакции:

СО+О2→СО2

не играет заметной роли ввиду очень малой скорости.

Основной реакцией, по которой выгорает оксид углерода в топочной камере, является реакция с гидроксилом:

СО+ОН↔СО2+Н.

Задача снижения выбросов оксидов углерода при работе двигателей внутреннего сгорания является одной из важнейших проблем современного автомобилестроения. Автомобили с карбюраторными двигателями выбрасывают до 5 % и более оксида углерода от объема выхлопных газов. При правильной регулировке двигателя это количество может быть уменьшено до 0,15-0,20%. Поэтому необходимо создавать приборы для экспресс методов контроля состава топливовоздушной смеси и определения содержания оксида углерода в продуктах горения, разрабатывать методы очистки продуктов сгорания от оксида углерода.

Важнейшими задачами является перевод на сжатый природный и сжиженный газ, а также на смесевое топливо (бензин+газ) автобусов и грузового автотранспорта, а впоследствии и части легкового автотранспорта. Проведенные исследования показывают, что при переводе двигателей с бензина на газ выброс в атмосферу СО снижается в 10-15, выброс углеводородов в 5-10, оксидов азота в 2 раза.

В США, Японии, ФРГ и других странах с 80-х годов значительное число автомобилей оснащено нейтрализаторами СО. Большинство конструкций нейтрализаторов представляет собой насадку на выхлопную трубу, в которой содержатся решетки, трубочки или шарики из носителя (обычно, Аl2O3), покрытого тонким слоем катализатора - оксида платины (или других металлов) для окисления СО и СО2.

Из стационарных установок к крупнейшим источникам выброса следует отнести в первую очередь агломерационные фабрики, каждая из которых выбрасывает 1-7 млн м3/ч аглогазов, содержащих до 1 % СО, а также кислородные конвертеры (70-90% в продуктах сгорания), электросталеплавильные печи (23- 32 % СО), вагранки (8-5 %), мартеновские печи (до 1 %), котлы малой производительности. В металлургических агрегатах, где концентрация оксида углерода велика, его обычно дожигают в котлах-утилизаторах или специальных печах, с предварительным обогащением продуктов сгорания воздухом. Выброс СО котлами происходит в основном при работе на твердом топливе и при неудовлетворительном регулировании процесса горения.

Отопительные установки выбрасывают в атмосферу в 20 раз больше оксида углерода на единицу теплоты, чем промышленные котельные, и в 500 раз больше, чем электростанции. При сжигании угля в мелких установках выброс оксида углерода превышает 2 % от массы топлива, а при сжигании мазута и газа до 0,05 %.

На концентрацию в конечных продуктах сгорания наряду с кинетическими факторами (ССО; СО2; СН2О; t) влияют также аэродинамика топочной камеры; эффективность перемешивания холодного топливовоздушного потока с рециркулирующими продуктами сгорания; расположение поверхностей нагрева по отношению к факелу; взаимное расположение горелок и некоторые другие факторы.

Данные о незначительности выброса СО при сжигании мазута и газа и прогноз уменьшения его (практически до нуля) при переводе установок с угля на жидкое и газообразное топливо не всегда подтверждаются. Анализ работы котлов паропроизводительностью до 10 т/ч показывает, что при переводе их с угля на газовое топливо при очень тщательной регулировке системы автоматики можно снизить содержание оксида углерода до 0,01 %, в реальных условиях до 0,02%. Так как выброс котельными установками и печами суммируется с выбросом автотранспорта, следует обеспечить снижение выброса СО малыми установками путем правильного регулирования горения.

Наряду с оксидом углерода в продуктах сгорания газа в ряде случаев обнаруживается также формальдегид (НСНО) и другие продукты неполного горения (органические кислоты и т. д.). Наиболее существенное значение имеет формальдегид, обладающий высокой токсичностью и резким неприятным запахом. Наличие формальдегида в значительных количествах отмечалось при горении жидкого топлива и природного газа в малых установках при общем или локальном недостатке воздуха.

Изучение работы малых котлов, используемых для отопительных и коммунальных нужд (паропроизводительность менее 10 т/ч), показало, что концентрации формальдегида для котлов этой группы находятся в пределах 0,0037-0,031 мг/л продуктов сгорания и могут различаться на целый порядок в зависимости от режимных и конструктивных особенностей работы топки. При сжигании жидкого топлива концентрация в продуктах сгорания тех же котлов была ниже (0,0025- 0,0080 мг/л), чем при сжигании газового топлива. На образование формальдегида в топках существенное влияние оказывает переохлаждение фронта горения потоками избыточного вторичного воздуха или соприкосновением с холодными поверхностями нагрева. В дымовых газах котлов, работающих на мазуте или природном газе, обычно обнаруживается от 0 до 70 мг/м3 НСНО. Увеличение α от 1,1 до 1,7 приводило к увеличению содержания НСНО в дымовых газах котлов, например, в котле ДКВР-10-13 с горелками ГМГ от 0,2 до 0,5 мг/м3, а в другом котле ДКВР-10-13 с горелками ГА-110 от 0,7 до 1,0 мг/м3.

