Популярные услуги

Все письменные КМ под ключ за 3 суток! (КМ-6 + КМ-7 + КМ-8 + КМ-9 + КМ-10)
КМ-6. Динамические массивы. Семинар - выполню любой вариант!
КМ-2. Разработка простейших консольных программ с использованием ООП + КМ-4. Более сложные элементы ООП - под ключ!
Любая задача на C/C++
Одно любое задание в mYsql
Сделаю ваше задание: Лабораторная работа на Pascal / Lazarus
Любой тест по базам данных максимально быстро на хорошую оценку - или верну деньги!
Любой реферат по объектно-ориентированному программированию (ООП)
Оба семинара по программированию под ключ! КМ-2. Разработка циклических алгоритмов + КМ-3. Функции и многофайловые программы в Си
Повышение уникальности твоей работе
Главная » Лекции » Информатика и программирование » Моделирование систем » Основы теории массового обслуживания

Основы теории массового обслуживания

2021-03-09СтудИзба

4 – Основы теории массового обслуживания.

Определение 1. Пусть имеется некоторая физическая система S, которая с течением времени меняет свое состояние (переходит из одного состояния в другое), причем заранее неизвестным, случайным образом. Тогда мы будем говорить, что в системе S протекает случайный процесс.

Под «физической системой» можно понимать что угодно: техническое устройство, предприятие, живой организм и т.д.

Пример. S техническое устройство, состоящее из ряда узлов, которые время от времени выходят из строя, заменяются или восстанавливаются. Процесс, протекающий в системе, – случайный. Вообще, если подумать, труднее привести пример «неслучайного» процесса, чем случайного. Даже процесс хода часов – классический пример точной, строго выверенной работы («работают как часы») подвержен случайным изменениям (уход вперед, отставание, остановка).

Определение 2. Случайный процесс, протекающий в системе, называется марковским, если для любого момента времени t0 вероятностные характеристики процесса в будущем зависят только от его состояния в данный момент t0 и не зависят от того, когда и как система пришла в это состояние.

Пусть в настоящий момент t0 система находится в определенном состоянии S0. Мы наблюдаем процесс со стороны и в момент t0 знаем состояние системы S0 и всю предысторию процесса, все, что было при t<t0. Нас, естественно. Интересует будущее: t>t0. Можем ли мы его предугадать? В точности – нет. Наш процесс случайный, следовательно – непредсказуемый. Но какие-то вероятностные  характеристики процесса в будущем мы найти можем. Например, вероятность того, что через некоторое время t  система  S окажется в состоянии S1 или сохранит состояние S0 и т.д.

Если процесс марковский, то предсказывать можно, только учитывая настоящее состояние системы S0 и забыв о его «предыстории» (поведение системы при t<t0). Само состояние S0, разумеется, зависит от прошлого, но как только оно достигнуто, о прошлом можно забыть. Т.е. в марковском процессе «будущее зависит от прошлого только через настоящее» .

Пример. Система S – счетчик Гейгера, на который время от времени попадают космические частицы; состояние системы в момент времени t характеризуется показаниями счетчика – числом частиц, пришедших до данного момента. Пусть в момент t0 счетчик показывает S0. Вероятность того, что в в момент t>t0 счетчик покажет то или другое число частиц S1 (или менее S1) зависит от S0, но не зависит от того, в какие именно моменты приходили частицы до момента t0.

Рекомендуемые материалы

На практике часто встречаются процессы, которые если не в точности марковские, то могут быть в каком-то приближении рассмотрены как марковские. Например, S­ – группа самолетов, участвующих в воздушном бою. Состояние системы характеризуется числом самолетов «красных» – x и «синих» – y, сохранившихся (не сбитых) к какому-то моменту. В момент t0 нам известны численности сторон x0 и y0. Нас интересует вероятность того, что в какой-то момент времени t0+t численный перевес будет на стороне «красных». От чего зависит эта вероятность? В первую очередь от того, в каком состоянии находится система в данный момент времени t0, а не от того, когда и в какой последовательности погибали сбитые до момента времени t0 самолеты.

