229-1 (Онтология, эпистемология и философия языка Рассела), страница 2

2016-07-30СтудИзба

Описание файла

Документ из архива "Онтология, эпистемология и философия языка Рассела", который расположен в категории "". Всё это находится в предмете "философия" из 3 семестр, которые можно найти в файловом архиве . Не смотря на прямую связь этого архива с , его также можно найти и в других разделах. Архив можно найти в разделе "курсовые/домашние работы", в предмете "философия" в общих файлах.

Онлайн просмотр документа "229-1"

Текст 2 страницы из документа "229-1"

Установив зависимость онтологических представлений от логической структуры, Рассел показал, что избранный способ формализации затрагивает не только структуру мысли, но и нечто говорит о мире. Оказалось, что способы построения онтологий, базировавшиеся на том, как традиционная логика представляла структуру суждения, не являются единственными, а представляют собой лишь один из возможных вариантов. Плюралистическая онтология, основанная на внешних отношениях, построенная Расселом в соответствии с функциональной точкой зрения на высказывания, является, по-видимому, одним из самых интересных его достижений, как логических, так и философских. Ему удалось показать, что онтологию можно рассматривать как следствие определенной формально-логической доктрины. Выявление структуры мысли задает структуру мыслимого, и в этом отношении формальная логика приобретает трансцендентальное содержание. Однако в рамках самой логики все это остается на уровне бессодержательных моделей, которые, как таковые, имеют дело с любой возможностью. «В логике было бы пустой тратой времени рассматривать выводы относительно частных случаев; мы имеем дело всегда с совершенно общими и чисто формальными импликациями, оставляя другим наукам исследование того, в каких случаях предложения подтверждаются, а в каких нет»[2] . Устанавливая границы логики как науки о возможном, Рассел тем не менее корректирует само понятие возможности. На всем протяжении развития его характеризует то, что сам он называет ‘чувством реальности’. Здесь показательным выглядит его следующее заявление, может быть полемически и заостренное, но весьма характерное: «Логика должна допускать единорогов не в большей степени, чем зоология, потому что логика имеет дело с реальным миром в той же степени, что и зоология, хотя с его наиболее абстрактными и общими чертами: повинуясь чувству реальности, мы будем настаивать на том, что в анализе суждений нельзя допускать ничего ‘нереального’»[3] . Стало быть, формальная логика для Рассела хотя и является наукой о возможном, все равно имеет единственную реализацию, и эта реализация есть наш действительный мир.

Из такого понимания логики вытекают как минимум два важных следствия, придающих специфическую окраску взглядам Рассела на содержание и границы формального анализа.

С одной стороны, имея в перспективе действительный мир, Рассел к числу логических принципов относит такие утверждения, которые выглядят несколько сомнительными, поскольку не имеют аналитического характера. Последнее придает развиваемой им логике ‘реистическую окраску’.

С другой стороны, так как Рассел наполняет логику онтологическим содержанием, он стремится представить процесс познания таким образом, чтобы тот соответствовал логическим структурам, выведенным с помощью чисто формального исследования.

Эти две разнонаправленные, но связанные между собой тенденции пронизывают все творчество раннего Рассела, и именно те положения, которые относятся к их реализации, подверглись наиболее острой критике Витгенштейна и потребовали существенных изменений. Рассмотрим их несколько подробнее. Начнем с того, каким образом логика у Рассела приобретает реистический характер.

3. Теория типов

Уже говорилось, что Рассел принимает функциональную трактовку высказываний, предложенную Фреге. Однако его не все в ней удовлетворяет. В частности, Рассел не принимает фрегеанскую трактовку функции как неопределяемого понятия. Напомним, что с точки зрения Фреге, выделение в высказывании функции и аргумента зависит от контекста и то, что рассматривалось в качестве функции, может становиться аргументом, и наоборот. Отталкиваясь от такого понимания, Б.Рассел сформулировал свой знаменитый парадокс. Если функция и аргумент находятся на одном и том же уровне, то, сконструировав высказывание, в котором одно и то же выражение может рассматриваться одновременно как функция и как аргумент этой функции, можно прийти к противоречию. В письме к Фреге Рассел следующим образом высказывает свои сомнения: «Вы утверждаете, что функция может быть неопределяемым элементом. Я тоже так считал, но теперь этот взгляд кажется мне сомнительным из-за следующего противоречия: Пусть w будет предикатом ‘быть предикатом, не приложимым к самому себе’. Приложим ли w к самому себе? Из любого ответа вытекает противоречие. Стало быть, мы должны заключить, что w не является предикатом. Также не существует класса (как целого) тех классов, которые, как целое, являются членами самих себя. Отсюда я заключаю, что при определенных обстоятельствах определяемое множество не образует целого»[4] .

