Популярные услуги

Все письменные КМ под ключ за 3 суток! (КМ-6 + КМ-7 + КМ-8 + КМ-9 + КМ-10)
КМ-6. Динамические массивы. Семинар - выполню любой вариант!
КМ-2. Разработка простейших консольных программ с использованием ООП + КМ-4. Более сложные элементы ООП - под ключ!
Любая задача на C/C++
Одно любое задание в mYsql
Сделаю ваше задание: Лабораторная работа на Pascal / Lazarus
Любой тест по базам данных максимально быстро на хорошую оценку - или верну деньги!
Любой реферат по объектно-ориентированному программированию (ООП)
Оба семинара по программированию под ключ! КМ-2. Разработка циклических алгоритмов + КМ-3. Функции и многофайловые программы в Си
Повышение уникальности твоей работе
Главная » Лекции » Информатика и программирование » Лекции по ОССиО » Управление вводом-выводом данных

Управление вводом-выводом данных

2021-03-09СтудИзба

Лекция 9.   Управление вводом-выводом данных

9.1 Принципы аппаратуры ввода-вывода

Два нижних уровня системы управления вводом-выводом составляет hardware: сами устройства, непосредственно выполняющие операции, и их контроллеры, служащие для организации совместной работы устройств и остальной вычислительной системы. Следующий уровень составляют драйверы устройств ввода-вывода, скрывающие от разработчиков операционных систем особенности функционирования конкретных приборов и обеспечивающие четко определенный интерфейс между hardware и вышележащим уровнем – уровнем базовой подсистемы ввода-вывода, которая, в свою очередь, предоставляет механизм взаимодействия между драйверами и программной частью вычислительной системы в целом.


Рис. 1. Структура системы ввода-вывода

В составе любой ОС существует специальная подсистема, управляющая аппаратурой ввода-вывода. Основные задачи, решаемые с помощью этой подсистемы, состоят в следующем:

- подсистема должна обеспечить пользователей удобным и понятным интерфейсом для обращения к ПУ как в однопользовательском, так и в многопользовательском режимах работы ЭВМ; при этом часто выдвигается требование на достижение унифицированного интерфейса для доступа к различным по своим физическим характеристикам ПУ, для чего реализуется принцип независимости от устройств;

- в мультипрограммном режиме работы систем разделения времени подсистема должна обеспечить такое планирование процесса ввода-вывода данных, чтобы достичь максимального перекрытия во времени работы центрального процессора (ЦП) и аппаратуры ввода-вывода.

- состав подсистемы ОС для устройств ввода-вывода и аппаратура ввода-вывода существенно отличаются для различных ЭВМ, но можно выделить и единое концептуальное начало, свойственное всем подсистемам. Аппаратуру ввода-вывода можно рассматривать как совокупность аппаратурных процессоров, которые способны работать параллельно друг относительно друга, а также относительно ЦП. На таких процессорах выполняются так называемые внешние процессы. Например, для печатающего устройства процесс может состоять из совокупности действий, обеспечивающих перевод каретки, продвижение бумаги на одну строку, печать любого заданного числа символов на строке.

Внешние процессы взаимодействуют с программными процессами, выполняемыми ЦП и оперативной памятью (ОП). Существенно, что скорость выполнения программного процесса может на несколько порядков превосходить скорость внешнего процесса.

Рекомендуемые материалы

Подсистема ОС для управления вводом-выводом с точки зрения программных процессов является интерфейсом с ПУ. Различают три типа действий с ПУ:

1. операции чтения-записи данных;

2. операции управления ПУ;

3. операции по проверке состояния ПУ.

9.1.1 Устройства ввода-вывода

Устройства делят на две категории (некоторые не попадают ни в одну):

  • блочные устройства - информация считывается и записывается по блокам, блоки имеют свой адрес (диски)
  • символьные устройства - информация считывается и записывается посимвольно (принтер, сетевые карты, мыши)

9.1.2 Контроллеры устройств

Устройства ввода-вывода обычно состоят из двух частей:

  • механическая (не надо понимать дословно) - диск, принтер, монитор
  • электронная - контроллер или адаптер

  Если интерфейс между контроллером и устройством стандартизован (ANSI, IEEE или ISO), то независимые производители могут выпускать совместимые как контроллеры, так и устройства. Например: диски IDE или SCSI.

  Операционная система обычно имеет дело не с устройством, а с контроллером. Контроллер, как правило, выполняет простые функции, например, при считывании с диска, преобразует поток бит в блоки, состоящие из байт, и осуществляют контроль и исправление ошибок, проверяется контрольная сумма блока, если она совпадает с указанной в заголовке сектора, то блок считан без ошибок, если нет, то считывается заново.

