Главная » Все файлы » Просмотр файлов из архивов » PDF-файлы » Лекция 5. Полнота табличного вывода. Теорема Левенгейма-Сколема...

Лекция 5. Полнота табличного вывода. Теорема Левенгейма-Сколема... (Лекции 2014), страница 2

PDF-файл Лекция 5. Полнота табличного вывода. Теорема Левенгейма-Сколема... (Лекции 2014), страница 2 Математическая логика и логическое программирование (53814): Лекции - 8 семестрЛекция 5. Полнота табличного вывода. Теорема Левенгейма-Сколема... (Лекции 2014) - PDF, страница 2 (53814) - СтудИзба2019-09-19СтудИзба

Описание файла

Файл "Лекция 5. Полнота табличного вывода. Теорема Левенгейма-Сколема..." внутри архива находится в папке "Лекции 2014". PDF-файл из архива "Лекции 2014", который расположен в категории "". Всё это находится в предмете "математическая логика и логическое программирование" из 8 семестр, которые можно найти в файловом архиве МГУ им. Ломоносова. Не смотря на прямую связь этого архива с МГУ им. Ломоносова, его также можно найти и в других разделах. .

Просмотр PDF-файла онлайн

Текст 2 страницы из PDF

т. д.ПОЛНОТА ТАБЛИЧНОГО ВЫВОДА4). В случае применения к таблице T правил (L∀) и (R∃) вкачестве подстановочных термов используются всеконстанты из списка LT .ПОЛНОТА ТАБЛИЧНОГО ВЫВОДА4). В случае применения к таблице T правил (L∀) и (R∃) вкачестве подстановочных термов используются всеконстанты из списка LT .T0 = h ∀xϕ(x), Γ | ∃y χ(y ), ∆ i,L0 = {c1 , c2 }ПОЛНОТА ТАБЛИЧНОГО ВЫВОДА4). В случае применения к таблице T правил (L∀) и (R∃) вкачестве подстановочных термов используются всеконстанты из списка LT .T0 = h ∀xϕ(x), Γ | ∃y χ(y ), ∆ i,L0 = {c1 , c2 }ПОЛНОТА ТАБЛИЧНОГО ВЫВОДА4). В случае применения к таблице T правил (L∀) и (R∃) вкачестве подстановочных термов используются всеконстанты из списка LT .T0 = h ∀xϕ(x), Γ | ∃y χ(y ), ∆ i,(L∀)?L0 = {c1 , c2 }T1 = h Γ, ∀xϕ(x), ϕ(c1 ), ϕ(c2 ) | ∃y χ(y ), ∆ i,L1 = {c1 , c2 }ПОЛНОТА ТАБЛИЧНОГО ВЫВОДА4).

В случае применения к таблице T правил (L∀) и (R∃) вкачестве подстановочных термов используются всеконстанты из списка LT .T0 = h ∀xϕ(x), Γ | ∃y χ(y ), ∆ i,(L∀)?L0 = {c1 , c2 }T1 = h Γ, ∀xϕ(x), ϕ(c1 ), ϕ(c2 ) | ∃y χ(y ), ∆ i,L1 = {c1 , c2 }ПОЛНОТА ТАБЛИЧНОГО ВЫВОДА4). В случае применения к таблице T правил (L∀) и (R∃) вкачестве подстановочных термов используются всеконстанты из списка LT .T0 = h ∀xϕ(x), Γ | ∃y χ(y ), ∆ i,(L∀)?L0 = {c1 , c2 }T1 = h Γ, ∀xϕ(x), ϕ(c1 ), ϕ(c2 ) | ∃y χ(y ), ∆ i,(R∃)L1 = {c1 , c2 }?T2 = h Γ, ∀xϕ(x), ϕ(c1 ), ϕ(c2 ) | ∆, ∃xχ(x), χ(c1 ), χ(c2 ) i,L2 = {c1 , c2 }ПОЛНОТА ТАБЛИЧНОГО ВЫВОДА4).

