LINALG3 (Теория по линейной алгебре (определения, доказательства, формулы)), страница 2

2013-09-28СтудИзба

Описание файла

Файл "LINALG3" внутри архива находится в следующих папках: Теория по линейной алгебре (определения, доказательства, формулы), V782RhwLleN, Linal. Документ из архива "Теория по линейной алгебре (определения, доказательства, формулы)", который расположен в категории "". Всё это находится в предмете "линейная алгебра и аналитическая геометрия" из 2 семестр, которые можно найти в файловом архиве МГТУ им. Н.Э.Баумана. Не смотря на прямую связь этого архива с МГТУ им. Н.Э.Баумана, его также можно найти и в других разделах. Архив можно найти в разделе "остальное", в предмете "линейная алгебра и фнп" в общих файлах.

Онлайн просмотр документа "LINALG3"

Текст 2 страницы из документа "LINALG3"

Из определения сразу следует, что если обратный оператор определен, то

В частности, если (т.е., рассматриваются линейные преобразования), то можно написать двойное тождество

Утверждение 1.8 Если обратный линейный оператор существует, то он - единственный.

Доказательство. Предположим, что существуют два линейных оператора и , обратных к . Тогда:

, где через обозначено тождественное преобразование пространства , .

Пусть - линейное преобразование пространства . Линейное преобразование назовем левым обратным к , если

.

Аналогично определяется линейное преобразование, правое обратное к :

.

Как и для матриц доказывается

Утверждение 1.9 Если для линейного преобразования существует левое и правое обратное преобразования, то они равны и совпадают с обратным к .

Доказательство. Имеем:

.

Доказанное утверждение можно распространить и на произвольный линейный оператор , но тогда - тождественное преобразование пространства , соответственно - тождественное преобразование пространства .

Доказанное только что позволяет нам ввести обозначение для линейного оператора, обратного к .

Определение 1.14 Линейный оператор называется обратимым, если существует обратный к нему линейный оператор.

Основным результатом настоящего раздела является следующая теорема:

Теорема 1.2 (Критерий обратимости линейного оператора). Линейный оператор обратим тогда и только тогда, когда он является изоморфизмом на .

Доказательство. 1) Необходимость. Если оператор обратим, то его ядро тривиально, т.е. состоит из одного нулевого вектора. Действительно, пусть для некоторого ненулевого . Тогда , что невозможно. Следовательно, , и - мономорфизм. Полагая теперь, что , получим для некоторого , откуда - в противоречии с предположением. Окончательно получаем, что - изоморфизм.

2) Достаточность. Пусть - изоморфизм. Тогда для каждого существует единственный такой, что .

Введем отображение так, что

Другими словами, мы определили такое отображение из в , что образ есть тот самый (единственный в силу того, что изоморфизм!) , для которого :

(здесь использовано так называемое «йота-обозначение», или «йота-оператор»: означает «тот единственный , для которого истинно »).

Из определения отображения сразу следует, что

Это значит, что осталось только показать, что отображение линейно.

Имеем: для произвольных пусть , а . Тогда

Совершенно аналогично доказывается, что (для любого вещественного ).

Итак, отображение линейно и, следовательно, .

Теорема доказана.

Следствие 1.1 Если - изоморфизм, то - также изоморфизм.

Следствие 1.2 Композиция изоморфизмов есть изоморфизм, причем для изоморфизмов .

Определение 1.15 Линейные пространства и называются изоморфными, если существует изоморфизм одного из них на другое.

Для изоморфных пространств будем писать . На основании доказанного выше мы можем утверждать:

  1. для всякого .

Содержательно тот факт, что два линейных пространства изоморфны, означает, что между этими пространствами можно установить такое взаимно однозначное соответствие , что для любых векторов одного из этих пространств

,

т.е., с точки зрения линейных операций над векторами, эти пространства неразличимы. Тогда, например, если вычисления удобнее выполнять в каком-то одном пространстве, то эти вычисления можно выполнить именно в этом пространстве, а получив результат, «вернуться» в другое пространство.

Оказывается, любое конечномерное линейное пространство совпадает «с точностью до изоморфизма» с арифметическим векторным пространством для подходящего .

Теорема 1.3 Конечномерное линейное пространство , размерность которого изоморфно арифметическому пространству .

Доказательство. Выберем в пространстве какой-то базис и разложим по нему произвольно выбранный вектор :

Отображение зададим тогда так:

,

т.е., любому вектору сопоставляется столбец его координат в некотором базисе. Ясно, что относительно фиксированного базиса отображение взаимно однозначно. Линейность его также легко проверяется.

