Популярные услуги

Лекция 5

2021-03-09СтудИзба

21. Прерывистые релейные типы регуляторов.

Релейные системы автоматического управления можно отнести, как и импульсные, описанные выше, к категории систем прерывистого действия, но их существенное отличие от импульсных систем заключается в том, что релейные системы по самому принципу своему являются нелинейными. Дело в том, что здесь моменты времени, в которые происходит замыкание и размыкание системы, заранее неизвестны; они не задаются извне, а определяются внутренними свойствами самой системы (ее структурой и величинами ее параметров). Этим обусловливаются и основные специфические особенности динамики процессов управления в релейных системах.

к релейным системам управления относятся не только системы, содержащие именно реле, а всякие системы, в составекоторых есть звенья (любой физической природы), обладающие статическими характеристиками релейного типа, когда выходная величина звена изменяется скачкообразно при непрерывном изменении входной величины.

Приведем типичный пример релейной системы, в которой сам управляющий орган работает в двухпозициоином режиме. Это — вибрационный регулятор напряжения на клеммах генератора постоянного тока. Принципиальная схема показана па рис, 1.27. Управляемая величина — напряжение (У. При отклонении напряжения изменяется ток в обмотке электромагнита. Это создает изменение тяговой силы

электромагнита. При уменьшении последней пружина замыкает контакты К, выключая добавочное сопротивление Кл из цени возбуждения генератора. Следовательно, управляющий орган (контакты) здесь будет иметь релейную характеристику, показанную на рис. 1,28.

Релейные системы по сравнению с непрерывными системами обладают тем преимуществом, что не требуют высокой стабильности элементов для соблюдения определенной зависимости между выходной и входной величинами. . Они работают но принципу да-нет, т. е. по наличию или отсутствию входного сигнала и его знаку (с определенным порогом срабатывания).

  1. Понятие о температуре и термометрических свойствах. Классификация методов и средств измерения температуры. Разновидности погрешностей.

Температура (от лат. temperatura — надлежащее смешение, нормальное состояние) — физическая величина, примерно характеризующая приходящуюся на одну степень свободы среднюю кинетическую энергию частиц макроскопической системы, находящейся в состоянии термодинамического равновесия.

В Международной системе единиц (СИ) термодинамическая температура выражается в кельвинах, температура Цельсия — в градусах [1]. На практике часто применяют градусы Цельсия из-за привязки к важным характеристикам воды — температуре таяния льда (0° C) и температуре кипения (100° C). Это удобно, так как большинство климатических процессов, процессов в живой природе и т. д. связаны с этим диапазоном.

Рекомендуемые материалы

Существуют также шкалы Фаренгейта и некоторые другие.

Измерение температуры

Для измерения температуры выбирается некоторый термодинамический параметр термометрического вещества. Изменение этого параметра однозначно связывается с изменением температуры. Большинство термометров измеряют собственную температуру. Средства измерения температуры обычно проградуированы по относительным шкалам — Цельсия или Фаренгейта.

На практике для измерения температуры используют

жидкостные и механические термометры,

термопару,

Термосопротивление

Термометр сопротивления

Газовый термометр

Пирометр

  1. Жидкостные стеклянные термометры расширения, устройство и область применения.

Жидкостные стеклянные термометры

Самые старые устройства для измерения температуры – жидкостные стеклянные термометры – используют термометрическое свойство теплового расширения тел. Действие термометров основано на различии коэффициентов теплового расширения термометрического вещества и оболочки, в которой она находится (термометрического стекла или реже кварца).

Жидкостный термометр состоит из стеклянных баллона 1, капиллярной трубки 3 и запасного резервуара 4 (рис. 1). Термометрическое вещество 2 заполняет баллон и частично капиллярную трубку. Свободное пространство в капиллярной трубке и в запасном резервуаре заполняется инертным газом или может находиться под вакуумом. Запасной резервуар или выступающая за верхним делением шкалы часть капиллярной трубки служит для предохранения термометра о порчи при чрезмерном перегреве.

