Лекция 3. Линейн. регресс. Метод наименьших квадратов_ макс правдоподобия_ Одномерн модель_ .. (1185305)
Текст из файла
Содержание лекцииЛинейная регрессияРаспространённым средством решения задач прогнозированиянепрерывной величины Y по переменным X1 , . . . , Xn являетсяиспользование метода множественной линейной регрессии. В данномметоде связь переменной Y с переменными X1 , . . .
, Xn задаётся спомощью линейной моделиY = β0 + β1 X1 + . . . + βn Xn + ε,(1)где β0 , β1 , . . . , βn - вещественные регрессионные коэффициенты, ε случайная величина, являющаяся ошибкой прогнозирования.Регрессионные коэффициенты ищутся по обучающей выборкеS̃t = {s1 = (y1 , x1 ), . . . , sm = (ym , xm )},(2)где xj = (xj1 , . . . , xjn ) вектор значений переменных X1 , . . . , Xn дляобъекта sj .Сенько Олег Валентинович ()ММО - Регрессия3 / 13Линейная регрессия. Метод наименьших квадратовТрадиционным способом поиска регрессионных коэффициентовявляется метод наименьших квадратов (МНК). МНК заключается вминимизации функционала эмпирического риска с квадратичнымипотерямиQ(S̃t , β0 , β1 , . . .
, βn ) =m∑[yj − β0 −j=1n∑xi βij ]2(3)i=1То есть оценки β̂0 , β̂1 , . . . , β̂n регрессионных коэффициентовβ0 , β1 , . . . , βn по методу МНК удовлетворяют условию минимумафункционала эмпирического риска с квадратичными потерями(β̂0 , . . . , β̂n ) = arg min[Q(S̃t , β0 , β1 , . .
. , βn )].Сенько Олег Валентинович ()ММО - Регрессия(4)4 / 13Линейная регрессия. Метод наименьших квадратовПредположим взаимосвязь между величиной Y и переменнымиX1 , . . . , Xn описывается выражениемY = β0 + β1 X1 + . . . + βn Xn + εN (0, σ)(5)Где ошибка εN (0, σ) распределена нормально, При ‘этом дисперсияошибки σ 2 не зависит от X1 , . . . , Xn , а математическое ожиданиеошибки равно 0 при произвольных значениях прогностическихпеременных: EΩ (εN | x) = 0, EΩ (ε2N | x) = σ 2 при произвольномдопустимом векторе x.
В этом случае метод МНК тождественен болееобщему статистическому методу оценивания параметровстатистических распределений – Методу максимальногоправдоподобия (ММП).Сенько Олег Валентинович ()ММО - Регрессия5 / 13Линейная регрессия. Метод максимального правдоподобияМетод максимального правдоподобия. Предположим, что некотороепространство событий с заданной на нём вероятностной мерой Pхарактеризуется переменными Z1 , . .
. , Zd . Метод ММП позволяетвосстанавливать плотность распределения вероятностей по случайнымвыборкам, если общий вид плотности вероятностного распределенияизвестен. Пусть плотность распределения принадлежит семействуфункций, задаваемому вектором параметров θ1 , . . . , θr , принимающемeзначения из множества Θ:e{p(Z1 , .
. . , Zd , θ1 , . . . , θr ) | θ ∈ Θ}.Предположим, что у нас имеется случайная выборка объектов,описываемых векторами z 1 , . . . , z m переменных Z1 , . . . , Zd .Сенько Олег Валентинович ()ММО - Регрессия6 / 13Линейная регрессия. Метод максимального правдоподобия.Напомним, что метод МП заключается в выборе в семействеe{p(Z1 , . . . , Zd , θ1 , . .
. , θr ) | θ ∈ Θ}плотности,для которой достигает максимума функция правдоподобияL(z 1 , . . . , z m , θ1 , . . . , θr ) =m∏p(z j , θ).(6)j=1Иными словами оценка θ̂ вектора параметров θ = (θ1 , . . . , θr )вычисляется какθ̂ = arg max[L(z 1 , . . . , z m , θ1 , . . . , θr )].eθ∈Θ(7)Попытаемся вычислить значения параметров (β0 , β1 , . . . , βn ) исходя изпредположения (5). Согласно (5) разность Y − β0 − β1 X1 − . .