9.1.3 Отображаемый на адресное пространство памяти ввод-вывод

  Каждый контроллер имеет несколько регистров, которые используются для взаимодействия с центральным процессором. При помощи этих регистров ОС управляет (считывает, пишет, включает и т.д.) и определяет состояние (готовность) устройства.

  У многих устройств есть буфер данных (например: видеопамять).

  Реализации доступа к управляющим регистрам и буферам:

  • номер порта ввода-вывода - назначается каждому управляющему регистру 8- или 16-рзрядное целое число. Адресные пространства ОЗУ и устройства ввода-вывода в этой схеме не пересекаются.
    Недостатки
    - для чтения и записи применяются специальные команды, например IN и OUT
    - необходим специальный механизм защиты от процессов
    - необходимо сначала считать регистр устройства в регистр процессора
  • отображаемый на адресное пространство памяти ввод-вывод - регистры отображаются на адресное пространство памяти.
    Недостатки
    - при кэшировании памяти, могут кэшироваться и регистры устройств
    - все устройства должны проверять все обращения к памяти, чтобы определить, на какие им реагировать. На одной общей шине это реализуется легко, но на нескольких будут проблемы.
  • смешанная реализация - используется в х86 и Pentium,
    от 0 до 64К отводится портам,
    от 640 до 1М зарезервировано под буферы данных.

Способы реализации доступа к управляющим регистрам и буферам

9.1.4 Прямой доступ к памяти (DMA - Direct Memory Access)

  Прямой доступ к памяти реализуется с помощью DMA - контроллера.

  Контроллер содержит несколько регистров:

  • регистр адреса памяти
  • счетчик байтов
  • управляющие регистры, могут содержать:
    - порт ввода-вывода
    - чтение или запись
    - единицы переноса (побайтно или пословно)

  Без контроллера происходит следующее:

  1. Процессор дает команду дисковому контроллеру прочитать данные в буфер,
  2. Считываются данные в буфер, контроллер проверяет контрольную сумму считанных данных (проверка на ошибки). Процессор, до прерывания, переключается на другие задания.
  3. Контроллер диска инициирует прерывание
  4. Операционная система начинает работать и может считывать из буфера данные в память

Работа DMA - контроллера

  С контроллером происходит следующее:

  1. Процессор программирует контроллер (какие данные и куда переместить)
  2. Процессор дает команду дисковому контроллеру прочитать данные в буфер
  3. Считываются данные в буфер, контроллер диска проверяет контрольную сумму считанных данных, (процессор, до прерывания, переключается на другие задания).
  4. Контроллер DMA посылает запрос на чтение дисковому контроллеру
  5. Контроллер диска поставляет данные на шину, адрес памяти уже находится на шине, происходит запись данных в память
  6. Когда запись закончена, контроллер диска посылает подтверждение DMA контроллеру
  7. DMA контроллер увеличивает используемый адрес и уменьшает значение счетчика байтов
  8. Все повторяется с пункта 4, пока значение счетчика не станет равной нулю.
  9. Контроллер DMA инициирует прерывание

Операционной системе не нужно копировать данные в память, они уже там.

9.1.5 Прерывания

После того как устройство ввода-вывода начало работу, процессор переключается на другие задачи.

Чтобы сигнализировать процессору об окончании работы, устройство инициализирует прерывание, выставляя сигнал на выделенную устройству линию шины (а не выделенный провод).

  Контроллер прерываний - обслуживает поступающие прерывания от устройств.

  1. Если необработанных прерываний нет, прерывание выполняется немедленно.
  2. Если необработанных прерываний есть, контроллер игнорирует прерывание. Но устройство продолжает удерживать сигнал прерывания на шине до тех пор, пока оно не будет обработано.

Работа прерываний

Алгоритм работы:

  • Устройство выставляет сигнал прерывания
  • Контроллер прерываний инициирует прерывание, указывая номер устройства
  • Процессор начинает выполнять обработку прерывания, вызывая процедуру
  • Эта процедура подтверждает получение прерывания контроллеру прерываний

9.2 Принципы программного обеспечения ввода-вывода

9.2.1 Задачи программного обеспечения ввода-вывода

Основные задачи, которые должно решать программное обеспечение ввода-вывода:

  • Независимость от устройств - например, программа, читающая данные из файла не должна задумываться с чего она читает (CD, HDD и др.). Все проблемы должна решать ОС.
  • Единообразное именование - имя файла или устройства не должны отличаться. (В системах UNIX выполняется дословно).
  • Обработка ошибок - ошибки могут быть отловлены на уровне контроллера, драйвера и т.д.
  • Перенос данных - синхронный и асинхронный (в последнем случае процессор запускает перенос данных, и переключается на другие задачи до прерывания).
  • Буферизация
  • Проблема выделенных (принтер) и невыделенных (диск) устройств - принтер должен предоставляться только одному пользователю, а диск многим. ОС должна решать все возникающие проблемы.