В случае применения к таблице T правил (L∀) и (R∃) вкачестве подстановочных термов используются всеконстанты из списка LT .T0 = h ∀xϕ(x), Γ | ∃y χ(y ), ∆ i,(L∀)?L0 = {c1 , c2 }T1 = h Γ, ∀xϕ(x), ϕ(c1 ), ϕ(c2 ) | ∃y χ(y ), ∆ i,(R∃)L1 = {c1 , c2 }?T2 = h Γ, ∀xϕ(x), ϕ(c1 ), ϕ(c2 ) | ∆, ∃xχ(x), χ(c1 ), χ(c2 ) i,L2 = {c1 , c2 }ПОЛНОТА ТАБЛИЧНОГО ВЫВОДА4). В случае применения к таблице T правил (L∀) и (R∃) вкачестве подстановочных термов используются всеконстанты из списка LT .T0 = h ∀xϕ(x), Γ | ∃y χ(y ), ∆ i,(L∀)?L0 = {c1 , c2 }T1 = h Γ, ∀xϕ(x), ϕ(c1 ), ϕ(c2 ) | ∃y χ(y ), ∆ i,(R∃)L1 = {c1 , c2 }?T2 = h Γ, ∀xϕ(x), ϕ(c1 ), ϕ(c2 ) | ∆, ∃xχ(x), χ(c1 ), χ(c2 ) i,L2 = {c1 , c2 }и.

т. д.ПОЛНОТА ТАБЛИЧНОГО ВЫВОДАПредположим, что указанная стратегия не приводит кпостроению успешного вывода для невыполнимой таблицыT0 = h Γ0 | ∆0 i. Тогда в дереве вывода либо существуетбесконечная ветвь, не содержащая закрытых таблицT0 −→ T1 −→ T2 −→ . . . −→ Tn −→ Tn+1 −→ . .

.либо существует ветвь, оканчивающаяся незакрытой атомарнойтаблицейT0 −→ T1 −→ T2 −→ . . . −→ Tatom −→ Tatom −→ Tatom −→ . . .Будем полагать, что в последнем случае последовательностьтаблиц также бесконечна.ПОЛНОТА ТАБЛИЧНОГО ВЫВОДАНа основе бесконечной последовательности незакрытых таблицT0 , T1 , . .

. , Tn , Tn+1 , . . . , каждая из которых имеет видTn = h Γn | ∆n i построим три множества:∞S1). Γω =Γiмножество всех формул из левых частейтаблиц,∆iмножество всех формул из правых частейтаблиц,LTiмножество всех констант из списков констант, ассоциированных с таблицами избесконечной ветви.i=02). ∆ω =∞Si=03). Lω =∞Si=0Используя множества Γω , ∆ω , Lω , построим интерпретацию Iω ,в которой будет выполняться каждая таблицапоследовательности.ПОЛНОТА ТАБЛИЧНОГО ВЫВОДАIω = hDI , Const, PrediDI = Lωпредметная область состоит из всех константных символов,входящих в состав формул из Γω и ∆ω ,Const : Const → Lωзначением c каждой константы c (как символа из алфавита)является ее собственное изображение c ( как элементмножества Lω ), т.

е. c = c,Pred : Pred → (Lω n → {true, false})для каждого предикатного символа P (n) и набора элементовci1 , . . . , cin из LωP(ci1 , . . . , cin ) = true ⇐⇒ P(ci1 , . . . , cin ) ∈ Γω .ПОЛНОТА ТАБЛИЧНОГО ВЫВОДАПокажем, чтолюбая формула ϕ, ϕ ∈ Γω , выполнима в интерпретации Iω ,любая формула ψ, ψ ∈ ∆ω , невыполнима в интерпретации Iω .Доказательство проведем при помощи индукции по числулогических операций (связок и кванторов) в формуле.ПОЛНОТА ТАБЛИЧНОГО ВЫВОДАБазис индукцииϕ, ψ — атомарные формулы.Во всех таблицах Ti содержатся только замкнутые формулы(почему ? ).Поэтому формулы ϕ, ψ имеют вид P(ci1 , . . . , cin ).Если ϕ ∈ Γω , то P(ci1 , .