В сущности любой процесс можно рассматривать как марковский, если все параметры из «прошлого», от которых зависит «будущее», перенести в «настоящее». Например, пусть речь идет о работе какого-то технического устройства; в какой-то момент времени t0 оно ещё исправно, и нас интересует вероятность того, что оно проработает ещё время t.  Если за настоящее время считать просто «система исправна», то процесс безусловно не марковский, потому что вероятность, что она не откажет за время t, зависит, в общем случае, от того, сколько времени она уже проработала и когда был последний  ремонт. Если оба эти параметра (общее время работы и время после ремонта) включить в настоящее состояние системы. То процесс можно будет считать марковским.

Определение 3. Процесс называется с дискретными состояниями, если его возможные состояния S1, S2,... можно заранее перечислить (перенумеровать), и переход системы из состояния в состояние происходит «скачком», практически мгновенно.

Определение 4. Процесс называется процессом с непрерывным временем, если моменты возможных переходов из состояния в состояние не фиксированы заранее, а неопределенны, случайны, если переход может осуществиться, в принципе, в любой момент.

Мы будем рассматривать только процессы с дискретными состояниями.

Пример. Техническое устройство S состоит из двух узлов. Каждый из которых в случайный момент времени может выйти из строя (отказать), после чего мгновенно начинается ремонт узла, тоже продолжающийся заранее неизвестное, случайное время.

 Рис.4.1

Возможные состояния системы:

S0 – оба узла исправны;

S1 – первый узел ремонтируется, второй исправен;

S2 – второй узел ремонтируется, первый исправен;

S3 – оба узла ремонтируются.

Стрелка, направленная из S0 в S1 означает момент отказа первого узла и т. д. На рисунке нет стрелки из состояния S0 в состояние S3, поскольку вероятность того, что два прибора откажут одновременно, стремится к нулю.

Определение 5. Потоком событий называется последовательность однородных событий, следующих одно за другим в какие-то случайные моменты времени (например, поток сбоев на ЭВМ, поток вызовов на телефонной станции).

Важнейшей характеристикой потока событий является его интенсивность l – среднее число событий, приходящееся на единицу времени. интенсивность потока может быть постоянной (l=const), так и переменной, зависящей от времени. Например, поток автомашин, движущихся по улице, днем интенсивнее, чем ночью, а поток автомашин с 14-ти до 15-ти часов дня можно считать постоянным.

Определение 6. Поток событий называется регулярным, если события следуют одно за другим через определенные, равные промежутки времени.

Определение 7. Поток событий называется стационарным, если его вероятностные характеристики не зависят от времени. В частности, интенсивность l стационарного потока должна быть постоянной. Это отнюдь не означает, что фактическое число событий, появляющееся в единицу времени, постоянно, – нет, поток неизбежно (если только он не регулярный) имеет какие-то случайные сгущения и разрежения. Важно, что для стационарного потока эти сгущения и разрежения не носят закономерного характера: на один участок длины 1 может попасть больше, а на другой – меньше событий, но среднее число событий, приходящееся на единицу времени, постоянно и от времени не зависит.

Например, поток вызовов, поступающих на АТС между 13 и 14 часами. Практически стационарен, но тот же поток в течение суток уже не стационарен.

Определение 8. Поток событий называется потоком без последействия, если для любых двух непересекающихся участков времени t1 и t2 число событий, попадающих на один из них, не зависит от того, сколько событий попало на другой. По сути это означает, что события, образующие поток, появляются в те или другие моменты независимо друг от друга, вызванные каждое своими собственными причинами.

Например, поток пассажиров, входящих в метро, практически не имеет последействия. А вот поток покупателей, отходящих от прилавка с купленными товарами, уже имеет последействие (хотя бы потому, что интервал времени между отдельными покупателями не может быть меньше, чем минимальное время обслуживания каждого из них).