Проясним данный парадокс на примере. Согласно каждой высказывательной функции можно образовать класс предметов. Например, функции ‘чайная ложка (х)’ соответствует класс индивидов, удовлетворяющих данную функцию (т.е. при заполнении аргументного места, делающих соответствующее высказывание истинным) и являющихся чайными ложками. Принцип интуитивной абстракции позволяет образовывать классы с любым набором индивидов. Причем при неограниченном применении этого принципа в качестве индивидов могут выступать и сами классы (т.е. они сами могут рассматриваться как заполняющие аргументные места соответствующих функций). Например, функции ‘класс предметов (х)’ будет соответствовать класс всех классов любых предметов. При таком подходе некоторые классы могут содержать только индивиды, а некоторые — и индивиды, и классы, рассматриваемые в качестве индивидов. Среди последних особый интерес представляют классы, содержащие себя в качестве собственных элементов. Например, класс чайных ложек сам чайной ложкой не является, он состоит только из индивидов, а класс всех предметов, не являющихся чайными ложками, сам не будет являться чайной ложкой и, следовательно, будет являться членом самого себя. Образование классов последнего типа зависит от возможности образования таких функций, которые могут быть собственными аргументами. Рассмотрим еще один пример. Возьмем класс последнего типа, а именно класс всех тех классов, которые не являются элементами самих себя (в функциональном выражении ‘класс, не являющийся элементом самого себя (х)’). Если мы зададимся теперь вопросом о том, можно ли рассматривать сам этот класс как удовлетворяющий соответствующую себе функцию, получится противоречие. В самом деле, если он ее удовлетворяет, то он не должен содержаться в себе самом, а если он ее не удовлетворяет, то он должен содержаться в себе самом.

Противоречие демонстрирует неприемлемость такого понимания функции и аргумента, которое имеет место у Фреге, но это еще не означает, что неверна функциональная трактовка логической структуры высказывания. Для решения парадокса Рассел разрабатывает так называемую теорию типов, которая по существу сводится к ограничениям, накладываемым на образование классов, а стало быть, и соответствующих высказывательных (пропозициональных) функций. Так, например, он пишет: «Общность классов в мире не может быть классом в том же самом смысле, в котором последние являются классами. Так мы должны различать иерархию классов. Мы будем начинать с классов, которые всецело составлены из индивидов, это будет первым типом классов. Затем мы перейдем к классам, членами которых являются классы первого типа: это будет второй тип. Затем мы перейдем к классам, членами которых являются классы второго типа; это будет третий тип и т.д. Для класса одного типа никогда невозможно быть или не быть идентичным с классом другого типа»[5] . На образование классов необходимо накладывать ограничения, запретив образовывать классы, которые могли бы выступать в качестве своих собственных элементов. Классы должны образовывать строгую иерархию, где первый уровень представляли бы собой классы, содержащие только индивиды, второй уровень – классы, содержащие классы индивидов, третий уровень – классы, содержащие классы классов индивидов, и т.д. Разные уровни требуют различных средств выражения; то, что можно сказать об индивидах, нельзя сказать об их классах, а то, что можно сказать о классах индивидов, нельзя сказать о классах классов индивидов и т.д. В общем, это и составляет сущность теории типов.

В применении к высказывательным функциям это означает, что ни одна функция не может быть применена к самой себе; то, что рассматривается в качестве аргумента, никогда не должно становиться функцией, и наоборот, на одном и том же уровне. Последнее требование закрепляется Расселом в теории удовлетворительного символизма. Зафиксировать тип – значит зафиксировать соответствующий тип символа, указывающий на соответствующее значение. С точки зрения Рассела, к парадоксам приводит смешение различных типов, которого необходимо избегать. При таком подходе, очевидно, отпадает надобность в оценке контекста целостного высказывания. Значение символа должно заранее определяться словарем, который сконструирован иерархическим образом согласно типам, а правила образования выражений накладывают ограничения на использование словаря.

