150449 (Колебания), страница 3

2016-07-30СтудИзба

Описание файла

Документ из архива "Колебания", который расположен в категории "". Всё это находится в предмете "физика" из , которые можно найти в файловом архиве . Не смотря на прямую связь этого архива с , его также можно найти и в других разделах. Архив можно найти в разделе "курсовые/домашние работы", в предмете "физика" в общих файлах.

Онлайн просмотр документа "150449"

Текст 3 страницы из документа "150449"

(т — масса частиц) не зависит от выбора направления координатных осей.

Поэтому соответствующим поворотом осей надо только привести к диагональному виду потенциальную энергию. Тогда

(3,14)

и колебания вдоль осей х, у, z являются главными с частотами

В частном случае центрально-симметричного поля (k1=k2=k3=k, U=kr²/2) эти три частоты совпадают.

Использование нормальных координат дает возможность привести задачу о вынужденных колебаниях системы с несколькими степенями свободы к задачам об одномерных вынужденных колебаниях. Функция Лагранжа системы с учетом действующих на нее переменных внешних сил имеет вид

(3,15)

где L0 — лагранжева функция свободных колебаний. Вводя вместо координат хk нормальные координаты, получим:

(3.16)

где введено обозначение

Соответственно уравнения движения

будут содержать лишь по одной неизвестной функции Qa(t).

Затухающие колебания

До сих пор мы всегда подразумевали, что движение тел происходит в пустоте или что влиянием среды на движение можно пренебречь. В действительности при движении тела в среде последняя оказывает сопротивление, стремящееся замедлить движение. Энергия движущегося тела при этом в конце концов переходит в тепло или, как говорят, диссипируется.

Процесс движения в этих условиях уже не является чисто механическим процессом, а его рассмотрение требует учета движения самой среды и внутреннего теплового состояния как среды, так и тела. В частности, уже нельзя утверждать в общем случае, что ускорение движущегося тела является функцией лишь от его координат и скорости в данный момент времени, т. е. не существует уравнений движения в том смысле, какой они имеют в механике. Таким образом, задача о движении тела в среде уже не является задачей механики.

Существует, однако, определенная категория явлений, когда движение в среде может быть приближенно описано с помощью механических уравнений движения путем введения в них некоторых дополнительных членов. Сюда относятся колебания с частотами, малыми по сравнению с частотами, характерными для внутренних диссипативных процессов в среде. При выполнении этого условия можно считать, что на тело действует сила трения, зависящая (для заданной однородной среды) только от его скорости.

Если к тому же эта скорость достаточно мала, то можно разложить силу трения по ее степеням. Нулевой член разложения равен нулю, поскольку на неподвижное тело не действует никакой силы трения, и первый неисчезающий член пропорционален скорости. Таким образом, обобщенную силу трения fтр, действующую на систему, совершающую одномерные малые колебания с обобщенной координатой х, можно написать в виде

где а — положительный коэффициент, а знак минус показывает, что сила действует в сторону, противоположную скорости. Добавляя эту силу в правую сторону уравнения движения, получим :

(4.1)

Разделим его на m и введем обозначения

(4.2)

ω0 есть частота свободных колебаний системы в отсутствие трения. Величина λ называется коэффициентом затухания. Таким образом, имеем уравнение

(4.3)

Следуя общим правилам решения линейных уравнений с постоянными коэффициентами, полагаем х — ert и находим характеристическое уравнение

Общее решение уравнения (4.3) есть

Здесь следует различать два случая.

Если λ < ω0, то мы имеем два комплексно сопряженных значения r. Общее решение уравнения движения может быть представлено в этом случае, как

где А — произвольная комплексная постоянная. Иначе можно написать:

(4.4)

где а и α — вещественные постоянные. Выражаемое этими формулами движение представляет собой так называемые затухающие колебания. Его можно рассматривать как гармонические колебания с экспоненциально убывающей амплитудой. Скорость убывания амплитуды определяется показателем λ, а “частота’’ ω колебаний меньше частоты свободных колебаний в отсутствие трения; при λ<<ω0 разница между ω и ω0— второго порядка малости. Уменьшение частоты при трении следовало ожидать заранее, поскольку трение вообще задерживает движение.

Если λ<<ω0 , то за время одного периода 2π/ω амплитуда затухающего колебания почти не меняется. В этом случае имеет смысл рассматривать средние (за период) значения квадратов координаты и скорости, пренебрегая при усреднении изменением множителя е-λt. Эти средние квадраты, очевидно, пропорциональны е-2λt. Поэтому и энергия системы в среднем убывает по закону

(4.5)

где Е0 — начальное значение энергии.

