Главная » Все файлы » Просмотр файлов из архивов » Документы » Напалков А.В., Прагина Л.Л. - Мозг человека и искуссвенный интеллект

Напалков А.В., Прагина Л.Л. - Мозг человека и искуссвенный интеллект, страница 3

2017-12-26СтудИзба

Описание файла

Документ из архива "Напалков А.В., Прагина Л.Л. - Мозг человека и искуссвенный интеллект", который расположен в категории "". Всё это находится в предмете "интеллектуальные системы" из 8 семестр, которые можно найти в файловом архиве МГТУ им. Н.Э.Баумана. Не смотря на прямую связь этого архива с МГТУ им. Н.Э.Баумана, его также можно найти и в других разделах. Архив можно найти в разделе "книги и методические указания", в предмете "интеллектуальные системы" в общих файлах.

Онлайн просмотр документа "Напалков А.В., Прагина Л.Л. - Мозг человека и искуссвенный интеллект"

Текст 3 страницы из документа "Напалков А.В., Прагина Л.Л. - Мозг человека и искуссвенный интеллект"

Можно ли на основе использования правил формирования новых комплексов подкрепляющих сигналов подойти к объяснению механизмов сложных форм поведения человека и животных? Для решения этой проблемы были проведены специальные эксперименты. При исследовании работы созданной модели были продемонстрированы новые способности,

«Обучающийся автомат» позволил реализовать описанные выше правила в форме кибернетической модели и тем самым подтвердить полноту проведенного при изучении систем условных рефлексов

15

научного анализа. Стало понятным, что создание описанной выше системы подкрепляющих раздражителей исключает ряд трудностей, возникающих при объяснении механизмов, лежащих в основе сложного поведения. Выяснилось, каким образом возникают те новые подкрепляющие сигналы, которые определяют возможность сложных форм работы мозга, обеспечивающих приспособление человека к окружающим условиям среды.

Однако при изучении работы автомата в более сложных условиях было показано, что он не может самостоятельно приспосабливаться к новым требованиям внешней среды. На это указали, в частности, попытки практического использования автомата. В то время как человек, выполняющий работу диспетчера, постоянно приобретал опыт и адаптировался к новым условиям, автомат в этих ситуациях показывал свою неспособность к формированию нового поведения. Тем самым был поставлен под сомнение тезис о том, что формирование цепей условных рефлексов на основе описанных принципов может обеспечить процесс «уравновешивания внешней среды и организма». Если условия внешней среды были просты, то уравновешивание могло быть достигнуто. Но в реальных условиях жизни человека и животных простые ситуации встречаются редко. В более сложных условиях правила формирования цепей условных рефлексов оказывались недостаточными для того, чтобы вырабатывать новое целесообразное поведение.

Изучение работы «обучающегося автомата» привело также к выводу о том, что формирование отдельных временных связей не может являться основой формирования поведения человека и животных. Стала очевидной необходимость разработки более сложных концепций, определяющих возможность реализации процесса выработки систем условных рефлексов в нейрофизиологических структурах.

Подводя некоторые итоги сказанному, можно отметить, что использование метода кибернетического моделирования помогло ученым проверить полноту описания правил и методов, позволяющих осуществлять искусственный синтез элементов интеллекта. Было показано отсутствие возможности решения

16

основной проблемы расшифровки Механизмов информационных систем, лежащих в основе сложных форм интеллектуальной деятельности, таких, например, как способность к формированию новых концепций, построению гипотез, версий о причинах событий и к их доказательству или же распознаванию тенденций в развитии событий. И снова у исследователей возник вопрос: возможно ли это в принципе? Какие новые идеи и методы должны быть привлечены для решения этой проблемы?

АЛГОРИТМЫ И РАБОТА МОЗГА

Итак, попытки решения проблемы расшифровки механизмов формирования сложного поведения и компонентов психической деятельности на основе изучения систем рефлексов привели к определенным трудностям. Ученые понимали, что для их преодоления необходимы новые идеи и методы, которые могли бы не просто дополнить уже имеющийся арсенал фактов, а качественным образом изменить подходы к исследованию. Начались поиски в различных направлениях. Одно из них было связано с привлечением идей кибернетики и представлений о работе алгоритмов.

Понятие алгоритма сформировалось сначала в области математики, и в течение длительного периода времени исследователи не улавливали связи между этим понятием и решением различных актуальных проблем в биологии. Только в наше время удалось обнаружить сходство различных явлений, изучаемых математикой и физиологией.