Определение 9. Поток событий называется ординарным, если события в нем появляются поодиночке, а не группами сразу.

Например поток клиентов к зубному врачу – обычно ординарный. Поток поездов, подходящих к станции – ординарен, а поток вагонов – неординарен.

Определение 10. Поток событий называется простейшим (или стационарным Пуассоновским), если он обладает сразу тремя свойствами: стационарен, ординарен и не имеет последействия, а сам входной поток распределен по закону Пуассона ().

Для описания случайного процесса, протекающего в системе с дискретными состояниями S1, S2, ..., Sn часто пользуются вероятностями состояний p1(t),...,pn(t), где pk(t) – вероятность того, что в момент времени t система находится в состоянии Sk. Вероятности pk(t) удовлетворяют условию: .

Если процесс, протекающий в системе с дискретными состояниями и непрерывным временем является марковским, то для вероятностей состояний p1(t), ..., pn(t) можно составить систему линейных дифференциальных уравнений. При составлении этих уравнений удобно пользоваться графом состояний системы, на котором против каждой стрелки, ведущей из состояния в состояние, проставлена интенсивность потока событий, переводящего систему по стрелке  (рис.4.2):

Рис.4.2

lij – интенсивность потока событий, переводящего систему из состояния Si в состояние Sj.

Правило создания системы линейных дифференциальный уравнений для нахождения вероятностей состояний.

Для каждого состояния выписывается собственное уравнение. В левой части каждого уравнения стоит производная  , а в правой – столько членов, сколько стрелок связано непосредственно с данным состоянием; если стрелка ведет в данное состояние, то член имеет знак «+», иначе - знак «–». Каждый член равен интенсивности потока событий, переводящего систему по данной стрелке, умноженной на вероятность того состояния, из которого стрелка выходит.

Т.о. система линейных дифференциальных уравнений в нашем случае имеет вид:

 

Начальные условия для интегрирования такой системы отражают состояние системы в начальный момент времени. Если, например, система  при t=0 была в состоянии Sk, то . Эти уравнения можно решать аналитически, но это удобно только тогда, когда число уравнений не превышает двух (иногда трех). В случае, когда уравнений оказывается больше, применяют численные методы.

Что будет происходить с вероятностями состояний при ? Будут ли p1(t), ..., pn(t) стремиться к каким-то пределам? Если эти пределы существуют и не зависят от начального состояния системы, то они называются финальными вероятностями состояний: . pi – среднее относительное время пребывания системы в i-ом состоянии.

Как найти финальные вероятности? Поскольку все pi=const, то производные, стоящие в левой части каждого уравнения равны нулю. Т.о. мы получили систему линейных алгебраических уравнений. Поскольку ни одно уравнение в этой системе не имеет свободного члена, то система является вырожденной (т.е. все переменные будут выражены через одну). Чтобы этот избежать, необходимо воспользоваться нормировочным условием (), при этом любое уравнение можно отбросить.

Классификация систем массового обслуживания

По количеству обслуживающих приборов СМО делятся на одноканальные и многоканальные. Многоканальные СМО состоят из нескольких приборов, и каждый них может обслуживать заявку.

Также СМО подразделяются на системы без ожидания и с ожиданием. В первых заявка покидает очередь, если к моменту её прихода отсутствует хотя бы один канал, способный немедленно приступить к обслуживанию данной заявки. Вторые, в свою очередь, делятся на системы без ограничения и с ограничениями по длине очереди.

Также СМО делятся на системы с приоритетами и без них. В свою очередь системы с приоритетом делятся на СМО с прерыванием и без.

Одноканальная СМО с неограниченной очередью

Рис.4.3

Найдем вероятности pk:

Для состояния S0:                , отсюда ;

Для состояния S1n:               , подставляем полученное значение для p1: . Аналогично, .