В качестве термометрического вещества чаще всего применяют химически чистую ртуть. Она не смачивает стекла и остается жидкой в широком интервале температур. Кроме ртути в качестве термометрического вещества в стеклянных термометрах применяются и другие жидкости, преимущественно органического происхождения. Например: метиловый и этиловый спирт, керосин, пентан, толуол, галлий, амальгама таллия.

Основные достоинства стеклянных жидкостных термометров – простота употребления и достаточно высокая точность измерения даже для термометров серийного изготовления. К недостаткам стеклянных термометров можно отнести: плохую видимость шкалы (если не применять специальной увеличительной оптики) и невозможность автоматической записи показаний, передачи показаний на расстояние и ремонта.

Стеклянные жидкостные термометры имеют весьма широкое применение и выпускаются следующих основных разновидностей:

технические ртутные, с вложенной шкалой, с погружаемой в измеряемую среду нижней частью, прямые и угловые;

лабораторные ртутные, палочные или с вложенной шкалой, погружаемые в измеряемую среду до отсчитываемой температурной отметки, прямые, небольшого наружного диаметра;

жидкостные термометры (не ртутные);

повышенной точности и образцовые ртутные термометры;

электроконтактные ртутные термометры с вложенной шкалой, с впаянными в капиллярную трубку контактами для разрывания (или замыкания) столбиком ртути электрической цепи;

специальные термометры, в том числе максимальные (медицинские и другие), минимальные, метеорологические и другого назначения.

  1. Классификация манометрических термометров расширения и их конструкция.

Манометрические термометры

Действие манометрических термометров основано на использовании зависимости давления вещества при постоянном объеме от температуры. Замкнутая измерительная система манометрического термометра состоит из (рис. 2) из чувствительного элемента, воспринимающего температуру измеряемой среды, - металлического термобаллона 1, рабочего элемента манометра 2, измеряющего давление в системе, длинного соединительного металлического капилляра 3. При изменении температуры измеряемой среды давление в системе изменяется, в результате чего чувствительный элемент перемещает стрелку или перо по шкале манометра, отградуированного в градусах температуры. Манометрические термометры часто используют в системах автоматического регулирования температуры, как бесшкальные устройства информации (датчики).

Манометрические термометры подразделяют на три основных разновидности:

жидкостные, в которых вся измерительная система (термобаллон, манометр и соединительный капилляр) заполнены жидкостью;

конденсационные, в которых термобаллон заполнен частично жидкостью с низкой температурой кипения и частично – ее насыщенными парами, а соединительный капилляр и манометр – насыщенными парами жидкости или, чаще, специальной передаточной жидкостью;

газовые, в которых вся измерительная система заполнена инертным газом.

Достоинствами манометрических термометров являются сравнительная простота конструкции и применения, возможность дистанционного измерения температуры и возможность автоматической записи показаний. К недостаткам манометрических термометров относятся: относительно невысокая точность измерения (класс точности 1.6; 2.5; 4.0 и реже 1.0); небольшое расстояние дистанционной передачи показаний (не более 60 метров) и трудность ремонта при разгерметизации измерительной системы.

Манометрические термометры не имеют большого применения на тепловых электрических станциях. В промышленной теплоэнергетике они встречаются чаще, особенно в случаях, когда по условиям взрыво – или пожаробезопасности нельзя использовать электрические методы дистанционного измерения температуры.

Поверка показаний манометрических термометров производится теми же методами и средствами, что и стеклянных жидкостных.

25.Классификация механических термометров расширения, их устройство и область применения.

Термометры расширения

В эту группу входят жидкостные стеклянные термометры, принцип действия которых основан на тепловом расширении рабочего вещества (жидкости, удельный объем которой зависит от температуры), дилатометрические и биметаллические термометры, принцип действия которых основан на различном удлинении двух твердых тел, имеющих разные температурные коэффициенты линейного расширения.