Первые представления об алгоритмах были сформулированы более тысячи лет тому назад в работах знаменитого узбекского математика Ал-Хорезми. Он описал целый ряд формальных процедур, при помощи которых можно было решать некоторые математические задачи. Такие процедуры обладали удивительным свойством. Если не использовать алгоритмы, то каждый раз приходилось выдумывать новый способ решения, на что уходило много времени и много творческих усилий. В то же время знание алгоритма, формальной процедуры, записанной в виде

17

комплекса последовательно осуществляемых правил преобразования данных, приводило к желаемому результату, т. е. к решению задач. Отсюда следовало и определение понятия «алгоритм».

Алгоритм — это система последовательных правил переработки информации, приводящая к решению задач определенного класса. Это понятие в настоящее время рассматривается как интуитивное, так как оно не соответствует тем требованиям, которые предъявляются к формальному описанию. Пока мы удовлетворимся такой характеристикой, и для того чтобы она стала понятной, приведем ряд примеров работы алгоритмов.

Простейшие примеры алгоритмов — это алгоритмы сложения, вычитания, деления и умножения многозначных чисел. Как известно, в этом случае следует подписать одно число под другим и, последовательно проводя операции над отдельными знаками, преобразовывать системы записей. Процедура решения задач является абстрактной, формальной, она не содержит никаких двусмысленностей. Эта процедура не может включать таких понятий, которые относятся к конкретным числам. Если бы такие понятия (например, число 126) были включены в алгоритм, то он мог бы быть применен только к определенным частным случаям решения, например к задачам деления одного конкретного числа на другое, т. е. он бы не позволял решать целый класс задач.

Другой класс алгоритмов — алгоритмы игр. Эти алгоритмы обычно относятся к категории «логических алгоритмов». Широко известны такие игры, как игра в «крестики-нолики», «побеждает чет», «поиск в лабиринте» и т. д. Оказалось, что для этих игр существуют формальные процедуры, используя которые участник игры может либо выигрывать, либо сводить игру вничью, но никогда не будет проигрывать. При наблюдении за поведением такого человека может создаться впечатление, что он обладает какими-то интересными и даже «замечательными» свойствами, какой-то способностью к игре. Между тем он использует стандартную процедуру. Причем он осуществляет эту процедуру чисто механически, не обращаясь к своим способностям творческого мышления.

18

В качестве примера приведем алгоритмическую процедуру, эффективную при игре «побеждает чет». В этой игре участвуют два человека. На столе лежат спички Каждый игрок имеет право вынимать одну или две спички. Побеждает тот, у кого останется чет­ное число спичек. Оказалось, что может быть най­ден алгоритм, который обеспечивает успех в игре по­добного типа. Этот алгоритм может быть реализован на вычислительной машине, которая будет осущест­влять игру в «побеждает чет» более успешно, чем любой человек, не знающий алгоритма. В данном случае имеет значение применение четко сформули­рованных систем правил. Приведем систему этих пра­вил для игрока А.

Первый ход: А берет два предмета. Очередной ход А в случае, если Б имеет четное число предме­тов, оставить противнику число предметов, которое на единицу больше кратного шести (19, 13, 7); если это невозможно, то при наличии пяти или трех еще не взятых предметов взять четыре или два соответ­ственно. Очередной ход А в случае, если Б имеет нечетное число предметов: оставить противнику ко­личество предметов на единицу меньше кратного шести (23, 17, 11); если это невозможно, то при на­личии еще трех или одного предмета следует взять три или один соответственно.

При анализе правил следует обратить внимание на то, что они не содержат каких-либо слов, отно­сящихся к конкретной игре. Все понятия являются более общими, абстрактными, что и позволяет при­менять их в любых ситуациях игры.

Интересный пример применения алгоритма может быть проиллюстрирован на основе древнегреческой мифологии. Один из мифов говорит о том, что леген­дарный герой Тезей должен был победить чудовище Минотавра и убить его. При этом найти его нужно было в лабиринте. Ариадна дала Тезею клубок ни­ток, при помощи которого он нашел своего против­ника, выполнил поставленную перед ним задачу и затем вышел из лабиринта. Проведем описание ал­горитма. Продвигаясь по лабиринту, Тезей постепен­но разматывал клубок ниток, отмечая те части ла­биринта, которые он уже проходил один раз или Дважды. В этом и заключался смысл той помощи,

19

которую оказала ему Ариадна. Тезей действовал по следующей системе правил:

Признак

Характер действия

Через площадку уже протянута нить Ариадны.