Три основных способа осуществления операций ввода-вывода:

  • Программный ввод-вывод
  • Управляемый прерываниями ввод-вывод
  • Ввод-вывод с использованием DMA

Рассмотрим их подробнее.

9.2.2 Программный ввод-вывод

  В этом случае всю работу выполняет центральный процессор.

Рассмотрим процесс печати строки ABCDEFGH этим способом.

Этапы печати строки ABCDEFGH

Алгоритм печати:

  1. Строка для печати собирается в пространстве пользователя.
  2. Обращаясь к системному вызову, процесс получает принтер.
  3. Обращаясь к системному вызову, процесс просит распечатать строку на принтере.
  4. Операционная система копирует строку в массив, расположенный в режиме ядра.
  5. ОС копирует первый символ в регистр данных принтера, который отображен на памяти.
  6. Символ печатается на бумаге.
  7. Указатель устанавливается на следующий символ.
  8. Процессор ждет, когда бит готовности принтера выставится в готовность.
  9. Все повторяется.

  При использовании буфера принтера, сначала вся строка копируется в буфер, после этого начинается печать.

9.2.3 Управляемый прерываниями ввод-вывод

  Если в предыдущем примере буфер не используется, а принтер печатает 100 символов в секунду, то на каждый символ будет уходить 10мс, в это время процессор будет простаивать, ожидая готовности принтера.

  Рассмотрим тот же пример, но с небольшим усовершенствованием.

Алгоритм печати:

  1. До пункта 8 тоже самое.
  2. Процессор не ждет готовности принтера, а вызывает планировщик и переключается на другую задачу. Печатающий процесс блокируется.
  3. Когда принтер будет готов, он посылает прерывание процессору.
  4. Процессор переключается на печатающий процесс.

9.2.4 Ввод-вывод с использованием DMA

Недостаток предыдущего метода в том, что прерывание происходит при печати каждого символа.

Алгоритм не отличается, но всю работу на себя берет контроллер DMA.

9.3 Программные уровни и функции ввода-вывода

  Четыре уровня ввода-вывода:

Уровни ввода-вывода

9.3.1 Обработчики прерываний

  Прерывания должны быть скрыты как можно глубже в недрах операционной системы, чтобы как можно меньшая часть ОС имела с ними дело. Лучше всего блокировать драйвер, начавший ввод-вывод.

  Алгоритм:

  1. Драйвер начинает операцию ввод-вывод.
  2. Драйвер блокирует сам себя,
    - выполнив на семафоре процедуру down
    - выполнив на переменной состояния процедуру wait
    - выполнив на сообщении процедуру receive
  3. Происходит прерывание
  4. Обработчик прерываний начинает работу
  5. Обработчик прерываний может разблокировать драйвер (например, выполнив на семафоре процедуру up)

9.3.2 Драйвера устройств

  Драйвер устройства - необходим для каждого устройства. Для разных ОС нужны разные драйверы.

Драйверы должны быть частью ядра (в монолитной системе), что бы получить доступ к регистрам контроллера.

  Это одна из основных причин приводящих к краху операционных систем. Потому что драйверы, как правило, пишутся производителями устройств, и вставляются в ОС.

Логическое расположение драйверов устройств. На самом деле обмен данными между контроллерами и драйверами идет по шине.

Драйвера должны взаимодействовать с ОС через стандартные интерфейсы.

Стандартные интерфейсы, которые должны поддерживать драйвера:

  • Для блочных устройств
  • Для символьных устройств

Раньше для установки ядра приходилось перекомпилировать ядра системы.

Сейчас в основном ОС загружают драйверы. Некоторые драйверы могут быть загружены в горячем режиме.