. . , cin ) = true, и поэтому Iω |= ϕ.Если ψ ∈ ∆ω , то ψ 6∈ Γω (почему ? ).Значит, P(ci1 , . . . , cin ) = false, и поэтому Iω 6|= ψ.ПОЛНОТА ТАБЛИЧНОГО ВЫВОДАИндуктивный переходПредположим, что утверждение верно для всех формул,имеющих не более n связок и кванторов. Рассмотрим формулыϕ, ψ, содержащие n + 1 связку и квантор.Если ϕ = ϕ1 → ϕ2 ∈ Γω , то есть такая таблица Ti = hΓi |∆i i,что ϕ1 → ϕ2 ∈ Γi .Согласно описанию применяемой стратегии построениятабличного вывода, существует такая таблица Tj = hΓj |∆j i,j ≥ i, что ϕ1 → ϕ2 — первая формула в списке формул Γj .Поэтому либо ϕ1 ∈ ∆j+1 , либо ϕ2 ∈ Γj+1 .В первом случае, согласно индуктивному предполжению,Iω 6|= ϕ1 , и поэтому Iω |= ϕ.Во втором случае, согласно индуктивному предполжению,Iω |= ϕ2 , и поэтому Iω |= ϕ.Итак, в обоих случаях получаем Iω |= ϕ1 → ϕ2 .ПОЛНОТА ТАБЛИЧНОГО ВЫВОДАИндуктивный переходАналогичные рассуждения применимы и для других связок.ПОЛНОТА ТАБЛИЧНОГО ВЫВОДАИндуктивный переходЕсли ϕ = ∀xϕ1 (x) ∈ Γω , то формула ∀xϕ1 (x) бесконечно частовстречается в левых частях таблиц Ti = hΓi |∆i i (почему ? ).Поэтому правило (L∀) применяется к формуле ∀xϕ1 (x)бесконечно часто.Тогда, согласно описанию применяемой стратегии построениятабличного вывода, для любой константы c, c ∈ Lω ,существует такая таблица Tj = hΓj |∆j i, что ϕ1 (c) ∈ Γj .Значит, согласно индуктивному предполжению, Iω |= ϕ1 (c) длялюбой константы c, c ∈ Lω .Так как DI = Lω , приходим к заключению о том, чтоIω |= ∀xϕ1 (x).ПОЛНОТА ТАБЛИЧНОГО ВЫВОДАИндуктивный переходЕсли ϕ = ∀xϕ1 (x) ∈ ∆ω , то есть такая таблица Ti = hΓi |∆i i,что ∀xϕ1 (x) ∈ ∆i .Согласно описанию применяемой стратегии построениятабличного вывода, существует такая таблица Tj = hΓj |∆j i,j ≥ i, что ∀xϕ1 (x) — первая формула в списке формул ∆j .Поэтому существует такая константа c, c ∈ Lω , чтоϕ1 (c) ∈ ∆j+1 .Согласно индуктивному предполжению, это означает, чтоIω 6|= ϕ1 (c), и поэтому Iω 6|= ∀xϕ1 (x).Аналогичные рассуждения применимы и для формул сквантором ∃.ПОЛНОТА ТАБЛИЧНОГО ВЫВОДАТаким образом,любая формула ϕ, ϕ ∈ Γω , выполнима в интерпретации Iω ,любая формула ψ, ψ ∈ ∆ω , невыполнима в интерпретации Iω .Поскольку, Γ0 ⊆ Γω и ∆0 ⊆ ∆ω , приходим к заключению о том,чтоIω |= Γ0 , Iω 6|= ∆0 .Это означает, что таблица T0 выполнима в интерпретации Iωвопреки условию о невыполнимости T0 .Источник полученного противоречия — предположение оневозможности построить успешный вывод, руководствуясьописанной стратегией.

Значит, предложенная стратегияпозволяет построить успешный вывод для всякойневыполнимой таблицы.ПОЛНОТА ТАБЛИЧНОГО ВЫВОДАЭто было упрощенное доказательство теоремы полноты.А насколько существенны те упрощения, которые былиобъявлены в начале доказательства? А именно,IКакие изменения нужно внести в структуру данных,представляющих таблицы, чтобы доказательство можнобыло распространить и на таблицы, содержащиебесконечные множества формул?IКакие изменения нужно внести в стратегию построениятабличного вывода, чтобы построить успешный вывод дляневыполнимой таблицы, формулы которой содержатсложные термы?IКакие изменения нужно внести в определениеинтерпретации Iω , чтобы доказательство можно былоприменить к таблицам, содержащим незамкнутыеформулы?ПОЛНОТА ТАБЛИЧНОГО ВЫВОДАТеорема Геделя (о полноте)Если формула ϕ общезначима, то существует успешныйтабличный вывод для таблицу Tϕ = h∅|ϕi.ДоказательствоСледует из теоремы полноты.Итак, формула ϕ общезначима⇐⇒для таблицы Tϕ существует успешный вывод.И в доказательстве теоремы полноты показано, как построитьэтот вывод.ТЕОРЕМА ЛЕВЕНГЕЙМА-СКОЛЕМАТеоремаФормула ϕ выполнима ⇐⇒ ϕ имеет модель сконечной или счетно-бесконечной предметной областью.ДоказательствоЕсли ϕ выполнима, то для таблицы Tϕ∗ = hϕ|∅i нельзяпостроить успешный вывод.