Пусть теперь λ > ω0 . Тогда оба значения r вещественны, причем оба отрицательны. Общий вид решения

(4.6)

Мы видим, что в этом случае, возникающем при достаточно большом трении, движение состоит в убывании |x|, т. е. в асимптотическом (при t → ∞) приближении к положению равновесия. Этот тип движения называют апериодическим затуханием.

Наконец, в особом случае, когда λ = ω0 , характеристическое уравнение имеет всего один (двойной) корень r = λ . Как известно, общее решение дифференциального уравнения имеет в этом случае вид

(4.7)

Это — особый случай апериодического затухания, Оно тоже не имеет колебательного характера.

Для системы со многими степенями свободы обобщенные силы трения, соответствующие координатам xi, являются линейными функциями скоростей вида

(4.8)

Из чисто механических соображений нельзя сделать никаких заключений о свойствах симметрии коэффициентов аik по индексам i и k. Методами же статистической физики можно показать, что всегда

aik = aki. (4.9)

Поэтому выражения (4.8) могут быть написаны в виде производных

(4.10)

от квадратичной формы

(4.11)

называемой диссипативной функцией.

Силы (4.10) должны быть добавлены к правой стороне уравнений Лагранжа

(4.12)

Диссипативная функция имеет сама по себе важный физический смысл — ею определяется интенсивность диссипации энергии в системе. В этом легко убедиться, вычислив производную по времени от механической энергии системы. Имеем:

Поскольку F— квадратичная функция скоростей, то в силу теоремы Эйлера об однородных функциях сумма в правой стороне равенства равна 2F. Таким образом,

(4.13)

т е. скорость изменения энергии системы дается удвоенной диссипативной функцией. Так как диссипативные процессы приводят к уменьшению энергии, то должно быть всегда F > 0, т. е. квадратичная форма (4.11) существенно положительна.

Уравнения малых колебаний при наличии трения получаются добавлением сил (4.8) в правую сторону уравнений (3.5):

(4.14)

Положив в этих уравнениях

xk = Akert,

получим по сокращении на ert систему линейных алгебраических уравнений для постоянных Ak

(4.15)

Приравняв нулю определитель этой системы, найдем характеристическое уравнение, определяющее значения r:

(4.16)

Это — уравнение степени 2s относительно r. Поскольку все его коэффициенты вещественны, то его корни либо вещественны, либо попарно комплексно сопряжены. При этом вещественные корни непременно отрицательны, а комплексные имеют отрицательную вещественную часть. В противном случае координаты и скорости, а с ними и энергия системы экспоненциально возрастали бы со временем, между тем как наличие диссипативных сил должно приводить к уменьшению энергии.

Вынужденные колебания при наличии трения

Исследование вынужденных колебаний при наличии трения вполне аналогично произведенному в п. 1.2 вынужденные колебания. Мы остановимся здесь подробно на представляющем самостоятельный интерес случае периодической вынуждающей силы.

Прибавив в правой стороне уравнения (4.1) внешнюю силу f cos yt и разделив на т, получим уравнение движения в виде

(5.1)

Решение этого уравнения удобно находить в комплексной форме, для чего пишем в правой части eiγt вместо cos yt:

Частный интеграл ищем в виде x = B eiγt и находим для В:

(5.2)

Представив В в виде be, имеем для b и δ:

(5.3)

Наконец, отделив вещественную часть от выражения Beiγt = bei(γt+δ), получим частный интеграл уравнения (5.1), а прибавив к нему общее решение уравнения без правой части (которое мы напишем для определенности для случая ω0>λ), получим окончательно:

х = ае-λt cos (ωt+ a) + b cos (γt + δ). (5.4)

Первое слагаемое экспоненциально убывает со временем, так что через достаточно большой промежуток времени остается только второй член:

x = b cost + δ). (5.5)

Выражение (5.3) для амплитуды b вынужденного колебания хотя и возрастает при приближении частоты γ к ω0, но не обращается в бесконечность, как это было при резонансе в отсутствие трения. При заданной амплитуде силы f амплитуда колебания максимальна при частоте

при λ<<<ω0 это значение отличается от ω0 лишь на величину второго порядка малости.