Вероятность p0 найдем из нормировочного условия :

,  – геометрическая прогрессия, при r<1 сходится.  – вероятность того, что нет заявок.

 – вероятность того, что прибор занят обслуживанием заявки. r=l/m – мера загрузки одноканальной СМО.

В текущий момент времени в системе может быть 0, 1, 2, ..., k, ... заявок с вероятностями p0, p1 p2,... Математическое ожидание количества заявок:

        

учитывая, что , получим:

.

Средняя длина очереди равна разности между средним числом заявок в системе и средним числом заявок, находящихся под обслуживанием: .

Формулы Литтла

Рис.4.4

Первая формула Литтла позволяет определить время реакции СМО (время пребывания заявки в системе).

Пусть X(t) – число заявок, поступивших в СМО до момента времени t, Y(t) – покинувших СМО до t. Обе функции случайны и увеличиваются скачком на единицу в моменты прихода и ухода заявок. Тогда число заявок в системе в момент времени t можно определить как: . Рассмотрим очень большой промежуток времени T и вычислим среднее число заявок в системе:

.

Интеграл равен площади ступенчатой фигуры, ограниченной функциями X(t) и Y(t), эта сумма состоит из прямоугольников, ширина которых равна единице, а длина – времени пребывания i-ой заявки в системе. Сумма распространяется на все заявки, поступившие в систему за время T. Правую часть домножим и разделим на l: . Tl – среднее количество заявок, пришедших за время T. Поделив сумму всех времен ti на среднее число заявок, получим среднее время пребывания заявки в системе: .

Совершенно аналогично можно получить среднее время пребывания заявки в очереди: .

Многоканальная СМО с неограниченной очередью

Рис.4.5

Найдем вероятности pk:

Для состояния S0:                ;

Для состояний S1Sn:                   ;

Для Sn+1:                               ; ...

Для Sn+s-1:                                      ;

Для Sn+s:                               .

Из первых n+1 уравнений получаем:

Из последнего уравнения выражаем:  и подставляем в предпоследнее: , . Тогда .

Продолжая аналогию: .

Теперь найдем p0, подставив полученные выражения в нормировочное условие (): . Отсюда .

Показатели эффективности СМО

– Вероятность потери требования в СМО. Особенно часто ею пользуются при исследовании военных вопросов. Например, при оценке эффективности противовоздушной обороны объекта она характеризует вероятность прорыва воздушных целей к объекту. Применительно к СМО с потерями она равна вероятности занятости обслуживанием требований всех n приборов системы. Чаще всего эту вероятность обозначают pn или pотк.

– Вероятность того, что обслуживанием требований в системе занято k приборов, равна pk.

– Среднее число занятых приборов:  характеризует степень загрузки обслуживающей системы.

– Среднее число свободных от обслуживания приборов :.

– Коэффициент простоя приборов: .

– Коэффициент занятости оборудования: .

– Средняя длина очереди: , pk - вероятность того, что в системе находится k требований.

– Среднее число заявок, находящихся в сфере обслуживания: .

– Вероятность того, что число заявок в очереди, ожидающих начала обслуживания, больше некоторого числа m: . Этот показатель особенно необходим при оценке возможностей размещения требований при ограниченности времени для ожидания.

Кроме перечисленных критериев при оценке эффективности СМО могут быть использованы стоимостные показатели:

qоб – стоимость обслуживания каждого требования в системе;

qож – стоимость потерь, связанных с простаиванием заявок в очереди в единицу времени;

qу – убытки, связанные с уходом из системы заявки;

qk – стоимость эксплуатации каждого прибора в единицу времени;

qkпр – стоимость простоя единицы времени k-го прибора системы.

При выборе оптимальных параметров СМО по экономическим показателям можно использовать функцию стоимости потерь в системе (для СМО с ожиданием):  T – интервал времени.

Для СМО с отказами: .

Для смешанных: .

Критерий экономической эффективности СМО: , с – экономический эффект, получаемый при обслуживании каждой заявки.