Жидкостные стеклянные термометры. В них в качестве термометрических (рабочих) веществ применяются ртуть Hg, этиловый спирт С2Н5ОН, толуол С6Н5СН3, пентан С5Н2 и др. Наиболее широкое распространение получили ртутные стеклянные термометры, которые изготовляются двух типов: с вложенной внутренней шкалой и палочные.

Ртутный стеклянный термометр с вложенной внутренней шкалой (рис. 3-1) состоит из наружной оболочки 1, в которой расположены термобаллон с ртутью 4, тонкостенный капилляр 3 и пластинка с нанесенной на ней шкалой 2. Термобаллон припаян к наружной оболочке, закрытой герметически. Ртутный стеклянный палочный термометр состоит из термобаллона, соединенного с толстостенным капилляром. Шкала у этого термометра нанесена на наружной поверхности капилляра в виде насечки по стеклу. Ртутными термометрами измеряют температуру от -30 до + 500.°С. Верхний предел определяется температурой размягчения стеклянной оболочки термометра, нижний- температурой затвердевания ртути (_35 °С). Для повышения температуры кипения ртути пространство над ртутью в капиллярной трубке заполняется инертным газом (азотом) под давлением 1,47-1,96 МПа. Для измерения низких температур (от -190 до +80 °С) предназначены стеклянные термометры с органическими заполнителями. Устройство их аналогично ртутным. Ртутные термометры разделяются по назначению на технические, лабораторные и образцовые. Технические термометры обычно бывают с вложенной шкалой и имеют тонкую прямую или изогнутую под углом 90, 120 или 135° нижнюю часть с баллоном на конце. Разновидностью ртутных технических термометров являются электроконтактные термометры с впаянными в капиллярную трубку контактами для разрывания и замыкания столбиком ртути электрической цепи. Они используются в основном для сигнализации о нарушении заданного температурного режима. Для предохранения технических термометров от повреждения их помещают в специальные металлические защитные оправы или гильзы. Зазор между баллоном и стенкой гильзы заполняется машинным маслом при измерении температуры до 150 °С, а при более высокой температуре - медными опилками. Гильзу делают такой Длины, чтобы чувствительная часть термометра находилась на оси трубопровода. На горизонтальном трубопроводе диаметром менее 200 мм термометр устанавливают наклонно навстречу потоку, а при диаметре более 200 мм - перпендикулярно оси трубы. Жидкостные стеклянные термометры расширения благодаря простоте конструкции, дешевизне, достаточно высокой точности измерения используются лабораторной и производственной практике пищевых производств. К недостаткам приборов относятся плохая наглядность шкалы, хрупкость, невозможность передачи показаний на расстояние, запаздывание показаний вследствие большой тепловой инерции.

http://www.comodity.ru/equipment/7-11.jpgРис. 3-1. Общий вид термометров с вложенной шкалой

Дилатометрические термометры. На рис. 3-2 показан трубчатый дилатометрический термометр, представляющий собой закрытую с одного конца трубку /, внутри которой находится стержень 2, прижимаемый к дну трубки рычагом 3, соединенным с пружиной 4. Трубку изготовляют из материала с большим коэффициентом линейного расширения (меди, алюминия, латуни), а стержень - из материала с малым коэффициентом линейного расширения (кварца, инвара). При погружении термометра в измеряемую среду длина трубки изменяется,

http://www.comodity.ru/equipment/7-12.jpgа стержня остается практически прежней. Это приводит к перемещению конца стержня относительно трубки; стержень же связан посредством рычага 3 с указательной стрелкой прибора (либо с контактным устройством в системах автоматического регулирования температуры).