В продуктах сгорания также обнаруживаются углеводороды и органические кислоты. Обычно содержание формальдегида и органических кислот является заметным лишь при высоком содержании СО в продуктах сгорания.

Основные задачи по снижению содержания СО в двигателях:

а) регулирование карбюраторов и организация контроля;

б) широкое производство и применение каталитических нейтрализаторов;

в) перевод части автотранспорта на сжатый природный, сжиженный газ, смесевые топлива;

г) постепенный перевод части автотранспорта на электрические и другие двигатели, не связанные с выбросом вредных веществ в атмосферу.

Для снижения выбросов СО стационарными источниками необходимо осуществить ряд мероприятий, основные из которых:

1) разработать и применить методы термической или каталитической очистки агломерационных газов;

2) увеличить полноту сгорания топлива в котлах малой мощности и в промышленных печах;

3) обеспечить дожигание конверторных и ваграночных газов;

4) обеспечить предотвращение попадания СО в атмосферу из межконусного пространства доменных печей и через неплотности оборудования.

3.1.3 Оксиды азота NOx

В ряду основных загрязнителей атмосферного воздуха специальное место занимают оксиды азота. В связи с тем, что большинство приборов и методов измерения основано на определении диоксида азота с предварительным доокислением оксида в диоксид, а также вследствие того, что до 1983 г. были установлены нормы ПДК только на содержание NO2 в атмосферном воздухе, обычно фиксировалась сумма оксидов азота (NO+NO2=NOx). До 1950-1960 - х гг. исследование NOx как загрязнителей атмосферы, выбрасываемых с продуктами сгорания топлива, практически не проводилось, и все внимание было сосредоточено на твердых частицах (зола, пыль, сажа) и сернистом ангидриде. Между тем, как показали исследования, проведенные еще в 1960-х годах, содержание оксидов азота определяет токсичность продуктов сгорания угля и мазута на 40 - 50 %, а природного газа на 90 -95 %. Валовой выброс оксидов азота в атмосферный воздух в различных регионах и городах составляет 6 - 8 % общего выброса всех вредных веществ, уступая лишь выбросу оксида углерода, оксидов серы и твердых частиц. Однако по токсичности NO2 (ПДКмр = 0,0085 мг/м3 по сравнению с 0,5 мг/м3 для SO2 и пыли и 5 мг/м3 для СО) и ввиду активного участия в фотохимических реакциях в атмосфере оксиды азота не уступают по своему воздействию этим трем группам загрязнителей.

Существует 7 видов NOx :

1. N2O - бесцветный газ, сладковатого вкуса, сладковатого запаха

2. NO - бесцветный газ, без запаха, слаборастворимый в воде, в воздухе окисляется до NО2

3. NO2 - красно-коричневый газ, едкого запаха, сильно коррозионно активен, токсичен.

4. NO3

5. N2O3

6. N2О5

N2О4

Оксиды азота (главным образом NO2 (Среднесуточное ПДК NO2 в 10 раз больше ПДК NO)) могут вызывать повреждения различных типов материалов. Наиболее серьезное воздействие они оказывают на некоторые текстильные красители. NO2 может также приводить к уменьшению прочности некоторых тканей, вызывать повреждение различных типов пластмасс и коррозию металлов.

Способность оксидов азота превращаться в атмосфере в нитраты служит одной из причин возникновения кислых осадков или кислотного дождя. В кислотных дождевых водах часто содержатся высокие концентрации нитратов, однако точная оценка роли антропогенных оксидов азота в процессе повреждения материалов под действием кислотного дождя (например, коррозия металлов или разрушения камня) отсутствует. Считается, что оксиды азота оказывают меньшее повреждающее действие, чем оксиды серы.

Свойства NO и NO2:

М NO (NO2) = 30 (46)

Т кипения = -157 °С ( 21 °C )

плотность = 1.34 кг/м3

ПДКмр NO = 0.6 мг/м3

ПДКмр NO2 = 0.4 мг/м3

В ряду основных загрязнителей атмосферного воздуха специальное место занимают оксиды азота. В связи с тем, что большинство приборов и методов измерения основано на определении диоксида азота с предварительным доокислением оксида в диоксид, а также вследствие того, что были установлены нормы ПДК только на содержание NO2 в атмосферном воздухе, обычно фиксировалась сумма оксидов азота (NO+NO2=NOX). Между тем содержание оксидов азота определяет токсичность продуктов сгорания угля и мазута на 40-50 %, а природного газа на 90-95%. Валовой выброс оксидов азота в атмосферный воздух в различных регионах и. городах составляет 6-8% общего выброса всех вредных веществ, уступая лишь выбросу оксида углерода, оксидов серы и твердых частиц. Однако по токсичности NO2 (ПДКмр=0,085 мг/м3 по сравнению с 0,5 мг/м3 для SO2 и пыли и 5 мг/м3 для СО) и ввиду активного участия в фотохимических реакциях в атмосфере оксиды азота не уступают по своему воздействию этим трем группам загрязнителей.