СМО замкнутого типа

Пример. С1, С2, С3 – станки; НЦ – центральный накопитель; B – манипулятор. Транспортная тележка (манипулятор) транспортирует отработанную деталь от станка к накопителю и укладывает ее там, забирает новую деталь (заготовку), транспортирует ее к станку и устанавливает в рабочую позицию для зажима. Во время всего периода, необходимого для выгрузки–загрузки, станок простаивает. Время Tз смены заготовки и есть время обслуживания.

Интенсивность обслуживания станков определяется как ,  – среднее время обслуживания станка, которое вычисляется как , где n –  число заявок. Интенсивность подачи станком заявки на обслуживание определяется как (где – среднеее время обработки детали станком).

Станочная система с однозахватным манипулятором представляет собой СМО с ожиданием с внутренней организацией FIFO: каждая заявка станка на обслуживание удовлетворяется, в случае когда манипулятор занят, заявка становится в очередь и станок ожидает когда манипулятор освободится. Данный процесс марковский, т.е. случайная выдача заявки на обслуживание в определенный момент времени t0 не зависит от предыдущих заявок, т.е. от течения процесса в предшествующий период. Продолжительность исполнения заявки может быть различной и является случайной величиной, не зависящей от числа поданных заявок. Весь процесс не зависит от того, что произошло ранее момента времени t0.

В станочной системе число заявок на обслуживание может быть равно 0, 1, 2, ... m, где m – общее число станков. Тогда возможны следующие состояния:

S0 – все станки работают, манипулятор стоит.

S1 – все станки, кроме одного, работают, манипулятор обслуживает станок, от которого поступила заявка на смену заготовок.

S2 – работают m-2 станка, на одном станке идет смена заготовки, другой ожидает.

S3 – работают m-2 станка, один станок обслуживается манипулятором, два станка ожидают в очереди.

Sm – все станки стоят, один обслуживается манипулятором, остальные ожидают очереди исполнения заказа.

Рис.4.6.

Вероятность перехода в состояние Sk из одного из возможных состояний S1, S2, ... Sm зависит от случайного поступления заявок на обслуживание и вычисляется как:

;

p0 – вероятность того, что все станки работают.

Манипулятор работает при состояниях системы от S1 до Sm­. Тогда вероятность его загрузки равна: .

Число станков, находящихся в очереди связано с состояниями S2, – Sm, при этом один станок обслуживается, а (k-1) – ожидают. Тогда, среднее число станков в очереди: .

Коэффициент простоя одного станка (из-за ожидания при многостаночном обслуживании): .

Среднее использование одного станка:

.

Применение метода Монте-Карло для решения задач,

связанных с теорией массового обслуживания

Для того, чтобы описать поток однородных событий, достаточно знать закон распределения моментов времени  t1, t2,, ..., tk, ..., в которые поступают события.

Для удобства дальнейших рассмотрений целесообразно от величин t1, t2,, ..., перейти к случайным величинам z1, z2,,..., zm, ... , таким образом, что:

Случайные величины zk являются длинами интервалов времени между последовательными моментами tk.

Совокупность случайных величин zi считается заданной, если определена совместная функция распределения: . Обычно рассматриваются только непрерывные случайные величины zk, поэтому часто пользуются соответствующей функцией плотности f(z1, z2,...,zk).

Обычно в теории СМО рассматриваются потоки однородных событий без последействия, для которых случайные величины zk независимы. Поэтому . Функции fi(zi) при i>1 представляют собой условные функции плотности при условии, что в начальный момент интервала zk (i>1) поступила заявка. В отличие от этого функция f1(z1) является безусловной функцией плотности, т.к. относительно появления или непоявления заявки в начальный момент времени не делается никаких предположений.