Биметаллические термометры. Чувствительный элемент этих приборов выполнен в виде плоской или спиральной пружины, которая состоит из двух спаянных металлических полосок. Полоска 3 (рис. 3-3) изготовлена из материала с большим коэффициентом линейного расширения, а полоска 4 - с незначительным. Образованная из этих полосок биметаллическая пластина меняет степень своего изгиба в зависимости от температуры. Биметаллическая пластина соединена посредством рычага / и тяги 2 со стрелкой, которая указывает температуру на шкале прибора. Кроме показывающих, промышленность выпускает бесшкальные биметаллические термометры, использующиеся в основном в качестве электрических преобразователей или температурных реле для позиционного регулирования и сигнализации. Диапазон измерения температуры биметаллическими термометрами от -150 до +700 °С, погрешность 1 - 1,5 %.

  1. Физическая сущность и особенность работы термоэлектрических термометров. Схемы соединения термопар с вторичным прибором. Схемы измерения, преимущества и недостатки.

Термоэлектрический термометр (ТТ) – это измерительный преобразователь, чувствительный элемент которого (термопара) расположен в специальной защитной арматуре, обеспечивающий защиту термоэлектродов от механических повреждений и воздействия измеряемой среды.

Термоэлектрические термометры

Для измерения температуры в металлургии наиболее широкое распространение получили термоэлектрические термометры, работающие в интервале температур от -200 до +2500 0C и выше. Данный тип устройств характеризует высокая точность и надежность, возможность использования в системах автоматического контроля и регулирования параметра, в значительной мере определяющего ход технологического процесса в металлургических агрегатах.

Сущность термоэлектрического метода заключается в возникновении ЭДС в проводнике, концы которого имеют различную температуру. Для того, чтобы измерить возникшую ЭДС, ее сравнивают с ЭДС другого проводника, образующего с первым термоэлектрическую пару AB (рис. 3), в цепи которой потечет ток.

Результирующая термо-ЭДС цепи, состоящей из двух разных проводников A и B (однородных по длине), равна

где   и   - разности потенциалов проводников A и B соответственно при температурах t2 и t1, мВ.

Термо-ЭДС данной пары зависит только от температуры t1 и t2 и не зависит от размеров термоэлектродов (длины, диаметра), величин теплопроводности и удельного электросопротивления.

Для увеличения чувствительности термоэлектрического метода измерения температуры в ряде случаев применяют термобатарею: несколько последовательно включенных термопар, рабочие концы которых находятся при температуре t2, свободные при известной и постоянной температуре t1.

Преимущества термопар

Большой температурный диапазон измерения: от -200 °С до 1800—2200 °С

Простота

Дешевизна

Надежность

11 - Влажные тропические и экваториальные леса - лекция, которая пользуется популярностью у тех, кто читал эту лекцию.

Недостатки

Точность более 1 °С трудно достижима, необходимо использовать термометры сопротивления или термисторы.

На показания влияет температура свободных концов, на которую необходимо вносить поправку. В современных конструкциях измерителей на основе термопар используется измерение температуры блока холодных спаев с помощью встроенного термистора или полупроводникового сенсора и автоматическое введение поправки к измеренной ТЭДС.

Эффект Пельтье (в момент снятия показаний, необходимо исключить протекание тока через термопару, т.к. ток, протекающий через неё, охлаждает горячий спай и разогревает холодный. Зависимость ТЭДС от температуры существенно не линейна. Это создает трудности при разработке вторичных преобразователей сигнала.

возникновение термоэлектрической неоднородности в результате резких перепадов температур, механических напряжений, коррозии и химических процессов в проводниках приводит к изменению градуировочной характеристики и погрешностям до 5 К.

на большой длине термопарных и удлинительных проводов может возникать эффект «антенны» для существующих электромагнитных полей.

