151882 (Електровимірювальні прилади)

2016-07-30СтудИзба

Описание файла

Документ из архива "Електровимірювальні прилади", который расположен в категории "". Всё это находится в предмете "физика" из , которые можно найти в файловом архиве . Не смотря на прямую связь этого архива с , его также можно найти и в других разделах. Архив можно найти в разделе "курсовые/домашние работы", в предмете "физика" в общих файлах.

Онлайн просмотр документа "151882"

Текст из документа "151882"

Содержание

Вступ

І. Теоретична частина

1.1 Принципи побудови цифрових електровимірювальних приладів

1.2 Цифрові частотоміри

1.3 Вібраційні частотоміри

1.4 Аналогові частотоміри

1.5 Електромеханічні частотоміри

1.6 Вимірювальний перетворювач частоти в струм

1.7 Гетеродинний вимірювальний перетворювач частоти

1.8 Частотомір із перетворенням похибки квантування в інтервал часу

ІІ. Механічна частина

2.1 Вимірювання частоти електричної напруги

2.2 Відношення двох частот

2.3 Похибки вимірювання частоти і інтервалів часу

2.4 Резонансний метод вимірювання частоти

2.5 Вимірювання частоти за допомогою осцилографа

III. Техніка безпеки

3.1 Класифікація приміщень за електробезпекою

3.2 Електрична ізоляція

Список рекомендованої літератури


Вступ

Електротехніка - область науки і техніки, яка займається вивченням електричних і магнітних явищ і їх використанням в практичних цілях.

Можна виділити три основних напрями електротехніки:

    • перетворення різних видів енергії природи в електричну енергію;

    • перетворення одних елементів природи в інші;

    • прийом і передача інформації.

Науково-технічний прогрес не можливий без електрифікації всіх галузей народного господарства. Його потреби без перестану ростуть, що призводить до збільшення виробництва.

В умовах науково технічної революції особливо чітко проявився діалектичний зв'язок науки, техніки і виробництва. Наука стала невід’ємною виробничою силою, а наукові досягнення стали в значній мірі залежними від степеня розвитку і можливостей сучасних технологій.

Електротехнікою називають область науки, техніки і виробництва, в якій розробляються принципи виробництва і удосконалення електричних приладів, методи їх інженерного розрахунку і технологічного забезпечення, способи розробки електричних систем для потреб народного господарства.

Велике використання електричної апаратури зумовлено її швидкою роботою, точністю, високою чутливістю, малою затратою енергії, постійно зростаючою економністю.

Електронні прилади задають основу для найважливіших видів сучасного зв’язку, автоматики, вимірювальної техніки. Вони допомагають проникнути в секрети електросвітлу і безмежно-великого космосу, виміряти електричні потенціали живої клітини і атомні шерховатості обробляємої поверхні.

Ці прилади перетворюють енергію сонячної радіації в електричну енергію, яка йде на безперервну роботу супутників, забезпечує енергією малі підприємства, та йде на інші потреби населення.

На основі електроніки реальний перехід до повністю автоматизованого виробництва. Уже зараз широко застосовують станки з цифровим програмним керуванням і промислові роботи.

Якісним стрибком у розвитку електроніки було винайдення в останні два десятиліття мікросхем з послідовно і швидко зростаючим ступенем інтеграції електричних елементів: ІС, БІС, СБІС.

Перехід цифрової обчислювальної техніки на електронну, а потім і на мікроелектронну базу відкрив нові перспективи подальшої автоматизації процесів управління аж до розробки автоматів наділених штучним інтелектом.

У наш час електричні вимірювання й електричні прилади посідають одне з чільних місць у житті цивілізованого людства. За частотою застосувань електричні вимірювання поступаються хіба що лише вимірюванням довжини, маси та температури. Електричні вимірювання застосовуються не лише для вимірювань власне електричних величин (напруги, струму, потужності, енергії, опору, частоти, зсуву фаз, ємності та ряду магнітних величин), а й при використанні перетворювачів для вимірювання багатьох неелектричних величин (тиску, температури, швидкості, параметрів вібрації, рівня рідин та сипучих матеріалів, витрати рідин та газоподібних речовин, величин пружних деформацій, відстаней тощо).

Найбільшого розмаїття електровимірювальних приладів досягнуто в енергетиці. Без застосування електровимірювальних приладів була б неможливою робота сучасних електричних станцій, де нормальна дія кожного енергоблоку може підтримуватись персоналом лише на основі аналізу інформації, що надходить від багатьох десятків (а іноді й сотень) приладів, які контролюють безліч параметрів енергоблоку. При цьому чи не найбільша частина цих електричних приладів контролює неелектричні величини.