Рассмотрим область вблизи резонанса. Положим γ = ω0 + ε, где ε — малая величина; будем также считать, что λ<<ω0. Тогда в (5.2) можно приближенно заменить:

так что

(5.6)

или

(5.7)

Отметим характерную особенность хода изменения разности фаз δ между колебанием и вынуждающей силой при изменении частоты последней. Эта разность всегда отрицательна, т. е. колебание «запаздывает» относительно внешней силы. Вдали от резонанса, со стороны γ < ω0, δ стремится к нулю, а со стороны γ > ω0 — к значению — π. Изменение δ от нуля до — π происходит в узкой (ширины ~ λ) области частот, близких к ω0; через значение -π/2 разность фаз проходит при γ = ω0. Отметим в этой связи, что в отсутствие трения изменение фазы вынужденного колебания на величину π происходит скачком при γ = ω0 (второй член в (2.4) меняет знак); учет трения «размазывает» этот скачок.

При установившемся движении, когда система совершает вынужденные колебания (5.5), ее энергия остается неизменной. В то же время система непрерывно поглощает (от источника внешней силы) энергию, которая диссипируется благодаря наличию трения. Обозначим посредством I(γ) количество энергии, поглощаемой в среднем в единицу времени, как функцию частоты внешней силы. Согласно (4.13) имеем: I (γ) = 2F,

где F — среднее (по периоду колебания) значение диссипативной функции. Для одномерного движения выражение (4.11) диссипативной функции сводится к

Подставив сюда (5.5), получим:

Среднее по времени значение квадрата синуса равно ½ , поэтому

I(γ) = λmb²γ². (5.8)

Вблизи резонанса, подставляя амплитуду колебания из (5.7), имеем:

(5.9)

Такой вид зависимости поглощения от частоты называется дисперсионным. Полушириной резонансной кривой (рис. 1)

называют значение |ε|, при котором величина I(ε) уменьшается вдвое по сравнению с ее максимальным значением при ε = 0.Из формулы (5.9) видно, что в данном случае эта полуширина совпадает с показателем затухания λ. Высота же максимума

I (0) = f ² / 4

обратно пропорциональна λ. Таким образом, при уменьшении показателя затухания резонансная кривая становится уже и выше, т. е. ее максимум становится более острым. Площадь же под резонансной кривой остается при этом неизменной. Последняя дается интегралом

Поскольку I(ε) быстро убывает при увеличении |ε|, так что область больших |ε| все равно не существенна, можно при интегрировании писать I(ε) в виде (5.9), а нижний предел заменить на — ∞. Тогда

(5.10)

Заключение

Колебание — более или менее регулярно повторяющийся процесс. Таково очень нестрогое, «качественное» определение понятия «колебание». Можно привести множество примеров колебательных процессов, относящихся к различным областям физики (и не только физики). Колеблется маятник часов; колеблется груз, подвешенный на пружине. Колеблется взволнованная поверхность воды и гитарная струна. Колеблется заряд на пластинах конденсатора и магнитное поле в катушке индуктивности колебательного контура; периодически изменяется температура воздуха (зимой холоднее — летом теплее) и количество автомобилей на улицах города (больше в часы пик — меньше поздней ночью). Периодически меняется экономическая ситуация в жизни общества: кризисные явления сменяются подъемом экономики. Колеблется давление (или плотность воздуха), вызывая колебания ушной мембраны — и мы слышим голос певца на оперной сцене. Таких примеров можно привести как угодно много. Ознакомились с колебаниями в той или иной физической системе. Здесь же познакомились с наиболее часто встречающимися простейшими видами колебательных движений, основными характеристиками колебательных процессов, с математическим способом описания колебаний.

В результате проделанной работы было рассмотрено следующее:

― свободные одномерные колебания;

― вынужденные колебания;

― колебания систем со многими степенями свободы;

― затухающие колебания;

― вынужденные колебания при наличии трения.

Список использованной литературы:

  1. Ландау Л.Д., Лифшнц Е.М. Теоретическая физика: Учеб. пособие. — Т.I. Механика. — 4-е изд., испр. — М.: Наука. 1988.— 216 с.

  2. Кингсеп А.С, Локшин Г.Р., Ольхов О.А. Основы физики. Курс общей физики: Учебн. В 2 т. Т. 1. Механика, электричество и магнетизм, колебания и волны, волновая оптика — М.: ФИЗИАТЛИТ, 2001. ― 560 с.