Теория типов становится для Рассела универсальным методом решения парадоксов, не только обнаруженных им самим, но и известных с давних времен. Возьмем, например, парадокс лжеца. Если некто высказывает утверждение “Я сейчас лгу”, то с традиционной точки зрения, при попытке определить истинностное значение этого утверждения мы всегда придем к противоречию. Действительно, поскольку он лжет, то ложным должно быть и высказанное им утверждение; но, учитывая его содержание, мы тогда должны сказать, что оно истинно. Если же его утверждение истинно, то, согласно утверждаемому содержанию, оно говорит о своей собственной ложности и, стало быть, является ложным. В любом случае возникает противоречие. Но, используя теорию типов, Рассел решает этот парадокс, разводя по разным уровням высказывания, о которых говорит это утверждение, и само это утверждение[6] . С точки зрения теории типов, человек, утверждающий, что он лжет, имеет в виду ложность по крайней мере одного высказывания из класса высказываний, охватываемых его утверждением. Но само его утверждение не должно включаться в этот класс, поскольку оно относится к более высокому типу. Поэтому истинностная оценка должна релятивизироваться относительно типа высказанных утверждений. Любое утверждение о высказываниях n -го типа само будет относиться к n +1 типу и не должно включаться в класс оцениваемых высказываний.

Символическая система Фреге не удовлетворяет требованиям теории типов, поэтому в ней и можно сформулировать парадоксальные утверждения.

4. Коррекция определения числа и аксиома бесконечности

Формулировка парадокса затрагивает не только противоречивость рассуждения, но и другой важный аспект логицистской программы Г.Фреге, который связан с определением арифметических понятий в логических терминах. Определение числа по Фреге, как оно было сформулировано выше, требует рассматривать классы, состоящие из элементов, принадлежащих к различным типам. Например, уже определение числа два предполагает класс, образованный из нуль-класса и класса, элементом которого является сам нуль-класс. Однако именно это и содержит парадокс, который обнаружил Рассел. Рассел сохраняет логицистскую установку на то, что арифметика сводима к логике, но в свете установленного противоречия определение числа должно быть модифицировано таким образом, чтобы исключить смешение типов.

Рассел выходит из затруднения следующим образом[7] . Он сохраняет общий фрегеанский подход к числу с точки зрения классов, находящихся во взаимно-однозначном соответствии. Сохраняет он и определение нуля как класса неравных самим себе объектов. Модификация определения начинается с числа один. Число один соответствует классу всех классов, находящихся во взаимно-однозначном соответствии с классом, содержащим один объект. Число два соответствует классу всех классов, находящихся во взаимно-однозначном соответствии с классом, который состоит из объекта, использованного при определении числа один, плюс новый объект и т.д. Определение, построенное таким способом, избегает парадокса, поскольку соблюдает требование теории типов. Объекты, используемые при определении чисел, принадлежат одному и тому же типу. Однако оно требует введения дополнительного постулата. Определение каждого последующего числа в последовательности натуральных чисел требует нового объекта. Но поскольку натуральный ряд бесконечен, постольку должно предусматриваться и бесконечное количество объектов. Так в логической системе Рассела возникает аксиома бесконечности, а именно допущение о том, что любому заданному числу n соответствует некоторый класс объектов, имеющий n членов[8] .

5. Логические фикции и аксиома сводимости

В Principia Mathematica , труде, в котором Рассел совместно с Уайтхедом попытались последовательно развить предпосылки логицизма, теория типов, аксиома бесконечности и рассматриваемая ниже аксиома сводимости включаются в число логических предложений. Однако здесь возникает проблема, связанная со статусом данных положений. Характеристика различных уровней бытия, предложенная теорией типов, или аксиома бесконечности, характеризующая совокупность предметов в мире, выходит за рамки аналитического знания. Разрабатывая теорию типов, Рассел говорит о недопустимости определенной комбинации символов в языке логики. Однако то, что он имеет в виду, выходит за рамки символической комбинаторики, поскольку сами по себе символы основания для такого запрета не дают. Ограничения возможны только тогда, когда в расчет принимается определенная интенция значения. Стало быть, теория типов основана на онтологической предпосылке о допустимых видах значений и существенно от нее зависит.

Формулируя теорию типов, Рассел говорит о классах, но это не означает, что он допускает их реальное существование, поскольку это возрождало бы иерархическую структуру бытия в смысле Платона, и даже превосходило бы предложенное последним удвоение реальности, так как предполагало бы ее умножение ad infinitum соответственно умножению различных типов знаков. Кроме того, с реальностью классов связан ряд следствий, принять которые Расселу мешает установка на здравый смысл. Согласно способу построения классов из любой совокупности n предметов можно образовать 2 n классов. Например, взяв совокупность из трех предметов a , b , c , можно образовать восемь классов. Это следующие классы: нулевой класс, классы { a }, { b } и { c }; затем, { bc }, { ca }, { ab }, { abc }. Рассмотрим теперь совокупность всех вещей, существующих в мире. Очевидно, что число классов, образованных из этих вещей, будет больше числа их самих, поскольку 2 n всегда больше, чем n . Теперь, если мы принимаем реальность классов, получается парадоксальный вывод. Оказывается, что число всех действительно существующих вещей меньше, чем их имеется на самом деле. Рассел не принимает этого парадоксального вывода, выходя из положения тем, что дифференцирует понятие существования соответственно типам значений. Говорить о существовании индивидов – это совершенно иное, чем говорить о существовании составленных из них классов. Последнее есть лишь fa c on de parle r , от которого при желании всегда можно избавиться. Здесь возникает концепция неполных символов, рассматривающая классы как логические фикции. Надлежащая трактовка классов должна исключить их из перечня самостоятельных сущностей, а то, что мы рассматриваем как обозначение классов, должно быть сведено к обозначению сущностей, не вызывающих сомнений в своем существовании.