Широкое применение имеют так называемые стационарные потоки, для которых вероятностный режим их во времени не изменяется (т.е. вероятность появления k заявок за промежуток времени (t0, t0+t) не зависит от t0, а зависит только от t и k). Для стационарных потоков без последействия имеют место соотношения:

где l – плотность стационарного потока.

Поступившая в систему заявка может занимать только свободные линии. Относительно порядка занятия линий могут быть сделаны различные предположения:

а) линии занимаются в порядке их номеров. Линия с большим номером не может быть привлечена к обслуживанию заявки, если имеется свободная линии с меньшим номером;

б) линии занимаются в порядке очереди. Освободившаяся линия поступает в очередь и не начинает обслуживания заявок до израсходования всех ранее освободившихся линий;

в) линии занимаются в случайном порядке в соответствии с заданными вероятностями. Если в момент поступления очередной заявки имеется nсв свободных линий, то в простейшем случае вероятность занять некоторую определенную линию может быть принята равной . В более сложных случаях вероятности  считаются зависящими от номеров линий, моментов их освобождения и других параметров.

Аналогичные предположения можно сделать и относительно порядка принятия заявок к обслуживанию в том случае, когда в системе образуется очередь заявок:

а) заявки принимаются к обслуживанию в порядке очереди. Освободившаяся линия приступает к обслуживанию той заявки, которая ранее другой поступила в систему;

б) заявки принимаются к обслуживанию по минимальному времени получения отказа. Освободившаяся линия приступает к обслуживанию той заявки, которая в кратчайшее время может получить отказ;

в) заявки принимаются к обслуживанию в случайном порядке в соответствии с заданными вероятностями. Если в момент освобождения линии имеется m заявок в очереди, то в простейшем случае вероятность выбрать для обслуживания некоторую определенную заявку может быть принята равной q=1/m. В более сложных случаях вероятности q1, q2,...,qm считаются зависящими от времени пребывания заявки в системе, времени , остающегося до получения отказа и других параметров.

· Для решения ряда прикладных задач оказывается необходимым учитывать такой важный фактор, как надежность элементов обслуживающей системы. Будем предполагать, что с точки зрения надежности каждая линия в данный момент времени может быть либо исправной, либо неисправной. Надежность линии определяется вероятностью безотказной работы R=R(t), задаваемой как функция времени. Будем также предполагать, что линия, вышедшая из строя по причине неполной надежности, может быть введена в строй (отремонтирована), для чего требуется затратить время tp. Величину tp будем считать случайной величиной с заданным законом распределения.

Относительно судьбы заявки, при обслуживании которой линия выходит из строя, могут быть сделаны различные предположения: заявка получает отказ; заявка остается в системе (с общим временем пребывания в системе не более tn) как претендент на обслуживание вне очереди; заявка поступает в очередь и обслуживается на общих основаниях и т.д.

Сущность метода статистических испытаний применительно к задачам массового обслуживания состоит в следующем. Строятся алгоритмы, при помощи которых можно вырабатывать случайные реализации заданных потоков однородных событий, а также «моделировать» процессы функционирования обслуживающих систем. Эти алгоритмы используются для многократного воспроизведения реализаций случайного процесса обслуживания при фиксированных условиях задачи. Получаемая при этом информация о состояниях процесса подвергается статистической обработке с целью оценки, являющихся показателями качества обслуживания.

Метод статистических испытаний позволяет более полно, по сравнению с асимптотическими формулами, исследовать зависимость качества обслуживания от характеристик потока заявок и параметров обслуживающей системы.

Это достигается благодаря двум обстоятельствам. Во-первых, при решении задач теории массового обслуживания методом статистических испытаний может быть использована более обширная информация о процессе, чем это обычно удается сделать, применяя аналитические методы.

С другой стороны, значения показателей качества обслуживания, получаемые из асимптотических формул, строго говоря, относятся к моментам времени, достаточно удаленным от начала процесса. Реально, для моментов времени, близких к началу процесса, когда еще не наступил стационарный режим, значения показателей качества обслуживания в общем случае существенно отличаются от асимптотических значений. Метод статистических испытаний позволяет достаточно обстоятельно изучать переходные режимы.