Bо всех исследованиях по образованию оксидов азота в процессах горения исходили из следующих предпосылок.

1. В процессе горения топлива в котлах и других топливосжигающих устройствах образуется только оксид азота.

2. При выходе из дымовой трубы оксид азота сравнительно быстро полностью доокисляется до диоксида азота.

Вместе с тем показано, что только 40-80 % оксида азота, содержащегося в дымовой струе, превращается в диоксид азота. В связи с работами, проведенными по обоснованию ПДК на NО, утверждены значения ПДК, указанные в табл. 6.

Таблица 6 – ПДК оксидов азота в атмосферном воздухе населенных пунктов.

Вещество

Предельно допустимая концентрация, мг/м3

Максимально разовая

Среднесуточная

Диоксид азота NO2

Оксид азота NO

0,085

0,6

0,04

0,06

Концентрация двуокиси азота 15 мг/м3 вызывает раздражение глаз, а 200-300 мг/м3 опасна уже при кратковременном вдыхании, так как оксиды азота попадают в легкие, где соединяются с гемоглобином крови и могут вызвать отек легкого. Исследования по выявлению порога запаха диоксида азота позволяют принять его равным 0,2 мг/м3.

Более 95 % от общего количества выбросов оксидов азота (51 млн т/год) во всем мире поступает в атмосферу с продуктами сгорания и жидкого топлива и газа и лишь 2,4 млн т выбрасывает химическая промышленность (следует отметить, что образующиеся в результате атмосферных явлений оксиды азота в количестве 770 млн т/год не представляют опасности, так как они равномерно распределяются по поверхности земного шара в малых концентрациях).

В топочных камерах котлов и промышленных печей, где максимальные локальные температуры в факеле достигают 2100- 2200 К, при наличии свободного кислорода достаточно активно протекает реакция синтеза оксида азота из азота и кислорода. Выход оксида азота растет с увеличением температуры в зоне горения. Обычно количество образовавшегося оксида азота выше предельно допустимых концентраций в атмосферном воздухе в 1000-20000 раз (от 0,2 до 1,5 г/мЗ).

После выхода из дымовой трубы в атмосферу основная часть оксида азота переходит в диоксид азота по двум основным реакциям:

а) при высоких концентрациях в корне факела за счет окисления кислородом в результате экзотермических реакций

2NO+O2→2NO2+188 кДж/моль;

б) при низких концентрациях в результате окисления атмосферным озоном:

NO+О3→NO2+O2+205 кДж/моль.

Последняя реакция при низких концентрациях, имеющих место в приземной области дымовой струи является превалирующей. Содержание NO2 в зоне влияния дымового факела будет складываться из четырех составляющих:

NO2=NO2Д/φ+NO2O2+NO2O3+NO2ф,

где    NO2д – содержание ΝΟ2 в дымовых газах;

φ – коэффициент разбавления;

NO2О2 – количество NO2, образовавшееся в результате окисления NO молекулярным кислородом;

NO2O3 – количество NO2, образовавшееся в результате окисления NO атмосферным озоном;

NO2ф – фоновое содержание диоксида азота в воздухе, мг/м3.

Общее количество озона в атмосфере сравнительно невелико - толщина приведенного слоя 3 мм, масса 3,29*109 т. Обычное содержание О3 в атмосфере городов составляет 0,02-0,10 мг/м3, при этом максимум концентраций имеет место в дневные (12- 17 ч), а минимум - в ночные или утренние часы. Для городского воздуха характерна корреляция содержания О3 с числом автомобилей.

Диоксид азота, а особенно озон, общее содержание которого в атмосфере больше, существенно снижают солнечную радиацию. Кривые изменения концентраций NO2 и О3 имеют взаимно противоположный характер. Таким образом, поглощение NO2 и О3 может уменьшить солнечную радиацию на 10%.

В атмосфере протекают основные реакции окисления – разложения оксидов азота под действием солнечного света:

NO2+hν→NO+O;

O+O2+M→O3+M;

NO+O3→NO2+O2 и др.

При соединении озона, диоксида азота и пероксиацетилнитрата образуются фотохимические оксиданты, являющиеся одной из причин фотохимического смога.