Функции, которые выполняют драйвера:

  • обработка запросов чтения или записи
  • инициализация устройства
  • управление энергопотреблением устройства
  • прогрев устройства (сканера)
  • включение устройства или запуска двигателя

9.3.3 Независимое от устройств программное обеспечение ввода-вывода

Функции независимого от устройств программного обеспечения ввода-вывода:

  • Единообразный интерфейс для драйверов устройств,
  • Буферизация
  • Сообщения об ошибках
  • Захват и освобождение выделенных устройств(блокирование)
  • Размер блока, не зависящий от устройств

Единообразный интерфейс для драйверов устройств

Кроме интерфейса, в него также входят проблемы,

  • именование устройств
  • защита устройств

Буферизация

Рассмотрим несколько примеров буферизации.

a) Не буферизованный ввод - после ввода каждого символа происходит прерывание

b) Буферизация в пространстве пользователя - приходится держать загруженными необходимые страницы памяти в физической памяти.

c) Буферизация в ядре с копированием в пространство пользователя - страница загружается только когда буфер ядра полный, данные из буфера ядра в буфер пользователя копируется за одну операцию. Проблема может возникнуть, когда буфер ядра полный, а страница буфера пользователя еще не загружена.

d) Двойная буферизация в ядре - если один буфер заполнен, и пока он выгружается, символы пишутся во второй буфер.

Сообщения об ошибках

Наибольшее число ошибок возникает именно от операции ввода-вывода, поэтому их нужно определять как можно раньше. Ошибки могут быть очень разные в зависимости от устройств.

Захват и освобождение выделенных устройств

Для устройств (принтер) с которыми должен работать в одно время только один процесс, необходима возможность захвата и освобождения устройств. Когда один процесс занял устройство, остальные встают в очередь.

Независимый от устройств размер блока

Размер блока должен быть одинаковый для верхних уровней, и не зависеть от устройств (размеров секторов на диске).

9.4. Программное обеспечение ввода-вывода пространства пользователя

Функции этого обеспечения:

  • Обращение к системным вызовам ввода-вывода (через библиотечные процедуры).
  • Форматный ввод-вывод (меняют формат, например, в ASCII)
  • Спулинг (для выделенных устройств) - создается процесс (например, демон печати) и каталог спулера.

Обобщение уровней и функций ввода-вывода

Уровни и основные функции системы ввода-вывода

Базовая подсистема ввода-вывода служит посредником между процессами вычислительной системы и набором драйверов. Системные вызовы для выполнения операций ввода-вывода трансформируются ею в вызовы функций необходимого драйвера устройства. Однако обязанности базовой подсистемы не сводятся к выполнению только действий трансляции общего системного вызова в обращение к частной функции драйвера. Базовая подсистема предоставляет вычислительной системе такие услуги, как поддержка блокирующихся, неблокирующихся и асинхронных системных вызовов, буферизация и кэширование входных и выходных данных, осуществление spooling'a и монопольного захвата внешних устройств, обработка ошибок и прерываний, возникающих при операциях ввода-вывода, планирование последовательности запросов на выполнение этих операций. Давайте остановимся на этих услугах подробнее.

Блокирующиеся, неблокирующиеся и асинхронные системные вызовы

Все системные вызовы, связанные с осуществлением операций ввода-вывода, можно разбить на три группы по способам реализации взаимодействия процесса и устройства ввода-вывода.

· К первой, наиболее привычной для большинства программистов группе относятся блокирующиеся системные вызовы. Как следует из самого названия, применение такого вызова приводит к блокировке инициировавшего его процесса, т. е. процесс переводится операционной системой из состояния исполнение в состояние ожидание. Завершив выполнение всех операций ввода-вывода, предписанных системным вызовом, операционная система переводит процесс из состояния ожидание в состояние готовность. После того как процесс будет снова выбран для исполнения, в нем произойдет окончательный возврат из системного вызова. Типичным для применения такого системного вызова является случай, когда процессу необходимо получить от устройства строго определенное количество данных, без которых он не может выполнять работу далее.

· Ко второй группе относятся неблокирующиеся системные вызовы. Их название не совсем точно отражает суть дела. В простейшем случае процесс, применивший неблокирующийся вызов, не переводится в состояние ожидание вообще. Системный вызов возвращается немедленно, выполнив предписанные ему операции ввода-вывода полностью, частично или не выполнив совсем, в зависимости от текущей ситуации (состояния устройства, наличия данных и т. д.). В более сложных ситуациях процесс может блокироваться, но условием его разблокирования является завершение всех необходимых операций или окончание некоторого промежутка времени. Типичным случаем применения неблокирующегося системного вызова может являться периодическая проверка на поступление информации с клавиатуры при выполнении трудоемких расчетов.