В енергетиці електровимірювальні прилади використовують не тільки для поточного контролю роботи енергообладнання, а й для пошуку його пошкоджень. Причому саме за допомогою електричних вимірювань візуально недосяжні пошкодження обладнання знаходять найшвидше і найточніше. Як приклад можна навести пошук місця пошкодження електричного кабелю вимірюванням електричного опору з двох кінців вимкненого кабелю (в разі короткого замикання між його струмопровідними жилами), чи вимірюванням ємності між жилами (в разі розриву якоїсь із жил). Зауважимо, що без застосування електричних вимірювань визначити місце пошкодження було б практично неможливо.

Потенціальні можливості промисловості, що виробляє електровимірювальні прилади, в Україні надзвичайно великі й значною мірою перевищують потреби країни у цих приладах, бо у масштабах колишнього СРСР Україна з електроприладобудування посідала одне з провідних місць. Заводи, що виробляють засоби електричних вимірювань, є у багатьох містах країни, зокрема у Києві, Львові, Севастополі, Луцьку та ін.


І. Теоретична частина

1.1 Принципи побудови цифрових електровимірювальних приладів

Принципово будову більшості цифрових електровимірювальних приладів може бути пояснено на основі структурної схеми, зображеної на рис.1, де X - вхідна (вимірювана) величина; ВП - вхідний пристрій; АЦП - аналого-цифровий перетворювач; ОП - обчислювальний пристрій; ДКП - декодуючий пристрій; ПІ - пристрій індикації; ПУ - пристрій управління; БЖ - блок живлення.

Рис.1 Структурна схема цифрового приладу

У вхідному пристрої ВП, залежно від розміру вхідної величини X, автоматично вмикається потрібний діапазон вимірювання з одночасною подачею через пристрій управління ПУ, команди на пристрій індикації ПІ про положення коми між цифрами Індикатора та про індикацію знаку вхідної величини. У цьому ж пристрої може відбуватися перетворення вимірюваної величини в напругу постійного струму або в інтервал часу, чи в частоту електричних імпульсів. У аналого-цифровому перетворювачі АЦП виконується перетворення сигналу, що надходить сюди з вхідного пристрою ВП, у цифрову форму з видачею цифрових кодових сигналів для подальшої обробки, яка проходить у обчислювальному пристрої ОП. Далі цифровий сигнал проходить до декодуючого пристрою ДКУ, де він перетворюється у форму, придатну для сприйняття пристроєм індикації ПІ, щоб висвітлити число, що показує вимірювану величину X.

Водночас цифровий сигнал, після виходу його з обчислювального пристрою, може передаватися на реєструючий пристрій РП і на електронно-обчислювальну машину ЕОМ для подальшої реєстрації (друкування) чи обробки.

Пристрій управління ПУ регламентує роботу всієї вимірювальної схеми приладу, а блок живлення БЖ забезпечує живлення кожної зі складових частин приладу напругою потрібної величини при необхідній потужності для кожної з них.

1.2 Цифрові частотоміри

Принцип дії цифрових частотомірів заснований на підрахунку числа періодів вимірюваної невідомої частоти за точно відомий відрізок часу.

Структурно-функціональну схему такого цифрового частотоміра зображено на рис.2, а. Епюри напруг, що відповідають позначеним літерами ділянкам наведеної схеми частотоміра, показано на рис.2, б.

На схемі позначено: Щ - напруга невідомої вимірюваної частоти, Ф2 - формувач імпульсів вимірюваної частоти, К - електронний ключ, КГ - кварцовий генератор точно відомої високої частоти, Ф1 - формувач прямокутних імпульсів частоти, генерованої кварцовим генератором КГ, ПЧ - подільник частоти, ФІЧ - формувач імпульсів точного часу, Л - декадний лічильник, ДШ - дешифратор, ПІ - пристрій індикації.

Головним вузлом, що забезпечує точність виміру частоти в цьому приладі, є кварцовий генератор високої частоти. Власне висока частота тут не потрібна, але кварцові генератори саме на високій частоті здатні працювати з високою точністю і за прийнятних розмірів кварцової пластини. Щоб запобігти впливу температури середовища на частоту кварцового генератора, всі його частини вміщено в термостат обмеженого об'єму з власним нагрівачем та автоматичним регулятором температури. Це забезпечує стабілізацію температури всередині термостата на рівні 50.60°С незалежно від температури довкілля, що змінюється у нормальних межах, тобто не перевищує 40°С.