Соотношение NO и NO2 имеет большое значение, так как NO2 обладает в 7 раз большей токсичностью, чем NO. Причем, кратковременные пиковые концентрации NO2 оказывают большее воздействие на человека, чем среднее содержание в воздухе. B утренние и вечерние часы концентрация оксида азота в атмосферном воздухе составляет 30-40 % от общего количества оксидов азота, а в период с 10 до 16 ч - лишь 20-25%. В целом можно сделать вывод о преобладании диоксида в общем содержании оксидов азота в атмосферном воздухе.

Количество образующихся оксидов азота возрастает быстрее, чем оксидов серы и твердых частиц, так как в отличие от этих загрязнителей, они производятся не только стационарными установками, но и автотранспортом. Кроме того, при замене твердого и жидкого топлива природным газом картина существенно не меняется (а в энергоблоках мощностью более 300 МВт выброс NOx даже возрастает). Необходимо уже в ближайшие годы завершить начатые в широких масштабах работы по снижению образования оксидов азота в котлах электростанций, осуществить мероприятия по снижению выбросов их огневыми промышленными установками, а также автомобильными двигателями.

3.1.4. Оксиды серы.

Одним из наиболее крупных и трудно поддающихся очистке загрязнителей атмосферного воздуха, выбрасываемых главным образом энергетическими установками, являются оксиды серы (SO2 и в меньших количествах SO3). Ежегодный выброс в нижние слои атмосферы превышает 150 млн т; при этом от 60 до 80% этого количества выбрасывается с продуктами сгорания котлов и печей.

 Оксиды серы, а также образующиеся при их соединении с водяными парами кислоты (H2SO3 и H2SO4) оказывают вредное воздействие на здоровье людей, вызывают разрушение стальных конструкций и строительных материалов, снижение прозрачности атмосферы, гибель хвойных лесов и плодовитых деревьев, снижают урожайность сельскохозяйственных культур. Диоксид серы нарушает процесс фотосинтеза и дыхания, вызывает острые и хронические повреждения листьев. Растения еще более чувствительны к SO2, чем человек.

Механизмы повреждения материалов под действием SO2 и других оксидов серы обычно включают действие влаги и реакцию окисления до сульфатов. Один из этих механизмов, называемый "синдром кислотного дождя", заключается в том, что дождевая вода к кислой реакцией попадает на поверхность предметов, поддающихся коррозии, в тех районах, где загрязнения воздуха не наблюдается; в результате коррозии происходит разъединение поверхности и другие повреждения предметов, связанные с химическими изменениями.

Второй механизм носит название "синдром кислотного газа". В этом случае растворение SO2 и протекание химической реакции в пленке жидкости на поверхности материалов, подвергающихся воздействию, приводит к образованию кислоты и к повреждению предмета. Известен также "синдром кислотных частиц", при котором повреждение вызывается оседанием кислых частиц сульфатов или нитратов в отсутствие влаги. В настоящее время практически невозможно установить, какой из названных механизмов является наиболее важным. Однако, поскольку высокое содержание SO2 часто наблюдается в районах, в которых находится большое количество синтетических материалов (т.е. в городах), можно предположить, что повреждение в основном происходят по механизму "кислотного газа".

Воздействие на человека - химически воздействует на слизистую оболочку, ухудшает перенос кислорода в крови.

  Воздействие на хвойные растения - снижает урожайность.

Свойства оксидов серы:

SO2 - бесцветный газ, с острым запахом, хорошо растворим в воде --10.5 мг/ 100 мл.

М SO2 = 64,06

Т кипения = -10 °С

плотность = 2,93 кг/м3 при Т = 0 °С .

SO3 образуется вместе с SO2 в количестве 1-10% за счет каталитического окисления SO2, окислитель - 5-ти окись ванадия.

Время жизни в атмосфере 0.000001 секунд.

     SO3 + H2О = Н2SO4

М SO3 = 80.1

Т кипения = 44 °С

плотность = 3.58 кг/м3.

Для SO2 максимально разовая ПДК составляет 0.5 мг/м3, среднесуточная ПДК составляет 0.05 мг/м3.

Одним из наиболее крупных и трудно поддающихся очистке загрязнителей атмосферного воздуха, выбрасываемых главным образом энергетическими установками, являются оксиды серы (S02 и в меньших количествах SOз). Ежегодный выброс в нижние слои атмосферы превышает 150 млн т, при этом от 60 до 80 % этого количества выбрасывается с продуктами сгорания котлов и печей.

Оксиды серы, а также образующиеся при их соединении с водяными парами кислоты (Н2SO3 и Н2SO4) оказывают вредное воздействие на здоровье людей, вызывают разрушение стальных конструкций и строительных материалов, снижение прозрачности атмосферы, гибель хвойных лесов и плодовых деревьев, снижают урожайность сельскохозяйственных культур. Диоксид серы нарушает процесс фотосинтеза и дыхания, вызывает острые и хронические повреждения листьев. Растения еще более чувствительны к SO2, чем человек. Bредное воздействие SO2 на растения резко увеличивается при наличии в атмосфере диоксида азота и повышении влажности.