· К третьей группе относятся асинхронные системные вызовы. Процесс, использовавший асинхронный системный вызов, никогда в нем не блокируется. Системный вызов инициирует выполнение необходимых операций ввода-вывода и немедленно возвращается, после чего процесс продолжает свою регулярную деятельность. Об окончании завершения операции ввода-вывода операционная система впоследствии информирует процесс изменением значений некоторых переменных, передачей ему сигнала или сообщения или каким-либо иным способом. Необходимо четко понимать разницу между неблокирующимися и асинхронными вызовами. Неблокирующийся системный вызов для выполнения операции read вернется немедленно, но может прочитать запрошенное количество байтов, меньшее количество или вообще ничего. Асинхронный системный вызов для этой операции также вернется немедленно, но требуемое количество байтов рано или поздно будет прочитано в полном объеме.

Буферизация и кэширование

Под буфером обычно понимается некоторая область памяти для запоминания информации при обмене данных между двумя устройствами, двумя процессами или процессом и устройством. Обмен информацией между двумя процессами относится к области кооперации процессов, и мы подробно рассмотрели его организацию в соответствующей лекции. Здесь нас будет интересовать использование буферов в том случае, когда одним из участников обмена является внешнее устройство. Существует три причины, приводящие к использованию буферов в базовой подсистеме ввода-вывода.

· Первая причина буферизации – это разные скорости приема и передачи информации, которыми обладают участники обмена. Рассмотрим, например, случай передачи потока данных от клавиатуры к модему. Скорость, с которой поставляет информацию клавиатура, определяется скоростью набора текста человеком и обычно существенно меньше скорости передачи данных модемом. Для того чтобы не занимать модем на все время набора текста, делая его недоступным для других процессов и устройств, целесообразно накапливать введенную информацию в буфере или нескольких буферах достаточного размера и отсылать ее через модем после заполнения буферов.

· Вторая причина буферизации – это разные объемы данных, которые могут быть приняты или получены участниками обмена единовременно. Возьмем другой пример. Пусть информация поставляется модемом и записывается на жесткий диск. Помимо обладания разными скоростями совершения операций, модем и жесткий диск представляют собой устройства разного типа. Модем является символьным устройством и выдает данные байт за байтом, в то время как диск является блочным устройством и для проведения операции записи для него требуется накопить необходимый блок данных в буфере. Здесь также можно применять более одного буфера. После заполнения первого буфера модем начинает заполнять второй, одновременно с записью первого на жесткий диск. Поскольку скорость работы жесткого диска в тысячи раз больше, чем скорость работы модема, к моменту заполнения второго буфера операция записи первого будет завершена, и модем снова сможет заполнять первый буфер одновременно с записью второго на диск.

· Третья причина буферизации связана с необходимостью копирования информации из приложений, осуществляющих ввод-вывод, в буфер ядра операционной системы и обратно. Допустим, что некоторый пользовательский процесс пожелал вывести информацию из своего адресного пространства на внешнее устройство. Для этого он должен выполнить системный вызов с обобщенным названием write, передав в качестве параметров адрес области памяти, где расположены данные, и их объем. Если внешнее устройство временно занято, то возможна ситуация, когда к моменту его освобождения содержимое нужной области окажется испорченным (например, при использовании асинхронной формы системного вызова). Чтобы избежать возникновения подобных ситуаций, проще всего в начале работы системного вызова скопировать необходимые данные в буфер ядра операционной системы, постоянно находящийся в оперативной памяти, и выводить их на устройство из этого буфера.

Под словом кэш (cash – "наличные"), этимологию которого мы не будем здесь рассматривать, обычно понимают область быстрой памяти, содержащую копию данных, расположенных где-либо в более медленной памяти, предназначенную для ускорения работы вычислительной системы. Мы с вами сталкивались с этим понятием при рассмотрении иерархии памяти. В базовой подсистеме ввода-вывода не следует смешивать два понятия, буферизацию и кэширование, хотя зачастую для выполнения этих функций отводится одна и та же область памяти. Буфер часто содержит единственный набор данных, существующий в системе, в то время как кэш по определению содержит копию данных, существующих где-нибудь еще. Например, буфер, используемый базовой подсистемой для копирования данных из пользовательского пространства процесса при выводе на диск, может в свою очередь применяться как кэш для этих данных, если операции модификации и повторного чтения данного блока выполняются достаточно часто.

Функции буферизации и кэширования не обязательно должны быть локализованы в базовой подсистеме ввода-вывода. Они могут быть частично реализованы в драйверах и даже в контроллерах устройств, скрытно по отношению к базовой подсистеме.