Применим стратегию издоказательства теоремы полноты. Т. к. Tϕ∗ выполнима,получим дерево с ветвью, в которой нет закрытых таблиц.Tϕ∗ = T0 −→ T1 −→ T2 −→ . . . −→ Tn −→ Tn+1 −→ . . .Для этой ветви построим интерпретацию Iω , в которойIDi = Lω = {c1 , c2 , . . . } — конечное или счетно-бесконечноемножество констант из таблиц последовательности;Iвыполнимы все таблицы Ti (в т.ч. и Tϕ∗ ).ТЕОРЕМА КОМПАКТНОСТИ МАЛЬЦЕВАТеоремаΓ |= ϕ ⇐⇒существует такое конечное подмножество Γ0 , Γ0 ⊆ Γ, что Γ0 |= ϕ.Доказательство1. Γ |= ϕ ⇐⇒ таблица T = hΓ|ϕi невыполнима (почему? )2. Таблица T = hΓ|ϕi невыполнима ⇐⇒ cуществуетуспешный вывод для T (почему? )3.

успешный вывод — это конечное дерево, и поэтомусуществует лишь конечое множество формул Γ0 , Γ0 ⊆ Γ,к которым применяются правила вывода.4. Но тогда для таблицы T = hΓ0 |ϕi cуществует точно такойже успешный вывод.5. Значит, Γ0 |= ϕ.АВТОМАТИЧЕСКОЕ ДОКАЗАТЕЛЬСТВОТЕОРЕМСтратегия построения табличного вывода, использованная вдоказательстве теоремы полноты — это алгоритм построениядоказательства истинности утверждений, выраженныхформулами логики предикатов.Автоматические системы построения доказательств(логических выводов) называются пруверами . От пруверовтребуются следующие качества:Iкорректность (абсолютно необходимо)Iполнота (очень-очень желательно)Iэффективность (желательно)Первый прувер (крайне неэффективный) был разработан в1957 в США (Newell, Simon, Show)АВТОМАТИЧЕСКОЕ ДОКАЗАТЕЛЬСТВОТЕОРЕМОбщая схема прувера'$'Формулы,Правилатаблицывывода,ϕ1'ϕknпрувера Π16%ΠNϕm-ϕ&ЯдроΠ2...-?&$%$&%АВТОМАТИЧЕСКОЕ ДОКАЗАТЕЛЬСТВОТЕОРЕМНаш прувер (табличный вывод) корректен и полон.

Нонасколько он эффективен?В алгоритме построения дерева табличного выводаприменяется двойной переборный поиск:Iвыбор формулы , к которой нужно применить правиловвода,Iвыбор правила , которое нужно применять к формуле.АВТОМАТИЧЕСКОЕ ДОКАЗАТЕЛЬСТВОТЕОРЕМВыбор формулыТрудно избежать перебора всех формул таблицы.База знанийВ огороде бузина.Растет(бузина, огород)ЗапросВ Киеве дядька.∃y (Дядька(y )&Живет(y , Киев))АВТОМАТИЧЕСКОЕ ДОКАЗАТЕЛЬСТВОТЕОРЕМВыбор формулыТрудно избежать перебора всех формул таблицы.База знанийВ огороде бузина.Растет(бузина, огород)Все в огороде посадил дядька.∀x(Растет(x, огород) →∃y (Посадил(y , x)&Дядька(y )));ЗапросВ Киеве дядька.∃y (Дядька(y )&Живет(y , Киев))АВТОМАТИЧЕСКОЕ ДОКАЗАТЕЛЬСТВОТЕОРЕМВыбор формулыТрудно избежать перебора всех формул таблицы.База знанийВ огороде бузина.Растет(бузина, огород)Все в огороде посадил дядька.∀x(Растет(x, огород) →∃y (Посадил(y , x)&Дядька(y )));Бузину посадил киевлянин.∀x(Посадил(x, бузина) →Живет(x, Киев));ЗапросВ Киеве дядька.∃y (Дядька(y )&Живет(y , Киев))АВТОМАТИЧЕСКОЕ ДОКАЗАТЕЛЬСТВОТЕОРЕМНаиболее критичный этап потроения табличного вывода —выбор нужного правила.