Нить Ариадны отсутствует.

Встреча с Минотавром
.

Отсутствие всех перечисленных признаков.

Наматывание нити (движение назад)

Разматывание нити
(движение вперед).
Остановка. Начало поединка.

Наматывание нити,

Остановимся на некоторых особенностях построения и работы алгоритма. Одна из них связана с тем, что, выполняя какой-либо его компонент (правило), человек не может сказать, приближается он или удаляется, осуществляя эту операцию, от решения основной задачи. Способности алгоритма к эффективной деятельности проявляются только в системе и только тогда, когда все команды выполняются последовательно в определенном порядке. Если исключить какую-либо одну команду, то весь целостный эффект исчезнет. Таким образом, проявляется некоторое специальное свойство системы, включающей работу алгоритма, свойства целостности, «нерасчленимости».

Работа алгоритма приводит к возникновению нового в качественном отношении явления. Здесь проявляется закономерность перехода некоторых операций при их совмещении в новое качество.

Анализ работы алгоритмов различных типов и классов позволил сформулировать основные свойства алгоритмов: результативность, массовость и детерминированность.

Свойство результативности предполагает, что алгоритм решает все задачи некоторого заданного класса. Благодаря этому свойству возникает новое в качественном отношении явление.

Свойство массовости утверждает, что алгоритм решает все задачи данного класса. Если известен алгоритм, определен класс решаемых им задач, то имеется гарантия того, что любая новая задача будет

20

решена, если она относится к данному классу. Таким образом, при изучении проблемы создания и использования алгоритма выявляются два основных компонента: определение класса задач и отыскание процедуры решения.

Свойство детерминированности предполагает, что алгоритм описывается на таком формальном языке, представлен в виде такой четко сформулированной системы правил, что результаты его работы не зависят от того, какая именно физическая система (субстрат) будет осуществлять (реализовывать) эти правила. Например, алгоритм может быть представлен в виде работы вычислительной машины, осуществлен человеком или записан на бумаге, передан по радио, а затем реализован в компьютере другого типа. Все эти «превращения» нисколько не повлияют на результаты работы алгоритма. Это свойство оказалось чрезвычайно важным в процессе исследования. Так, если выявляется какой-либо алгоритм работы мозга, то его можно представить в форме программы вычислительной машины. Таким образом может быть осуществлено построение, модели интеллектуальной деятельности определенного типа.

При рассмотрении работы алгоритмов следует обратить внимание еще на одну их важную особенность. Для своего функционирования они должны всегда иметь некоторую основу, физико-химический субстрат. Однако такой субстрат может быть различным по своей природе.

Перечисленные свойства алгоритмов создают представления о большой значимости и удивительных характеристиках его работы. В самом деле, алгоритмы, с одной стороны, могут быть описаны в виде простой последовательности правил, с другой стороны, оказываются весьма эффективными при решении различных задач. Они могут стать основой возникновения новых сложных явлений.

Описанные выше свойства алгоритмов были известны уже давно. Однако их значимость стала наиболее ярко проявляться в связи с развитием вычислительной техники. На компьютерах алгоритмы начали свою «новую жизнь», благодаря им появилась возможность воспроизведения принципиально новых явлений и процессов, Так, например, были выявлены

21

алгоритмы, эффективные при игре в шахматы и шашки, и вычислительные машины стали активно участвовать в играх. Алгоритмы оптимизации сбыта продукции, подсчета заявок на оборудование "сделались основой построения специальных систем, которые оказывали большую помощь в управлении производством. То, что ранее относилось к компетенции мозга человека, к области интуитивного мышления, стало возможным представить в виде алгоритма и эффективно воспроизвести в форме программы для компьютера.

В том случае, если алгоритм записывался на бумаге в виде специальной схемы (или в виде математических символов), он был неактивным, находился как бы в некотором «анабиотическом» состоянии, в котором он сохранялся длительный период времени. Однако на другом субстрате, на ЭВМ, алгоритм демонстрировал совершенно новые результаты. Алгоритм имел определенную структуру, организацию, он как бы составлял некоторую специфическую целостность, имеющую «собственную жизнь». Эта целостность могла быть реализована на различных по своей природе субстратах. Между субстратом и алгоритмом не наблюдалось однозначного соответствия как в специфике работы блоков, так и в организации отдельных элементов. Эти особенности его работы, как мы увидим в Дальнейшем, будут очень важны при изучении биологических систем.