  3. Матвеев А.Н., Механика и теория относительности: Учеб. для студентов вузов / А.Н. Матвеев. — 3-е изд. — М.: ООО «Издательский дом «ОНИКС 21 век»: 000 «Издательство «Мир и Образование», 2003. — 432 с.

  4. И.В.Савельев, Курс общей физики, том I. Механика, колебания и волны, молекулярная физика. М.: Издательство «Наука», 1970г.― 517с.

  5. Зоммерфельд А., Механика. ― Ижевск: НИЦ «Регулярная и хаотическая динамика», 2001. ― 368 с.

Свежие статьи
Популярно сейчас
Почему делать на заказ в разы дороже, чем купить готовую учебную работу на СтудИзбе? Наши учебные работы продаются каждый год, тогда как большинство заказов выполняются с нуля. Найдите подходящий учебный материал на СтудИзбе!
Ответы на популярные вопросы
Да! Наши авторы собирают и выкладывают те работы, которые сдаются в Вашем учебном заведении ежегодно и уже проверены преподавателями.
Да! У нас любой человек может выложить любую учебную работу и зарабатывать на её продажах! Но каждый учебный материал публикуется только после тщательной проверки администрацией.
Вернём деньги! А если быть более точными, то автору даётся немного времени на исправление, а если не исправит или выйдет время, то вернём деньги в полном объёме!
Да! На равне с готовыми студенческими работами у нас продаются услуги. Цены на услуги видны сразу, то есть Вам нужно только указать параметры и сразу можно оплачивать.
Отзывы студентов
Ставлю 10/10
Все нравится, очень удобный сайт, помогает в учебе. Кроме этого, можно заработать самому, выставляя готовые учебные материалы на продажу здесь. Рейтинги и отзывы на преподавателей очень помогают сориентироваться в начале нового семестра. Спасибо за такую функцию. Ставлю максимальную оценку.
Лучшая платформа для успешной сдачи сессии
Познакомился со СтудИзбой благодаря своему другу, очень нравится интерфейс, количество доступных файлов, цена, в общем, все прекрасно. Даже сам продаю какие-то свои работы.
Студизба ван лав ❤
Очень офигенный сайт для студентов. Много полезных учебных материалов. Пользуюсь студизбой с октября 2021 года. Серьёзных нареканий нет. Хотелось бы, что бы ввели подписочную модель и сделали материалы дешевле 300 рублей в рамках подписки бесплатными.
Отличный сайт
Лично меня всё устраивает - и покупка, и продажа; и цены, и возможность предпросмотра куска файла, и обилие бесплатных файлов (в подборках по авторам, читай, ВУЗам и факультетам). Есть определённые баги, но всё решаемо, да и администраторы реагируют в течение суток.
Маленький отзыв о большом помощнике!
Студизба спасает в те моменты, когда сроки горят, а работ накопилось достаточно. Довольно удобный сайт с простой навигацией и огромным количеством материалов.
Студ. Изба как крупнейший сборник работ для студентов
Тут дофига бывает всего полезного. Печально, что бывают предметы по которым даже одного бесплатного решения нет, но это скорее вопрос к студентам. В остальном всё здорово.
Спасательный островок
Если уже не успеваешь разобраться или застрял на каком-то задание поможет тебе быстро и недорого решить твою проблему.
Всё и так отлично
Всё очень удобно. Особенно круто, что есть система бонусов и можно выводить остатки денег. Очень много качественных бесплатных файлов.
Отзыв о системе "Студизба"
Отличная платформа для распространения работ, востребованных студентами. Хорошо налаженная и качественная работа сайта, огромная база заданий и аудитория.
Отличный помощник
Отличный сайт с кучей полезных файлов, позволяющий найти много методичек / учебников / отзывов о вузах и преподователях.
Отлично помогает студентам в любой момент для решения трудных и незамедлительных задач
Хотелось бы больше конкретной информации о преподавателях. А так в принципе хороший сайт, всегда им пользуюсь и ни разу не было желания прекратить. Хороший сайт для помощи студентам, удобный и приятный интерфейс. Из недостатков можно выделить только отсутствия небольшого количества файлов.
Спасибо за шикарный сайт
Великолепный сайт на котором студент за не большие деньги может найти помощь с дз, проектами курсовыми, лабораторными, а также узнать отзывы на преподавателей и бесплатно скачать пособия.
Популярные преподаватели
Добавляйте материалы
и зарабатывайте!
Продажи идут автоматически
5167
Авторов
на СтудИзбе
437
Средний доход
с одного платного файла
Обучение Подробнее