Концентрация сернистого ангидрида и соотношение между ним и серным ангидридом в продуктах сгорания измеряются сравнительно часто в связи с необходимостью контроля сернокислотной коррозии хвостовых поверхностей нагрева котла. Обычно содержание серного (SO3) ангидрида не превышает 2-3 % от содержания сернистого (SO2) в продуктах сгорания.

Образование S03 в пламенах и продуктах сгорания топлив зависит от кинетики трех основных реакций:

SO2+О+М→SO3+М;

SO3SO2+O2;

SO3+М→SO2+0+М,

при [SOз]=K[SO2][O][M]τ,

где    M - любая молекула,

K-константа скорости реакции.

По некоторым данным количество серного ангидрида зависит не только от температуры и содержания кислорода, но и от концентрации оксидов азота в продуктах сгорания. Последние могут вступать в реакцию с сернистым ангидридом в газоходах котла, увеличивая содержание серного ангидрида по реакциям:

2NO+SO2=N20+SOз;

NO2+SO2=NО+SOз.

Следует отметить, что уменьшение коэффициента избытка воздуха в зоне горения с целью снижения количества оксида азота и серного ангидрида должно осуществляться таким образом, дабы не образовывалось значительное количество сажистых и углеводородных комплексов, сорбирующих оксиды серы и крайне вредных для людей и конструкций.

Годовой выброс оксидов серы (SO2 и SO3) в пересчете на SO2:

                                                    (3.4)

где    В - расход топлива, т/год,

SP - содержание серы на рабочую массу, %,

 - доля оксидов серы, уносимых золой (табл. 5),

 - доля оксидов серы, улавливаемых в золоуловителе вместе с твердыми частицами.

Таблица 5 - Ориентировочные значения  при факельном сжигании топлив.

Топливо

ηSO2

Торф

Экибазтузский уголь

Березовские угли Канско-Ачинского бассейна:

в топках с твердым шлакоудалением

в топках с жидким шлакоудалением

Остальные угли Канско-Ачинского бассейна:

в топках с твердым шлакоудалением

в топках с жидким шлакоудалением

Прочие угли

Мазут

Газ

Сланцы эстонские и ленинградские

 Остальные сланцы

0,15

0,02

0,50

0,20

0,20

0,05

0,10

0,02

0,0

0,80

0,50

Для сухих золоуловителей доля улавливания . В мокрых золоуловителях доля улавливания зависит от щелочности воды и сернистости топлива.

По выходе из дымовой трубы в дневное время под действием солнечного света сернистый ангидрид окисляется в серный, а затем переходит в серную кислоту. Образование серной кислоты в атмосфере зависит в решающей мере от цепного механизма с участием радикала ОН и оксидов азота:

SO2+OH→HSO3;

HSO3+OH→SO3+HO2;

HO2+NONO2+OH;

HSO3+OH→H2SO4

В СССР, США и некоторых других странах рассматривается вопрос о целесообразности десульфирования угля путем дробления и промывки водой и щелочными растворами, удаления колчедана из угля с помощью воздушных сепараторов и др. В ряде случаев за рубежом применяется отбраковка топлив с высоким содержанием серы. В СССР, Англии, Японии, ФРГ и США строятся и эксплуатируются системы улавливания сернистого ангидрида в продуктах сгорания.

В. С. Альтшулер классифицирует методы очистки на процессы без утилизации серы и циклические процессы извлечения сернистого ангидрида с прямым получением серосодержащих веществ, подразделяя их в каждой группе на мокрые и сухие.

Наиболее изученным методом в техническом отношении следует считать известковый метод (орошение дымовых газов известковым молоком в скрубберах), в основе которого лежат следующие реакции:

СаСО3+SO2→СаSO3+СО2;

CaO+SO2→CaSO3;

2СаS03+О2→2СаS04.

К недостаткам применения известкового молока (СаСО3) относят сравнительно низкую степень использования кальция (60 - 70%). Поэтому углекислый кальций часто заменяется окисью кальция, что позволяет также увеличить эффективность очистки газов от сернистого ангидрида.

Известны аммиачный, аммиачно-циклический, магнезитовый (доломитовый) методы очистки, а также метод, основанный на окислении сернистого ангидрида на ванадиевом катализаторе.

Среди других методов отметим связывание серы путем вдувания в топку порошка доломита (СаСОз*МgСОз), показавший возможность очистки на 90-91 % от SO2; каталитическое окисление сернистого ангидрида в серный с использованием ванадиевого катализатора и последующим переводом в серную кислоту и (в аммиачном дозаторе) в сульфат аммония со степенью очистки 97,5%; сухое улавливание адсорбентами-мелкозернистым торфяным полукоксом или оксидами железа.