Spooling и захват устройств

О понятии spooling мы говорили в первой лекции нашего курса, как о механизме, впервые позволившем совместить реальные операции ввода-вывода одного задания с выполнением другого задания. Теперь мы можем определить это понятие более точно. Под словом spool мы подразумеваем буфер, содержащий входные или выходные данные для устройства, на котором следует избегать чередования его использования различными процессами. Правда, в современных вычислительных системах spool для ввода данных практически не используется, а в основном предназначен для накопления выходной информации.

Рассмотрим в качестве внешнего устройства принтер. Хотя принтер не может печатать информацию, поступающую одновременно от нескольких процессов, может оказаться желательным разрешить процессам совершать вывод на принтер параллельно. Для этого операционная система вместо передачи информации напрямую на принтер накапливает выводимые данные в буферах на диске, организованных в виде отдельного spool-файла для каждого процесса. После завершения некоторого процесса соответствующий ему spool-файл ставится в очередь для реальной печати. Механизм, обеспечивающий подобные действия, и получил название spooling.

В некоторых операционных системах вместо использования spooling для устранения race condition применяется механизм монопольного захвата устройств процессами. Если устройство свободно, то один из процессов может получить его в монопольное распоряжение. При этом все другие процессы при попытке осуществления операций над этим устройством будут либо блокированы (переведены в состояние ожидание), либо получат информацию о невозможности выполнения операции до тех пор, пока процесс, захвативший устройство, не завершится или явно не сообщит операционной системе о своем отказе от его использования.

Обеспечение spooling и механизма захвата устройств является прерогативой базовой подсистемы ввода-вывода.

Обработка прерываний и ошибок

Если при работе с внешним устройством вычислительная система не пользуется методом опроса его состояния, а задействует механизм прерываний, то при возникновении прерывания, как мы уже говорили раньше, процессор, частично сохранив свое состояние, передает управление специальной программе обработки прерывания.

Одна и та же процедура обработки прерывания может применяться для нескольких устройств ввода-вывода (например, если эти устройства используют одну линию прерываний, идущую от них к контроллеру прерываний), поэтому первое действие собственно программы обработки состоит в определении того, какое именно устройство выдало прерывание. Зная устройство, мы можем выявить процесс, который инициировал выполнение соответствующей операции. Поскольку прерывание возникает как при удачном, так и при неудачном ее выполнении, следующее, что мы должны сделать, – это определить успешность завершения операции, проверив значение бита ошибки в регистре состояния устройства. В некоторых случаях операционная система может предпринять определенные действия, направленные на компенсацию возникшей ошибки. Например, в случае возникновения ошибки чтения с гибкого диска можно попробовать несколько раз повторить выполнение команды. Если компенсация ошибки невозможна, то операционная система впоследствии известит об этом процесс, запросивший выполнение операции, (например, специальным кодом возврата из системного вызова). Если этот процесс был заблокирован до выполнения завершившейся операции, то операционная система переводит его в состояние готовность. При наличии других неудовлетворенных запросов к освободившемуся устройству операционная система может инициировать выполнение следующего запроса, одновременно известив устройство, что прерывание обработано. На этом, собственно, обработка прерывания заканчивается, и система может приступать к планированию использования процессора.

Действия по обработке прерывания и компенсации возникающих ошибок могут быть частично переложены на плечи соответствующего драйвера. Для этого в состав интерфейса между драйвером и базовой подсистемой ввода-вывода добавляют еще одну функцию – функцию обработки прерывания intr.

Планирование запросов

При использовании неблокирующегося системного вызова может оказаться, что нужное устройство уже занято выполнением некоторых операций. В этом случае неблокирующийся вызов может немедленно вернуться, не выполнив запрошенных команд. При организации запроса на совершение операций ввода-вывода с помощью блокирующегося или асинхронного вызова занятость устройства приводит к необходимости постановки запроса в очередь к данному устройству. В результате с каждым устройством оказывается связан список неудовлетворенных запросов процессов, находящихся в состоянии ожидания, и запросов, выполняющихся в асинхронном режиме. Состояние ожидание расщепляется на набор очередей процессов, дожидающихся различных устройств ввода-вывода (или ожидающих изменения состояний различных объектов – семафоров, очередей сообщений, условных переменных в мониторах и т. д. – см. лекцию 6).