Итак, в силу доказанной теоремы, если отождествлять изоморфные линейные пространства, то любое конечномерное линейное пространство совпадает с пространством арифметических векторов подходящей размерности.

Например, в пространстве матриц система матриц , где ,

образует базис.

Следовательно, .

Заметим еще, что если отождествлять конечномерное линейное пространство с изоморфным ему арифметическим, то исчезает и принципиальное различие между мономорфизмом и изоморфизмом.

Действительно, если мономорфизм рассматривать как изоморфизм на , то при получим цепочку изоморфизмов:

,

что дает нам право считать мономорфизм изоморфизмом арифметического пространства на себя.

Свежие статьи
Популярно сейчас
Как Вы думаете, сколько людей до Вас делали точно такое же задание? 99% студентов выполняют точно такие же задания, как и их предшественники год назад. Найдите нужный учебный материал на СтудИзбе!
Ответы на популярные вопросы
Да! Наши авторы собирают и выкладывают те работы, которые сдаются в Вашем учебном заведении ежегодно и уже проверены преподавателями.
Да! У нас любой человек может выложить любую учебную работу и зарабатывать на её продажах! Но каждый учебный материал публикуется только после тщательной проверки администрацией.
Вернём деньги! А если быть более точными, то автору даётся немного времени на исправление, а если не исправит или выйдет время, то вернём деньги в полном объёме!
Да! На равне с готовыми студенческими работами у нас продаются услуги. Цены на услуги видны сразу, то есть Вам нужно только указать параметры и сразу можно оплачивать.
Отзывы студентов
Ставлю 10/10
Все нравится, очень удобный сайт, помогает в учебе. Кроме этого, можно заработать самому, выставляя готовые учебные материалы на продажу здесь. Рейтинги и отзывы на преподавателей очень помогают сориентироваться в начале нового семестра. Спасибо за такую функцию. Ставлю максимальную оценку.
Лучшая платформа для успешной сдачи сессии
Познакомился со СтудИзбой благодаря своему другу, очень нравится интерфейс, количество доступных файлов, цена, в общем, все прекрасно. Даже сам продаю какие-то свои работы.
Студизба ван лав ❤
Очень офигенный сайт для студентов. Много полезных учебных материалов. Пользуюсь студизбой с октября 2021 года. Серьёзных нареканий нет. Хотелось бы, что бы ввели подписочную модель и сделали материалы дешевле 300 рублей в рамках подписки бесплатными.
Отличный сайт
Лично меня всё устраивает - и покупка, и продажа; и цены, и возможность предпросмотра куска файла, и обилие бесплатных файлов (в подборках по авторам, читай, ВУЗам и факультетам). Есть определённые баги, но всё решаемо, да и администраторы реагируют в течение суток.
Маленький отзыв о большом помощнике!
Студизба спасает в те моменты, когда сроки горят, а работ накопилось достаточно. Довольно удобный сайт с простой навигацией и огромным количеством материалов.
Студ. Изба как крупнейший сборник работ для студентов
Тут дофига бывает всего полезного. Печально, что бывают предметы по которым даже одного бесплатного решения нет, но это скорее вопрос к студентам. В остальном всё здорово.
Спасательный островок
Если уже не успеваешь разобраться или застрял на каком-то задание поможет тебе быстро и недорого решить твою проблему.
Всё и так отлично
Всё очень удобно. Особенно круто, что есть система бонусов и можно выводить остатки денег. Очень много качественных бесплатных файлов.
Отзыв о системе "Студизба"
Отличная платформа для распространения работ, востребованных студентами. Хорошо налаженная и качественная работа сайта, огромная база заданий и аудитория.
Отличный помощник
Отличный сайт с кучей полезных файлов, позволяющий найти много методичек / учебников / отзывов о вузах и преподователях.
Отлично помогает студентам в любой момент для решения трудных и незамедлительных задач
Хотелось бы больше конкретной информации о преподавателях. А так в принципе хороший сайт, всегда им пользуюсь и ни разу не было желания прекратить. Хороший сайт для помощи студентам, удобный и приятный интерфейс. Из недостатков можно выделить только отсутствия небольшого количества файлов.
Спасибо за шикарный сайт
Великолепный сайт на котором студент за не большие деньги может найти помощь с дз, проектами курсовыми, лабораторными, а также узнать отзывы на преподавателей и бесплатно скачать пособия.
Популярные преподаватели
Добавляйте материалы
и зарабатывайте!
Продажи идут автоматически
5231
Авторов
на СтудИзбе
424
Средний доход
с одного платного файла
Обучение Подробнее