Наличие в больших количествах СаО в таких топливах, как эстонские сланцы, березовские, ирша-бородинские угли, позволяет снизить стоимость очистки, особенно при получающем развитие сжигании углей в кипящем слое.

Весьма перспективен также метод очистки сернистого мазута путем его газификации под давлением. Осуществлена система очистки дымовых газов от оксидов серы и азота путем окисления их озоном и использованием полученных продуктов в качестве удобрений.

Вместе с тем в последние 15-20 лет началось широкое освоение систем сероочистки на электростанциях. К 1985 г. общая мощность установок превышала 50 тыс. МВт. Наиболее широкое распространение, начиная с середины 60-х годов, установки сероочистки с получением дополнительных продуктов получили в Японии. Например, на ТЭС «Сакаико» с улавливанием SO2 на активированном угле и последующем получении 98%-й серной кислоты и на ТЭС «Амагасаки-Хигаси», где использован мокрый известковый метод и в качестве конечного продукта получают гипс. Так как при использовании мокрого метода температура уходящих газов снижена со 130-150 до 55-60 0С, применяется подогрев дымовых газов специальной форсункой. В тот же период на нескольких энергоблоках было применено вдувание порошка МgО с дисперсностью 10-110 мкм, при этом степень улавливания SO2 составила 90 % при получении существенных количеств (2 т/ч на 150 тыс. м3/ч продуктов сгорания) сульфата аммония. Кроме сульфата аммония в установках сероочистки получают серу, серную кислоту, сульфат натрия. Еще в 1974 г. в эксплуатацию было введено 13 крупных установок (в том числе 3 магнезитовых, 9 аммиачных и 1 аммиачно-циклическая), а в 1984 г.-55 установок. К началу 1980 г. общая мощность энергоблоков, оснащенных серо-очистными установками, составляла 22100 МВт. На нескольких установках удалось получить товарную серу с чистотой 99,5 % и довести эффективность очистки до 99 %.

В первую очередь десульфуризационные установки строились на электростанциях, работающих на пыли каменных углей, а в последние годы и на станциях, сжигающих бурые угли. Большинство установок работает по известковому методу, основанному на промывке дымовых газов известковой суспензией, после чего сульфид кальция в окислительной колонне превращается в сульфат кальция, из которого после разделения в центрифугах получают товарный гипс. Введение систем сероочистки привело к повышению отпускной цены на электроэнергию на 30 %.

Основной недостаток систем сероочистки - очень высокая стоимость строительства и эксплуатации (системы сероочистки повышают затраты на строительство и эксплуатацию электростанций на твердом топливе в среднем на 32 %).

Для достижения максимальной высоты эмиссии атмосферных выбросов наиболее целесообразным является применение высоких одиночных многоканальных труб.

Для уменьшения концентрации сернистого ангидрида в воздухе городов реальными представляются следующие меры.

1. Замена твердого топлива и высокосернистого мазута природным газом и малосернистым мазутом в отопительных и промышленных котельных и ТЭЦ, размещенных в непосредственной близости от жилых массивов. Реальность этого направления подтверждается благоприятным топливным балансом, поэтому имеется возможность снабдить природным газом значительное число отопительных котельных и ТЭЦ, а также ряд крупных тепловых электростанций.

2. Освоение методов улавливания сернистого ангидрида на ТЭЦ.

3. Очистка мазута от серы на нефтеперегонных заводах.

4. Кратковременное сжигание малосернистого мазута или газа на электростанциях при особо неблагоприятных метеорологических условиях.

3.1.5 Углеводороды CnHm.

Среди различных групп и классов углеводородов наиболее опасными являются полициклические ароматические углеводороды, в структуру которых входят от 2 до 6-7 бензоловых колец.

Бенз-(а)-пирен C20H12 ПДК=1мг/100м3 1-класс опасности.

В группе обладает высокая канцерогенная активность (20 штук)

М=252 Т лав = 80 °С Т кип = 250-300 °С

В чистом виде похоже на канифоль. Сублимирует при нормальных условиях. В атмосфере находится в виде паров или в адсорбированном виде. Окисляется в атмосфере до СО2 и H2О.

Воздействие на здоровье человека: вызывает раковые заболевания.

Источники:

-коксохимическое производство   

-топливосжигающие установки

-алюминиевые источники

-электрические станции.

Канцерогенные вещества поступают в атмосферу с продуктами сгорания топлив, а также с газовыми выбросами нефтеперерабатывающих, коксохимических и асфальтобетонных заводов, агломерационных фабрик, обогатительных фабрик, терриконов угольных и сланцевых шахт.