Такое перевоплощение алгоритмов, которое произошло в связи с появлением универсальных вычислительных машин, привлекло к ним серьезное внимание исследователей различных специальностей. Раньше алгоритм создавался и использовался математиком и, таким образом, представлял собой, компонент мыслительной деятельности, теперь он стал самостоятельным объектом, который связан с развитием вычислительной техники.

Свежие статьи
Популярно сейчас
А знаете ли Вы, что из года в год задания практически не меняются? Математика, преподаваемая в учебных заведениях, никак не менялась минимум 30 лет. Найдите нужный учебный материал на СтудИзбе!
Ответы на популярные вопросы
Да! Наши авторы собирают и выкладывают те работы, которые сдаются в Вашем учебном заведении ежегодно и уже проверены преподавателями.
Да! У нас любой человек может выложить любую учебную работу и зарабатывать на её продажах! Но каждый учебный материал публикуется только после тщательной проверки администрацией.
Вернём деньги! А если быть более точными, то автору даётся немного времени на исправление, а если не исправит или выйдет время, то вернём деньги в полном объёме!
Да! На равне с готовыми студенческими работами у нас продаются услуги. Цены на услуги видны сразу, то есть Вам нужно только указать параметры и сразу можно оплачивать.
Отзывы студентов
Ставлю 10/10
Все нравится, очень удобный сайт, помогает в учебе. Кроме этого, можно заработать самому, выставляя готовые учебные материалы на продажу здесь. Рейтинги и отзывы на преподавателей очень помогают сориентироваться в начале нового семестра. Спасибо за такую функцию. Ставлю максимальную оценку.
Лучшая платформа для успешной сдачи сессии
Познакомился со СтудИзбой благодаря своему другу, очень нравится интерфейс, количество доступных файлов, цена, в общем, все прекрасно. Даже сам продаю какие-то свои работы.
Студизба ван лав ❤
Очень офигенный сайт для студентов. Много полезных учебных материалов. Пользуюсь студизбой с октября 2021 года. Серьёзных нареканий нет. Хотелось бы, что бы ввели подписочную модель и сделали материалы дешевле 300 рублей в рамках подписки бесплатными.
Отличный сайт
Лично меня всё устраивает - и покупка, и продажа; и цены, и возможность предпросмотра куска файла, и обилие бесплатных файлов (в подборках по авторам, читай, ВУЗам и факультетам). Есть определённые баги, но всё решаемо, да и администраторы реагируют в течение суток.
Маленький отзыв о большом помощнике!
Студизба спасает в те моменты, когда сроки горят, а работ накопилось достаточно. Довольно удобный сайт с простой навигацией и огромным количеством материалов.
Студ. Изба как крупнейший сборник работ для студентов
Тут дофига бывает всего полезного. Печально, что бывают предметы по которым даже одного бесплатного решения нет, но это скорее вопрос к студентам. В остальном всё здорово.
Спасательный островок
Если уже не успеваешь разобраться или застрял на каком-то задание поможет тебе быстро и недорого решить твою проблему.
Всё и так отлично
Всё очень удобно. Особенно круто, что есть система бонусов и можно выводить остатки денег. Очень много качественных бесплатных файлов.
Отзыв о системе "Студизба"
Отличная платформа для распространения работ, востребованных студентами. Хорошо налаженная и качественная работа сайта, огромная база заданий и аудитория.
Отличный помощник
Отличный сайт с кучей полезных файлов, позволяющий найти много методичек / учебников / отзывов о вузах и преподователях.
Отлично помогает студентам в любой момент для решения трудных и незамедлительных задач
Хотелось бы больше конкретной информации о преподавателях. А так в принципе хороший сайт, всегда им пользуюсь и ни разу не было желания прекратить. Хороший сайт для помощи студентам, удобный и приятный интерфейс. Из недостатков можно выделить только отсутствия небольшого количества файлов.
Спасибо за шикарный сайт
Великолепный сайт на котором студент за не большие деньги может найти помощь с дз, проектами курсовыми, лабораторными, а также узнать отзывы на преподавателей и бесплатно скачать пособия.
Популярные преподаватели
Добавляйте материалы
и зарабатывайте!
Продажи идут автоматически
5232
Авторов
на СтудИзбе
423
Средний доход
с одного платного файла
Обучение Подробнее