Свежие статьи
Популярно сейчас
Как Вы думаете, сколько людей до Вас делали точно такое же задание? 99% студентов выполняют точно такие же задания, как и их предшественники год назад. Найдите нужный учебный материал на СтудИзбе!
Ответы на популярные вопросы
Да! Наши авторы собирают и выкладывают те работы, которые сдаются в Вашем учебном заведении ежегодно и уже проверены преподавателями.
Да! У нас любой человек может выложить любую учебную работу и зарабатывать на её продажах! Но каждый учебный материал публикуется только после тщательной проверки администрацией.
Вернём деньги! А если быть более точными, то автору даётся немного времени на исправление, а если не исправит или выйдет время, то вернём деньги в полном объёме!
Да! На равне с готовыми студенческими работами у нас продаются услуги. Цены на услуги видны сразу, то есть Вам нужно только указать параметры и сразу можно оплачивать.
Отзывы студентов
Ставлю 10/10
Все нравится, очень удобный сайт, помогает в учебе. Кроме этого, можно заработать самому, выставляя готовые учебные материалы на продажу здесь. Рейтинги и отзывы на преподавателей очень помогают сориентироваться в начале нового семестра. Спасибо за такую функцию. Ставлю максимальную оценку.
Лучшая платформа для успешной сдачи сессии
Познакомился со СтудИзбой благодаря своему другу, очень нравится интерфейс, количество доступных файлов, цена, в общем, все прекрасно. Даже сам продаю какие-то свои работы.
Студизба ван лав ❤
Очень офигенный сайт для студентов. Много полезных учебных материалов. Пользуюсь студизбой с октября 2021 года. Серьёзных нареканий нет. Хотелось бы, что бы ввели подписочную модель и сделали материалы дешевле 300 рублей в рамках подписки бесплатными.
Отличный сайт
Лично меня всё устраивает - и покупка, и продажа; и цены, и возможность предпросмотра куска файла, и обилие бесплатных файлов (в подборках по авторам, читай, ВУЗам и факультетам). Есть определённые баги, но всё решаемо, да и администраторы реагируют в течение суток.
Маленький отзыв о большом помощнике!
Студизба спасает в те моменты, когда сроки горят, а работ накопилось достаточно. Довольно удобный сайт с простой навигацией и огромным количеством материалов.
Студ. Изба как крупнейший сборник работ для студентов
Тут дофига бывает всего полезного. Печально, что бывают предметы по которым даже одного бесплатного решения нет, но это скорее вопрос к студентам. В остальном всё здорово.
Спасательный островок
Если уже не успеваешь разобраться или застрял на каком-то задание поможет тебе быстро и недорого решить твою проблему.
Всё и так отлично
Всё очень удобно. Особенно круто, что есть система бонусов и можно выводить остатки денег. Очень много качественных бесплатных файлов.
Отзыв о системе "Студизба"
Отличная платформа для распространения работ, востребованных студентами. Хорошо налаженная и качественная работа сайта, огромная база заданий и аудитория.
Отличный помощник
Отличный сайт с кучей полезных файлов, позволяющий найти много методичек / учебников / отзывов о вузах и преподователях.
Отлично помогает студентам в любой момент для решения трудных и незамедлительных задач
Хотелось бы больше конкретной информации о преподавателях. А так в принципе хороший сайт, всегда им пользуюсь и ни разу не было желания прекратить. Хороший сайт для помощи студентам, удобный и приятный интерфейс. Из недостатков можно выделить только отсутствия небольшого количества файлов.
Спасибо за шикарный сайт
Великолепный сайт на котором студент за не большие деньги может найти помощь с дз, проектами курсовыми, лабораторными, а также узнать отзывы на преподавателей и бесплатно скачать пособия.
Популярные преподаватели
Добавляйте материалы
и зарабатывайте!
Продажи идут автоматически
5288
Авторов
на СтудИзбе
417
Средний доход
с одного платного файла
Обучение Подробнее