Для многих прикладных задач предположения, при которых справедливы аналитические формулы, оказываются слишком стеснительными. При решении задач методом статистических испытаний некоторые предположения могут быть существенно ослаблены.

В первую очередь это относится к многофазному обслуживанию (т.е. рассматриваются обслуживающие системы, состоящие из нескольких последовательно действующих в общем случае неоднотипных агрегатов).

Другим важным обобщением задачи является предположение о характере потока заявок, поступающих на обслуживание. Допускается рассмотрение потоков однородных событий с практически произвольным законом распределения. Последнее обстоятельство оказывается существенным по следующим двум причинам. Во-первых, реальные потоки заявок в некоторых случаях заметно отличаются от простейшего. Для пояснения второй причины предположим, что исходный поток заявок достаточно точно аппроксимируется простейшим потоком. При этом поток заявок, обслуженных на первой фазе, уже, строго говоря не будет простейшим. Поскольку поток, являющийся выходным для первой фазы, будет входным потоком для агрегата, обслуживающего заявки на второй фазе, мы снова приходим к задаче обслуживания потоков, не являющимися простейшими.

· Структура алгоритма, моделирующего

процесс обслуживания заявок

Рассмотрим однофазную СМО, имеющую n линий, на которые поступают заявки в случайные моменты времени ti. Если вмомент поступления заявки оказываются в наличии свободные линии (их число nсв), заявка занимает одну из них на время tp. В противном случае заявка находится в системе до момента tn , ожидая обслудивания. В тtчение времени ожидания некоторые линии могут освободиться (их число m), и в этом случае будет возможность обслужить заявку. Если до момента времени tn ни одна из линий не освобождается (m=0), заявка получает отказ.

Будем считать, что в силу недостаточно высокой надежности системы, линии обслуживающие заявку, могут выходить из строя, тогда заявка получает отказ, а линия может быть отремонтирована и через промежуток времнеи tpem введена в строй.

Для исследования качества обслуживания заявок предусматривается N* кратное  моделирование процесса функционирования системы в интервале (0,T). В процессе моделирования число обследованных реализаций обозначим через N.

Алгоритм:

1. Определяется момент ti поступления очередной заявки в систему.

2. Если ti<T, то переход на шаг 3, иначе – на шаг 11.

3. Проверка возможности обслужить поступившую заявку: если nсв>0, то переход на шаг 4, иначе – на шаг 12. (Значение времени поступления заявки ti сравнивается с tосв для всех линий, т.о. выявляются свободные линии.)

4.Если nсв>1, то переход на шаг 5, иначе – на шаг 6.

5. Выбирается номер свободной линии по специальным правилам.

6. Назначается выбранная линия.

7. Проверка: имеет ли место срыв обслуживания по причине недостаточной надежности? Если да, то переход на шаг 8, иначе – на шаг 10.

8. Определение времени tрем ремонта линии, вышедшей из строя (tрем имеет определенный закон распределения).

9. Nотк=Nотк+1. Переход на шаг 1.

10. Определение времени занятости tз линии, которая назначена обслуживать заявку (некая случайная величина с определенным законом распределения) и времени освобождения линии: tосв=ti+tз. Переход к очередной заявке (шаг 1).

11. Проверка: если N<N*, то N=N+1 и переход на шаг 1, иначе – обработка результатов опыта и конец.

Рекомендуем посмотреть лекцию "22 Средства интерактивной коммуникации".

12. Определить:

       а) времени tn пребывания заявки в системе;

       б) число освободившихся каналов m за время tn.

13. Если m>0, то переход на шаг 14, иначе – на шаг 9.

14. Если m>1, то переход на шаг 15, иначе – на шаг 6.

15. Выбирается определенная линия в соответствии с принятыми правилами и переход на шаг 6.