К числу обладающих большой канцерогенной активностью и достаточно хорошо изученных канцерогенных веществ следует отнести в первую очередь 3,4-бензпирен (С20Н12), который образуется в процессах пиролиза угля и углеводородных топлив при температуре более 600 °С и обнаруживается в саже, дымовых газах, выхлопе автомобилей.

По некоторым данным механизм образования 3,4-бензпирена протекает с участием ацетилена и других углеводородов ацетиленового ряда, образующихся при пиролизе или крекинге. Балансовые уравнения образования 3,4-бензпирена могут быть представлены в виде:

- из ацетилена

10С2Н2→С20Н12+4Н2;

- при пиролизе метана

20СН4→10С2Н2+60Н2→С20Н12+34Н2.

Концентрация в воздухе 3,4-бензппрена увеличивается вместе с масштабом города, при этом максимальные концентрации наблюдаются зимой. ПДКм.р в атмосферном воздухе населенных мест по 3,4-бепзпирену очень жесткая и составляет 0,1 мкг/100 м3. Высокие концентрации 3,4-бензпирена обнаружены в районе размещения металлургических, коксохимических и нефтеперерабатывающих заводов. Для городов с местным отоплением на угле максимальные концентрации имеют место в зимний период.

Исследования показали, что существенные количества канцерогенных веществ образуются при сжигании угля в слое, сжигание же топлива в пылеугольных топках не сопровождается значительным выбросом канцерогенных веществ в атмосферу (табл. 7).

Таблица 7 – Содержание полициклических углеводородов при сжигании угля в разных топочных камерах, %.

Вещество

Топка с неподвижными колосниками

Цепная решетка

Пылеугольная топка

3,4 – бензпирен

1,2 – бензпирен

Пирен

Флуоретан

100

100

100

100

0,01

0,01

0,10

-

0,01

0,05

0-0,20

0-0,10

Из табл. 7 видно, что концентрация 3,4-бензпирена в топках с неподвижной колосниковой решеткой, применяемых главным образом в установках для отопления домов и мелких котельных, на 4 порядка превосходит содержание 3,4-бензпирена в котлах электростанций.

Исследования показали, что при слоевом сжигании угля в малометражных котлах, особенно в период розжига слоя дровами, концентрация 3,4-бензпирена в продуктах сгорания составляет 150-170 мкг/100 м3, что с учетом высоты дымовой трубы 5-8 м и ее расположения вблизи соседних зданий может создавать в зоне пребывания человека концентрации, превышающие ПДК.

Как в отопительных котлах, так и в металлургических агрегатах и в двигателях внутреннего сгорания наблюдается четкая корреляция процесса ухудшения качества горения и выхода 3,4- бензпирена. Большие количества его выделяются только при режимах горения, сопровождающихся сажеобразованием. При хорошем качестве сжигания газа концентрация 3-4-бензпирена в продуктах сгорания невелика, а в ряде случаев даже ниже, чем в окружающем воздухе. Образование 3,4-бензпирена зависит от режима горения, прежде всего от количества кислорода и температуры.

Информация в лекции "Классификация вычислительных систем" поможет Вам.

Максимальный уровень концентраций 3,4-бензпирена в продуктах сгорания составляет 2,5 - 3,0 при сжигании газа и 90-100 при сжигании мазута, а минимальный 0,5 - 1,0 для газа и 3 - 5 мкг/100 м3 для мазута. При сжигании угля выброс 3,4-бензпирена выше, чем при сжигании мазута, а при сжигании мазута в смеси с газом приближается к уровню выброса на мазуте. С увеличением нагрузки от 50 до 100 % концентрация 3,4-бензпирена обычно снижается.

Из приведенных выше данных следует, что перевод котлов электростанций на сжигание газа снижает выброс 3,4-бензпирена в атмосферу в среднем в 10 раз. Вместе с тем, если в продуктах сгорания электростанций превышение ПДКм.р(С/ПДКм.р) по SO2 и NOX составляет обычно 5000-8000, то по канцерогенным веществам это превышение от 100 до 200.

Электростанции не создают зоны превышения ПДК по канцерогенным веществам. Такие зоны обычно создаются коксохимическими, металлургическими, нефтеперерабатывающими производствами, а также автомобильным транспортом.

Как правило, значительный выброс канцерогенных веществ двигателем связан с общим ухудшением качества горения, а увеличение выброса СО обычно сопровождается увеличением выброса сажи и 3,4-бензпирена.

Основной вклад в выброс 3,4-бензпирена металлургическим производством вносит обычно коксохимическое, а также агломерационное производство (70- 75%), выбросы которого составляют 1-6 млн м3/ч, а концентрация 3,4-бензпирена находится в пределах 78-216 мкг/100 м3.