После завершения выполнения текущего запроса операционная система (по ходу обработки возникшего прерывания) должна решить, какой из запросов в списке должен быть удовлетворен следующим, и инициировать его исполнение. Точно так же, как для выбора очередного процесса на исполнение из списка готовых нам приходилось осуществлять краткосрочное планирование процессов, здесь нам необходимо осуществлять планирование применения устройств, пользуясь каким-либо алгоритмом этого планирования. Критерии и цели такого планирования мало отличаются от критериев и целей планирования процессов.

Задача планирования использования устройства обычно возлагается на базовую подсистему ввода-вывода, однако для некоторых устройств лучшие алгоритмы планирования могут быть тесно связаны с деталями их внутреннего функционирования. В таких случаях операция планирования переносится внутрь драйвера соответствующего устройства, так как эти детали скрыты от базовой подсистемы. Для этого в интерфейс драйвера добавляется еще одна специальная функция, которая осуществляет выбор очередного запроса, – функция strategy

9.5. Принципы, заложенные в подсистему управления вводом-выводом в ОС UNIX

1. Эта подсистема построена единообразно с подсистемой управления данными (файловой системой). Пользователю предоставляется унифицированный способ доступа как к ПУ, так и к файлам. Под файлом в ОС UNIX понимают набор данных на диске, видеотерминале и т.д.; любое ПУ рассматривается как специальный файл. При запросе программного процесса о выводе данных в специальный файл ОС перехватывает запрос и направляет данные на соответствующее устройство. Аналогично организуется чтение данных из специального файла - это прием данных с ПУ. Таким образом, доступ, например, к файлу на диске и к специальному файлу дисплея обеспечивается одним и тем же набором системных вызовов.

2. Другая особенность подсистемы ввода-вывода в ОС UNIX заключается в том, что она работает как синхронная система. Любой программный процесс, требующий ввода данных, приостанавливается в точке, где он выдал запрос, до тех пор, пока не завершится операция ввода из указанного специального файла. При выводе процесс приостанавливается в точке запроса на вывод данных вплоть до того момента, пока выводимые данные будут приняты системой в буфер пользователя. Такая организация ввода-вывода приводит в мультипрограммном режиме работы ЭВМ к повышению эффективности использования времени ЦП вследствие уменьшения простоев этого ЦП. Заметим, что в системах реального времени (СРВ) чаще используется асинхронный принцип работы подсистемы ввода-вывода, так как в этом случае уменьшается время реакции СРВ на события, требующие немедленной обработки.

Лекция "Лекция 5" также может быть Вам полезна.

3. Для управления ПУ в ОС UNIX используются 2 вида интерфейса с этими ПУ: байториентированный и блокориентированный. Блокориентированный интерфейс обеспечивает связь с ПУ, к которым можно адресоваться как к последовательности блоков по 512 байт. Такими ПУ в основном являются ВЗУ. Основой организации такого интерфейса является система буферизации, поддерживаемая в ОП. Байториентированный интерфейс используется для доступа к печатающему устройству, клавиатуре дисплея и некоторым другим устройствам, при этом буферизация не используется.

4. В состав системы управления вводом-выводом входят также драйверы и набор специальных таблиц для логического подключения ядра ОС к драйверам различных устройств. Каждый драйвер содержит 2 части и может обслуживать несколько устройств одного типа.

Первая часть драйвера содержит набор программных модулей для выполнения операций по открытию, закрытию, чтению и записи специальных файлов, а также для управления специальными режимами работы ПУ. Чтобы начать работать с некоторым устройством, необходимо открыть или создать специальный файл, сопоставляемый с этим устройством. Открытие файла - это процесс установления связи между именем файла и некоторой переменной, хранимой в области памяти того процесса, который открывает файл. Эта переменная, называемая номером дескриптора файла, используется далее в операциях над открытым файлом. После открытия файла процессу, проводившему открытие, разрешен доступ к устройству. Операция закрытия обратна по назначению и приводит к разрыву связи между программным процессом и указываемым ПУ.

Вторая часть драйвера - это модуль обработки прерываний. При управлении большинством ПУ в ОС UNIX используется метод прерываний. Для байториентированного ПУ прерывание возникает после передачи байта, для блокориентированного ПУ - после передачи блока. Модуль обработки прерывания, являющийся частью драйвера, или прекращает работу с ПУ, или продолжает работу с ним, выдавая ему новое задание.

Некоторые из изложенных принципов построения системы ввода-вывода ОС UNIX были реализованы в ОС, созданных позднее, например, в MS DOS, функционирующей в ЭВМ IBM РС с МП типа 80х86.