Свежие статьи
Популярно сейчас
А знаете ли Вы, что из года в год задания практически не меняются? Математика, преподаваемая в учебных заведениях, никак не менялась минимум 30 лет. Найдите нужный учебный материал на СтудИзбе!
Ответы на популярные вопросы
Да! Наши авторы собирают и выкладывают те работы, которые сдаются в Вашем учебном заведении ежегодно и уже проверены преподавателями.
Да! У нас любой человек может выложить любую учебную работу и зарабатывать на её продажах! Но каждый учебный материал публикуется только после тщательной проверки администрацией.
Вернём деньги! А если быть более точными, то автору даётся немного времени на исправление, а если не исправит или выйдет время, то вернём деньги в полном объёме!
Да! На равне с готовыми студенческими работами у нас продаются услуги. Цены на услуги видны сразу, то есть Вам нужно только указать параметры и сразу можно оплачивать.
Отзывы студентов
Ставлю 10/10
Все нравится, очень удобный сайт, помогает в учебе. Кроме этого, можно заработать самому, выставляя готовые учебные материалы на продажу здесь. Рейтинги и отзывы на преподавателей очень помогают сориентироваться в начале нового семестра. Спасибо за такую функцию. Ставлю максимальную оценку.
Лучшая платформа для успешной сдачи сессии
Познакомился со СтудИзбой благодаря своему другу, очень нравится интерфейс, количество доступных файлов, цена, в общем, все прекрасно. Даже сам продаю какие-то свои работы.
Студизба ван лав ❤
Очень офигенный сайт для студентов. Много полезных учебных материалов. Пользуюсь студизбой с октября 2021 года. Серьёзных нареканий нет. Хотелось бы, что бы ввели подписочную модель и сделали материалы дешевле 300 рублей в рамках подписки бесплатными.
Отличный сайт
Лично меня всё устраивает - и покупка, и продажа; и цены, и возможность предпросмотра куска файла, и обилие бесплатных файлов (в подборках по авторам, читай, ВУЗам и факультетам). Есть определённые баги, но всё решаемо, да и администраторы реагируют в течение суток.
Маленький отзыв о большом помощнике!
Студизба спасает в те моменты, когда сроки горят, а работ накопилось достаточно. Довольно удобный сайт с простой навигацией и огромным количеством материалов.
Студ. Изба как крупнейший сборник работ для студентов
Тут дофига бывает всего полезного. Печально, что бывают предметы по которым даже одного бесплатного решения нет, но это скорее вопрос к студентам. В остальном всё здорово.
Спасательный островок
Если уже не успеваешь разобраться или застрял на каком-то задание поможет тебе быстро и недорого решить твою проблему.
Всё и так отлично
Всё очень удобно. Особенно круто, что есть система бонусов и можно выводить остатки денег. Очень много качественных бесплатных файлов.
Отзыв о системе "Студизба"
Отличная платформа для распространения работ, востребованных студентами. Хорошо налаженная и качественная работа сайта, огромная база заданий и аудитория.
Отличный помощник
Отличный сайт с кучей полезных файлов, позволяющий найти много методичек / учебников / отзывов о вузах и преподователях.
Отлично помогает студентам в любой момент для решения трудных и незамедлительных задач
Хотелось бы больше конкретной информации о преподавателях. А так в принципе хороший сайт, всегда им пользуюсь и ни разу не было желания прекратить. Хороший сайт для помощи студентам, удобный и приятный интерфейс. Из недостатков можно выделить только отсутствия небольшого количества файлов.
Спасибо за шикарный сайт
Великолепный сайт на котором студент за не большие деньги может найти помощь с дз, проектами курсовыми, лабораторными, а также узнать отзывы на преподавателей и бесплатно скачать пособия.
Популярные преподаватели
Нашёл ошибку?
Или хочешь предложить что-то улучшить на этой странице? Напиши об этом и получи бонус!
Бонус рассчитывается индивидуально в каждом случае и может быть в виде баллов или бесплатной услуги от студизбы.
Предложить исправление
Добавляйте материалы
и зарабатывайте!
Продажи идут автоматически
5138
Авторов
на СтудИзбе
441
Средний доход
с одного платного файла
Обучение Подробнее