Зависимость образования 3,4-бензпирена от α имеет экстремальный характер с минимумом вблизи α ≈ 1,10, аналогично зависимости СО=ƒ(α). В хорошо отрегулированных топочных устройствах выход 3,4-бензпирена не превышает (0,2-0,4) 10-2 мкг/100 м3 продуктов сгорания. Следует также отметить, что 3,4-бензпирен хорошо растворяется в ацетоне, бензоле, толуоле и ряде других растворителей и может быть уловлен фильтрами из ткани ФПП-15. 3,4-бензпирен может быть также ликвидирован путем прямого дожигания или окисления на катализаторах (например, в автомобильном нейтрализаторе при температуре 300-400 0С) при подаче дополнительного воздуха.

Свежие статьи
Популярно сейчас
А знаете ли Вы, что из года в год задания практически не меняются? Математика, преподаваемая в учебных заведениях, никак не менялась минимум 30 лет. Найдите нужный учебный материал на СтудИзбе!
Ответы на популярные вопросы
Да! Наши авторы собирают и выкладывают те работы, которые сдаются в Вашем учебном заведении ежегодно и уже проверены преподавателями.
Да! У нас любой человек может выложить любую учебную работу и зарабатывать на её продажах! Но каждый учебный материал публикуется только после тщательной проверки администрацией.
Вернём деньги! А если быть более точными, то автору даётся немного времени на исправление, а если не исправит или выйдет время, то вернём деньги в полном объёме!
Да! На равне с готовыми студенческими работами у нас продаются услуги. Цены на услуги видны сразу, то есть Вам нужно только указать параметры и сразу можно оплачивать.
Отзывы студентов
Ставлю 10/10
Все нравится, очень удобный сайт, помогает в учебе. Кроме этого, можно заработать самому, выставляя готовые учебные материалы на продажу здесь. Рейтинги и отзывы на преподавателей очень помогают сориентироваться в начале нового семестра. Спасибо за такую функцию. Ставлю максимальную оценку.
Лучшая платформа для успешной сдачи сессии
Познакомился со СтудИзбой благодаря своему другу, очень нравится интерфейс, количество доступных файлов, цена, в общем, все прекрасно. Даже сам продаю какие-то свои работы.
Студизба ван лав ❤
Очень офигенный сайт для студентов. Много полезных учебных материалов. Пользуюсь студизбой с октября 2021 года. Серьёзных нареканий нет. Хотелось бы, что бы ввели подписочную модель и сделали материалы дешевле 300 рублей в рамках подписки бесплатными.
Отличный сайт
Лично меня всё устраивает - и покупка, и продажа; и цены, и возможность предпросмотра куска файла, и обилие бесплатных файлов (в подборках по авторам, читай, ВУЗам и факультетам). Есть определённые баги, но всё решаемо, да и администраторы реагируют в течение суток.
Маленький отзыв о большом помощнике!
Студизба спасает в те моменты, когда сроки горят, а работ накопилось достаточно. Довольно удобный сайт с простой навигацией и огромным количеством материалов.
Студ. Изба как крупнейший сборник работ для студентов
Тут дофига бывает всего полезного. Печально, что бывают предметы по которым даже одного бесплатного решения нет, но это скорее вопрос к студентам. В остальном всё здорово.
Спасательный островок
Если уже не успеваешь разобраться или застрял на каком-то задание поможет тебе быстро и недорого решить твою проблему.
Всё и так отлично
Всё очень удобно. Особенно круто, что есть система бонусов и можно выводить остатки денег. Очень много качественных бесплатных файлов.
Отзыв о системе "Студизба"
Отличная платформа для распространения работ, востребованных студентами. Хорошо налаженная и качественная работа сайта, огромная база заданий и аудитория.
Отличный помощник
Отличный сайт с кучей полезных файлов, позволяющий найти много методичек / учебников / отзывов о вузах и преподователях.
Отлично помогает студентам в любой момент для решения трудных и незамедлительных задач
Хотелось бы больше конкретной информации о преподавателях. А так в принципе хороший сайт, всегда им пользуюсь и ни разу не было желания прекратить. Хороший сайт для помощи студентам, удобный и приятный интерфейс. Из недостатков можно выделить только отсутствия небольшого количества файлов.
Спасибо за шикарный сайт
Великолепный сайт на котором студент за не большие деньги может найти помощь с дз, проектами курсовыми, лабораторными, а также узнать отзывы на преподавателей и бесплатно скачать пособия.
Популярные преподаватели
Нашёл ошибку?
Или хочешь предложить что-то улучшить на этой странице? Напиши об этом и получи бонус!
Бонус рассчитывается индивидуально в каждом случае и может быть в виде баллов или бесплатной услуги от студизбы.
Предложить исправление
Добавляйте материалы
и зарабатывайте!
Продажи идут автоматически
5142
Авторов
на СтудИзбе
441
Средний доход
с одного платного файла
Обучение Подробнее