Рассмотрим еще одну особенность построения системы ввода-вывода. В мультипрограммном режиме работы ЭВМ, используемом в СРВ или в системах разделения времени, к одному и тому же ПУ может появиться очередь запросов от различных программ. Для организации последовательного выполнения этим ПУ поступивших к нему заявок на обслуживание в ОП должна быть организована специальная таблица, содержимое которой однозначно отображает в каждый момент времени очередность и содержание поступивших заявок; после выполнения ПУ очередной заявки данные о ней исключаются из рассматриваемой таблицы. Такие таблицы должны быть организованы для большинства ПУ, взаимодействующих с ЭВМ.

Свежие статьи
Популярно сейчас
А знаете ли Вы, что из года в год задания практически не меняются? Математика, преподаваемая в учебных заведениях, никак не менялась минимум 30 лет. Найдите нужный учебный материал на СтудИзбе!
Ответы на популярные вопросы
Да! Наши авторы собирают и выкладывают те работы, которые сдаются в Вашем учебном заведении ежегодно и уже проверены преподавателями.
Да! У нас любой человек может выложить любую учебную работу и зарабатывать на её продажах! Но каждый учебный материал публикуется только после тщательной проверки администрацией.
Вернём деньги! А если быть более точными, то автору даётся немного времени на исправление, а если не исправит или выйдет время, то вернём деньги в полном объёме!
Да! На равне с готовыми студенческими работами у нас продаются услуги. Цены на услуги видны сразу, то есть Вам нужно только указать параметры и сразу можно оплачивать.
Отзывы студентов
Ставлю 10/10
Все нравится, очень удобный сайт, помогает в учебе. Кроме этого, можно заработать самому, выставляя готовые учебные материалы на продажу здесь. Рейтинги и отзывы на преподавателей очень помогают сориентироваться в начале нового семестра. Спасибо за такую функцию. Ставлю максимальную оценку.
Лучшая платформа для успешной сдачи сессии
Познакомился со СтудИзбой благодаря своему другу, очень нравится интерфейс, количество доступных файлов, цена, в общем, все прекрасно. Даже сам продаю какие-то свои работы.
Студизба ван лав ❤
Очень офигенный сайт для студентов. Много полезных учебных материалов. Пользуюсь студизбой с октября 2021 года. Серьёзных нареканий нет. Хотелось бы, что бы ввели подписочную модель и сделали материалы дешевле 300 рублей в рамках подписки бесплатными.
Отличный сайт
Лично меня всё устраивает - и покупка, и продажа; и цены, и возможность предпросмотра куска файла, и обилие бесплатных файлов (в подборках по авторам, читай, ВУЗам и факультетам). Есть определённые баги, но всё решаемо, да и администраторы реагируют в течение суток.
Маленький отзыв о большом помощнике!
Студизба спасает в те моменты, когда сроки горят, а работ накопилось достаточно. Довольно удобный сайт с простой навигацией и огромным количеством материалов.
Студ. Изба как крупнейший сборник работ для студентов
Тут дофига бывает всего полезного. Печально, что бывают предметы по которым даже одного бесплатного решения нет, но это скорее вопрос к студентам. В остальном всё здорово.
Спасательный островок
Если уже не успеваешь разобраться или застрял на каком-то задание поможет тебе быстро и недорого решить твою проблему.
Всё и так отлично
Всё очень удобно. Особенно круто, что есть система бонусов и можно выводить остатки денег. Очень много качественных бесплатных файлов.
Отзыв о системе "Студизба"
Отличная платформа для распространения работ, востребованных студентами. Хорошо налаженная и качественная работа сайта, огромная база заданий и аудитория.
Отличный помощник
Отличный сайт с кучей полезных файлов, позволяющий найти много методичек / учебников / отзывов о вузах и преподователях.
Отлично помогает студентам в любой момент для решения трудных и незамедлительных задач
Хотелось бы больше конкретной информации о преподавателях. А так в принципе хороший сайт, всегда им пользуюсь и ни разу не было желания прекратить. Хороший сайт для помощи студентам, удобный и приятный интерфейс. Из недостатков можно выделить только отсутствия небольшого количества файлов.
Спасибо за шикарный сайт
Великолепный сайт на котором студент за не большие деньги может найти помощь с дз, проектами курсовыми, лабораторными, а также узнать отзывы на преподавателей и бесплатно скачать пособия.
Популярные преподаватели
Добавляйте материалы
и зарабатывайте!
Продажи идут автоматически
5160
Авторов
на СтудИзбе
439
Средний доход
с одного платного файла
Обучение Подробнее