Для більш чіткої роботи інших елементів схеми синусоїдальна напруга кварцового генератора перетворюється формувачем Ф1 на послідовність імпульсів напруги майже прямокутної форми. Ця послідовність імпульсів, потрапляючи в подільник частоти ПЧ, після багаторазового поділення перетворюється на прямокутні імпульси малої частоти з суворо витриманим часом Т кожного періоду (рис.2, б, епюра є).

Рис.2 Структурно-функціональна схема цифрового частотоміра:

а - схема, б - епюри напруг

Ці імпульси, попадаючи у формувач імпульсів часу ФІЧ, формуються у прямокутні імпульси напруги (епюра є), які надходять у коло керування електронним ключем К, примушують його відмикатися на точно дозовані проміжки часу (наприклад, на 1 с), протягом яких цей ключ пропускає через себе у лічильник Л сформовані формувачем Ф2 пакети імпульсів (епюра ж). Лічильник, порахувавши число імпульсів, вміщених у пакеті (тобто ту кількість, що пройшла через ключ К протягом часу 7), і перетворивши це число у десяткову форму, надсилає це число до дешифратора ДШ, де воно перетворюється на код, сприйнятний для цифрового пристрою індикації, на якому і висвітлюється вимірюване значення частоти напруги. Разом з тим сигнал про величину виміряної частоти після лічильника Л (а іноді й після дешифратора) може спрямовуватись до ЕОМ для зберігання чи подальших розрахунків.

За допомогою цифрового частотоміра можна вимірювати частоту зі значно більшою точністю, ніж частотомірами інших систем (можна вести виміри з похибкою, що не перевищує ОД.0,01%).

Підвищення точності цифрових частотомірів можна досягти, підвищуючи стабільність кварцового генератора і збільшуючи величину часу Т.

Завдяки високій точності й можливості передавання результату вимірювань безпосередньо до ЕОМ нині широко застосовують саме цифрові частотоміри. Із застосуванням перетворювачів неелектричних величин (наприклад, швидкості обертання) у напругу змінного струму, частота якої однозначно пов'язана з контрольованою величиною, можливості цих частотомірів ще більш поширюються.

1.3 Вібраційні частотоміри

В енергетиці чи не найбільшого поширення набули електромагнітні вібраційні частотоміри. їхня дія базується на явищі механічного резонансу коливань пружних пластин під дією збуджувальних коливань, створюваних силами тяжіння електромагніта, котушка котрого живиться під джерела змінного струму, частоту якого бажано виміряти.

Такі частотоміри можуть бути виконані з безпосереднім (рис.3, а) чи посереднім (рис.3, б) збудженням. У обох різновидах частотомірів елементами, чутливими до частоти, є пружні пластини 3 з загнутими кінцями 4, розташовані в ряд проти прорізів, зроблених у шкалі 5 (у частотоміра з безпосереднім збудженням може бути і два ряди таких пластин, як видно з рис.3, а). У обох видозмінах таких частотомірів електромагніт 2 з обмоткою 7 створює змінне магнітне поле, яке у частотоміра з безпосереднім збудженням викликає притягання сталевих пластин 3 до полюса електромагніта, а у частотоміра з посереднім збудженням - притягання якоря 6, жорстко пов'язаного з основою 7, на якій закріплено кінці всіх пластин 3. Ці пластини можуть бути виконані як зі сталі, так і з якогось іншого пружного матеріалу (наприклад, бронзи). Якір 6 з основою 7 закріплено на двох пружинах 8 до цоколя приладу 9.

Таким чином, у частотомірів обох видозмін всі пружні пластини 3 вібрують з частотою, вдвоє більшою, ніж частота напруги живлення обмотки 1. А вдвоє більшою тому, що за один період напруги живлення і сталеві пластини 3, і якір 6 притягуються до полюсів електромагніта 2 й відпускаються від нього двічі, незалежно від полярності полюсів цього електромагніта. Але амплітуда вібрації кінців 4 цих пластин буде різною: найбільшою у тієї пластини, власна частота коливань якої дорівнює частоті сили збудження (тобто вдвоє більша за частоту напруги живлення). Менші амплітуди коливань будуть у сусідніх пластин, власна частота коливань яких трохи більша і трохи менша від подвоєної частоти напруги. І чим більш відмінною будуть власні частоти коливань пластин від цієї подвоєної частоти напруги, тим меншим буде розмах коливань кінців 4 цих пластин 3. Частоту коливань напруги знаходять за тією позначкою частотоміра, проти якої видимий розмах коливань кінця пластини 3 є найбільшим. На рис.3, в, де зображено шкалу частотоміра, показано, як виглядає показання розглянутих частотомірів, коли частота напруги мережі становить 49,5 Гц.