Свежие статьи
Популярно сейчас
Зачем заказывать выполнение своего задания, если оно уже было выполнено много много раз? Его можно просто купить или даже скачать бесплатно на СтудИзбе. Найдите нужный учебный материал у нас!
Ответы на популярные вопросы
Да! Наши авторы собирают и выкладывают те работы, которые сдаются в Вашем учебном заведении ежегодно и уже проверены преподавателями.
Да! У нас любой человек может выложить любую учебную работу и зарабатывать на её продажах! Но каждый учебный материал публикуется только после тщательной проверки администрацией.
Вернём деньги! А если быть более точными, то автору даётся немного времени на исправление, а если не исправит или выйдет время, то вернём деньги в полном объёме!
Да! На равне с готовыми студенческими работами у нас продаются услуги. Цены на услуги видны сразу, то есть Вам нужно только указать параметры и сразу можно оплачивать.
Отзывы студентов
Ставлю 10/10
Все нравится, очень удобный сайт, помогает в учебе. Кроме этого, можно заработать самому, выставляя готовые учебные материалы на продажу здесь. Рейтинги и отзывы на преподавателей очень помогают сориентироваться в начале нового семестра. Спасибо за такую функцию. Ставлю максимальную оценку.
Лучшая платформа для успешной сдачи сессии
Познакомился со СтудИзбой благодаря своему другу, очень нравится интерфейс, количество доступных файлов, цена, в общем, все прекрасно. Даже сам продаю какие-то свои работы.
Студизба ван лав ❤
Очень офигенный сайт для студентов. Много полезных учебных материалов. Пользуюсь студизбой с октября 2021 года. Серьёзных нареканий нет. Хотелось бы, что бы ввели подписочную модель и сделали материалы дешевле 300 рублей в рамках подписки бесплатными.
Отличный сайт
Лично меня всё устраивает - и покупка, и продажа; и цены, и возможность предпросмотра куска файла, и обилие бесплатных файлов (в подборках по авторам, читай, ВУЗам и факультетам). Есть определённые баги, но всё решаемо, да и администраторы реагируют в течение суток.
Маленький отзыв о большом помощнике!
Студизба спасает в те моменты, когда сроки горят, а работ накопилось достаточно. Довольно удобный сайт с простой навигацией и огромным количеством материалов.
Студ. Изба как крупнейший сборник работ для студентов
Тут дофига бывает всего полезного. Печально, что бывают предметы по которым даже одного бесплатного решения нет, но это скорее вопрос к студентам. В остальном всё здорово.
Спасательный островок
Если уже не успеваешь разобраться или застрял на каком-то задание поможет тебе быстро и недорого решить твою проблему.
Всё и так отлично
Всё очень удобно. Особенно круто, что есть система бонусов и можно выводить остатки денег. Очень много качественных бесплатных файлов.
Отзыв о системе "Студизба"
Отличная платформа для распространения работ, востребованных студентами. Хорошо налаженная и качественная работа сайта, огромная база заданий и аудитория.
Отличный помощник
Отличный сайт с кучей полезных файлов, позволяющий найти много методичек / учебников / отзывов о вузах и преподователях.
Отлично помогает студентам в любой момент для решения трудных и незамедлительных задач
Хотелось бы больше конкретной информации о преподавателях. А так в принципе хороший сайт, всегда им пользуюсь и ни разу не было желания прекратить. Хороший сайт для помощи студентам, удобный и приятный интерфейс. Из недостатков можно выделить только отсутствия небольшого количества файлов.
Спасибо за шикарный сайт
Великолепный сайт на котором студент за не большие деньги может найти помощь с дз, проектами курсовыми, лабораторными, а также узнать отзывы на преподавателей и бесплатно скачать пособия.
Популярные преподаватели
Добавляйте материалы
и зарабатывайте!
Продажи идут автоматически
5137
Авторов
на СтудИзбе
440
Средний доход
с одного платного файла
Обучение Подробнее