. − βn Xngодчиняется нормальному распределению с нулевым математическиможиданием и дисперсией σ 2 .Сенько Олег Валентинович ()ММО - Регрессия7 / 13Линейная регрессия. Связь между МНК и ММП.Плотность распределения в пространстве переменных Y, X1 , . . . , Xnможет быть восстановлена по обучающей выборкеS̃t = {(y1 , x1 ), . . . , (ym , xm )}, путём максимизации функцииправдоподобия∑−(yj − β0 − ni=1 βi xji )21√L(S̃t , β0 , . .
. , βn ) =exp2σ 2(2πσ)j=1m∏(8)Очевидно, точка экстремума функции правдоподобия L(S̃t , β0 , . . . , βn )совпадает с точкой экстремума функцииln[L(S̃t , β0 , . . . , βn )] = −nm∑∑11βi xji )2 ][ ln 2π + ln σ + 2 (yj − β0 −22σi=1j=1(9)Сенько Олег Валентинович ()ММО - Регрессия8 / 13Линейная регрессия. Связь между МНК и ММП.Однако точка максимума ln[L(S̃t , β0 , . . . , βn )] совпадает с точкойминимума функции Q(S̃t , β0 , β1 , . .
. , βn ) , оптимизируемой в методеМНК, что позволяет сделать вывод о эквивалентности ММП и МНКСенько Олег Валентинович ()ММО - Регрессия9 / 13Линейная регрессия. Одномерная модель.Рассмотрим простейший вариант линейной регрессии, описывающейсвязь между переменной Y и единственной переменной X :Y = β0 + β1 X + ε. Функционал эмпирического риска на выборкеS̃t = {(y1 , x1 ), . . . , (ym , xm )} принимает вид1 ∑[yj − β0 − xj β1 ]2 .Q(S̃t , β0 , β1 ) =mm(10)j=1Необходимым условием минимума функционала Q(S̃t , β0 , β1 ) являетсявыполнение системы из двух уравненийmm∂Q(S̃t , β0 , β1 )2 ∑2β1 ∑=−yj + 2β0 +xj = 0∂β0mmj=1(11)j=1mmm∂Q(S̃t , β0 , β1 )2 ∑2β0 ∑2β1 ∑ 2=−xj yj +xj +xj = 0∂β1mmmj=1Сенько Олег Валентинович ()ММО - Регрессияj=1j=110 / 13Линейная регрессия.
Одномерная модель.Оценки β̂0 , β̂1 являются решением системы (11) относительнопараметров соответственно β0 , β1 . Оценки регрессионныхкоэффициентов могут быть записаны в виде∑m∑m1 ∑mj=1 xj yj − mj=1 yjj=1 xjβ̂1 =,∑m 21 ∑m2j=1 xj − m ( j=1 xj )(12)β̂0 = y − βˆ1 x1 ∑m1 ∑m, где y = mj=1 yj , x = mj=1 xj . Выражение для β̂1 может бытьпереписано в видеCov(Y, X | S̃t )β̂1 =,(13)D(X | S̃tгде Cov(Y, X | S̃t ) является выборочной ковариацией переменных Y иX, D(X | S̃t ) является выборочной дисперсией переменной X.Сенько Олег Валентинович ()ММО - Регрессия11 / 13Одномерная регрессияТо есть1 ∑(yj − y)(xj − x)mmCov(Y, X | S̃t ) =j=11 ∑(xj − x)2mmD(X | S̃t ) =j=1Сенько Олег Валентинович ()ММО - Регрессия12 / 13Многомерная регрессияПри вычислении оценки вектора параметров β = (β0 , .
. . , βn ) в случаемногомерной линейной регрессии удобно использовать матрицу планаX размера m × (n + 1) , которая строится по обучающей выборке S̃t .Матрицаплана имеет вид 1 x11 . . . x1n. . . . . . . . . . . . .1x...xX =j1jn. . . . . . . . . . . . 1 xm1 . . . xmnТо есть j-я строка матрицы плана представляет собой вектор значенийпеременных X1 , . .