Свежие статьи
Популярно сейчас
Как Вы думаете, сколько людей до Вас делали точно такое же задание? 99% студентов выполняют точно такие же задания, как и их предшественники год назад. Найдите нужный учебный материал на СтудИзбе!
Ответы на популярные вопросы
Да! Наши авторы собирают и выкладывают те работы, которые сдаются в Вашем учебном заведении ежегодно и уже проверены преподавателями.
Да! У нас любой человек может выложить любую учебную работу и зарабатывать на её продажах! Но каждый учебный материал публикуется только после тщательной проверки администрацией.
Вернём деньги! А если быть более точными, то автору даётся немного времени на исправление, а если не исправит или выйдет время, то вернём деньги в полном объёме!
Да! На равне с готовыми студенческими работами у нас продаются услуги. Цены на услуги видны сразу, то есть Вам нужно только указать параметры и сразу можно оплачивать.
Отзывы студентов
Ставлю 10/10
Все нравится, очень удобный сайт, помогает в учебе. Кроме этого, можно заработать самому, выставляя готовые учебные материалы на продажу здесь. Рейтинги и отзывы на преподавателей очень помогают сориентироваться в начале нового семестра. Спасибо за такую функцию. Ставлю максимальную оценку.
Лучшая платформа для успешной сдачи сессии
Познакомился со СтудИзбой благодаря своему другу, очень нравится интерфейс, количество доступных файлов, цена, в общем, все прекрасно. Даже сам продаю какие-то свои работы.
Студизба ван лав ❤
Очень офигенный сайт для студентов. Много полезных учебных материалов. Пользуюсь студизбой с октября 2021 года. Серьёзных нареканий нет. Хотелось бы, что бы ввели подписочную модель и сделали материалы дешевле 300 рублей в рамках подписки бесплатными.
Отличный сайт
Лично меня всё устраивает - и покупка, и продажа; и цены, и возможность предпросмотра куска файла, и обилие бесплатных файлов (в подборках по авторам, читай, ВУЗам и факультетам). Есть определённые баги, но всё решаемо, да и администраторы реагируют в течение суток.
Маленький отзыв о большом помощнике!
Студизба спасает в те моменты, когда сроки горят, а работ накопилось достаточно. Довольно удобный сайт с простой навигацией и огромным количеством материалов.
Студ. Изба как крупнейший сборник работ для студентов
Тут дофига бывает всего полезного. Печально, что бывают предметы по которым даже одного бесплатного решения нет, но это скорее вопрос к студентам. В остальном всё здорово.
Спасательный островок
Если уже не успеваешь разобраться или застрял на каком-то задание поможет тебе быстро и недорого решить твою проблему.
Всё и так отлично
Всё очень удобно. Особенно круто, что есть система бонусов и можно выводить остатки денег. Очень много качественных бесплатных файлов.
Отзыв о системе "Студизба"
Отличная платформа для распространения работ, востребованных студентами. Хорошо налаженная и качественная работа сайта, огромная база заданий и аудитория.
Отличный помощник
Отличный сайт с кучей полезных файлов, позволяющий найти много методичек / учебников / отзывов о вузах и преподователях.
Отлично помогает студентам в любой момент для решения трудных и незамедлительных задач
Хотелось бы больше конкретной информации о преподавателях. А так в принципе хороший сайт, всегда им пользуюсь и ни разу не было желания прекратить. Хороший сайт для помощи студентам, удобный и приятный интерфейс. Из недостатков можно выделить только отсутствия небольшого количества файлов.
Спасибо за шикарный сайт
Великолепный сайт на котором студент за не большие деньги может найти помощь с дз, проектами курсовыми, лабораторными, а также узнать отзывы на преподавателей и бесплатно скачать пособия.
Популярные преподаватели
Нашёл ошибку?
Или хочешь предложить что-то улучшить на этой странице? Напиши об этом и получи бонус!
Бонус рассчитывается индивидуально в каждом случае и может быть в виде баллов или бесплатной услуги от студизбы.
Предложить исправление
Добавляйте материалы
и зарабатывайте!
Продажи идут автоматически
5140
Авторов
на СтудИзбе
441
Средний доход
с одного платного файла
Обучение Подробнее