Свежие статьи
Популярно сейчас
Как Вы думаете, сколько людей до Вас делали точно такое же задание? 99% студентов выполняют точно такие же задания, как и их предшественники год назад. Найдите нужный учебный материал на СтудИзбе!
Ответы на популярные вопросы
Да! Наши авторы собирают и выкладывают те работы, которые сдаются в Вашем учебном заведении ежегодно и уже проверены преподавателями.
Да! У нас любой человек может выложить любую учебную работу и зарабатывать на её продажах! Но каждый учебный материал публикуется только после тщательной проверки администрацией.
Вернём деньги! А если быть более точными, то автору даётся немного времени на исправление, а если не исправит или выйдет время, то вернём деньги в полном объёме!
Да! На равне с готовыми студенческими работами у нас продаются услуги. Цены на услуги видны сразу, то есть Вам нужно только указать параметры и сразу можно оплачивать.
Отзывы студентов
Ставлю 10/10
Все нравится, очень удобный сайт, помогает в учебе. Кроме этого, можно заработать самому, выставляя готовые учебные материалы на продажу здесь. Рейтинги и отзывы на преподавателей очень помогают сориентироваться в начале нового семестра. Спасибо за такую функцию. Ставлю максимальную оценку.
Лучшая платформа для успешной сдачи сессии
Познакомился со СтудИзбой благодаря своему другу, очень нравится интерфейс, количество доступных файлов, цена, в общем, все прекрасно. Даже сам продаю какие-то свои работы.
Студизба ван лав ❤
Очень офигенный сайт для студентов. Много полезных учебных материалов. Пользуюсь студизбой с октября 2021 года. Серьёзных нареканий нет. Хотелось бы, что бы ввели подписочную модель и сделали материалы дешевле 300 рублей в рамках подписки бесплатными.
Отличный сайт
Лично меня всё устраивает - и покупка, и продажа; и цены, и возможность предпросмотра куска файла, и обилие бесплатных файлов (в подборках по авторам, читай, ВУЗам и факультетам). Есть определённые баги, но всё решаемо, да и администраторы реагируют в течение суток.
Маленький отзыв о большом помощнике!
Студизба спасает в те моменты, когда сроки горят, а работ накопилось достаточно. Довольно удобный сайт с простой навигацией и огромным количеством материалов.
Студ. Изба как крупнейший сборник работ для студентов
Тут дофига бывает всего полезного. Печально, что бывают предметы по которым даже одного бесплатного решения нет, но это скорее вопрос к студентам. В остальном всё здорово.
Спасательный островок
Если уже не успеваешь разобраться или застрял на каком-то задание поможет тебе быстро и недорого решить твою проблему.
Всё и так отлично
Всё очень удобно. Особенно круто, что есть система бонусов и можно выводить остатки денег. Очень много качественных бесплатных файлов.
Отзыв о системе "Студизба"
Отличная платформа для распространения работ, востребованных студентами. Хорошо налаженная и качественная работа сайта, огромная база заданий и аудитория.
Отличный помощник
Отличный сайт с кучей полезных файлов, позволяющий найти много методичек / учебников / отзывов о вузах и преподователях.
Отлично помогает студентам в любой момент для решения трудных и незамедлительных задач
Хотелось бы больше конкретной информации о преподавателях. А так в принципе хороший сайт, всегда им пользуюсь и ни разу не было желания прекратить. Хороший сайт для помощи студентам, удобный и приятный интерфейс. Из недостатков можно выделить только отсутствия небольшого количества файлов.
Спасибо за шикарный сайт
Великолепный сайт на котором студент за не большие деньги может найти помощь с дз, проектами курсовыми, лабораторными, а также узнать отзывы на преподавателей и бесплатно скачать пособия.
Популярные преподаватели
Добавляйте материалы
и зарабатывайте!
Продажи идут автоматически
5173
Авторов
на СтудИзбе
436
Средний доход
с одного платного файла
Обучение Подробнее