. , Xn для объекта sj c одной добавленной слевакомпонентой, содержащей 1.Сенько Олег Валентинович ()ММО - Регрессия13 / 13Многомерная регрессияПусть y = (y1 , . . . , ym ) - вектор значений переменной Y . Связь Y спеременными X1 , . . . , Xn на объектах обучающей выборки может бытьописана с помощью матричного уравненияy = βXt + ε,где ε = (ε1 , . . . , εm ) - вектор ошибок прогнозирования для объектовS̃t . Функционал Q(S̃t , β0 , β1 , . . . , βn ) может быть записан в видеQ(S̃t , β0 , β1 , . .
. , βn ) =m∑[yj − β0 −j=1n∑βi x̆ji ]2 ,(14)i=1где x̆ji - элементы матрицы плана X , определяемые равенствамиx̆j1 = 1 , x̆ji = xj(i−1) при i > 1 .Сенько Олег Валентинович ()ММО - Регрессия14 / 13Многомерная регрессияНеобходимым условием минимума функционала Q(S̃t , β0 , β1 , . . . , βn )является выполнение системы из n + 1 уравненийmm n+1∑∑∂Q(S̃t , β0 , . . . , βn )2 ∑=− [yj x̆j1 −βi x̆ji x̆j1 ] = 0∂β0mj=1(15)j=1 i=1...,...,...,...,...,...,...,...m n+1m∑∑∂Q(S̃t , β0 , . . .
, βn )2 ∑βi x̆ji x̆jm ] = 0=− [yj x̆jn −∂βnmj=1j=1 i=1Вектор оценок значений регрессионных коэффициентов β̂0 , . . . , β̂nявляется решением системы уравнений (15) .Сенько Олег Валентинович ()ММО - Регрессия15 / 13Многомерная регрессияВ матричной форме система (15) может быть записана в виде−2Xt y t + 2Xt Xβ t = 0(16)Решение системы (16) существует, если det(Xt X) ̸= 0 . В этом случаедля Xt X существует обратная матрица и решение (16) относительновектора β может быть записано в виде:β̂ t = (Xt X)−1 Xt y t .(17)Из теории матриц следует, что det(Xt X) = 0 если ранг матрицы X построкам менее (n + 1) , что происходит, если m-мерный векторзначений одной из переменных Xi′ ∈ {X1 , .
. . , Xn } на выборке S̃tявляется линейной комбинаций m-мерных векторов значений на S̃tдругих переменных из {X1 , . . . , Xn }.Сенько Олег Валентинович ()ММО - Регрессия16 / 13Многомерная регрессияПри сильной коррелированности одной из переменныхXi′ ∈ {X1 , . . .
, Xn } на выборке с какой-либо линейной комбинациейдругих переменных значение det(Xt X) оказывается близким к 0. Приэтом вычисленный вектор оценок β̂ t может сильно изменяться приотносительно небольших чисто случайных изменениях вектораy = (y1 , . . . , ym ) . Данное явление называетсямультиколлинеарностью. Оценивание регрессионных коэффициентов сиспользованием МНК при наличии мультиколлинеарности оказываетсянеустойчивым. Отметим также, что det(Xt X) = 0 приn + 1 > m.Поэтому МНК не может использоваться для оцениваниярегрессионных коэффициентов, когда число переменных превышаетчисло объектов в обучающей выборке. На практике высокаяустойчивость достигается только, когда число объектов в выборках покрайней мере в 3-5 раз превышает число переменных.Сенько Олег Валентинович ()ММО - Регрессия17 / 13Свойства оптимальных регрессийРассмотрим свойства линейных регрессий, минимизирующих квадратошибки на пространстве событий Ω .
Характеристики
Тип файла PDF
PDF-формат наиболее широко используется для просмотра любого типа файлов на любом устройстве. В него можно сохранить документ, таблицы, презентацию, текст, чертежи, вычисления, графики и всё остальное, что можно показать на экране любого устройства. Именно его лучше всего использовать для печати.
Например, если Вам нужно распечатать чертёж из автокада, Вы сохраните чертёж на флешку, но будет ли автокад в пункте печати? А если будет, то нужная версия с нужными библиотеками? Именно для этого и нужен формат PDF - в нём точно будет показано верно вне зависимости от того, в какой программе создали PDF-файл и есть ли нужная программа для его просмотра.