150178 (Вплив процесів деформування на поверхневий шар металів), страница 3

2016-07-30СтудИзба

Описание файла

Документ из архива "Вплив процесів деформування на поверхневий шар металів", который расположен в категории "". Всё это находится в предмете "физика" из , которые можно найти в файловом архиве . Не смотря на прямую связь этого архива с , его также можно найти и в других разделах. Архив можно найти в разделе "курсовые/домашние работы", в предмете "физика" в общих файлах.

Онлайн просмотр документа "150178"

Текст 3 страницы из документа "150178"

де ρ - густина дислокацій; δ - коефіцієнт розмноження дислокацій; V0 – коефіцієнт пропорційності; U0 - енергія активації руху дислокацій; τm·sin(ω·t) - змінне напруження; tso і tsf початковий і кінцевий моменти дислокаційного руху в межах напівперіоду відповідно; k - стала Больцмана; T - температура. Рівняння (8) було розв`язане чисельно за допомогою ПК для різних значень амплітуди прикладеної напруженості. Густина дислокацій у поверхневому шарі була обчислена для кожного циклу. Результати обчислень густини дислокацій для алюмінію приведено на рис. 8..

Відповідність між експериментальними точками і теоретичною кривою задовільна. Збільшення густини дислокацій супроводжується зменшенням РВЕ. Збільшення РВЕ через збільшення густини сходинок може бути представлено формулою (2). Тоді, густина формування сходинок за цикл визначається густиною дислокацій і швидкістю їх руху:

(9)

Із експериментальних даних залежності РВЕ від кількості циклів наробки при випробуваннях алюмінію на знакозмінний згин було отримано dn/dN=318 сходинок × цикл-1 × см-2, що узгоджується з літературними даними

4. Закономірності формування енергетичного рельєфу металевої поверхні при контактних взаємодіях і при механічній обробці

У роботі було досліджено залежність контактної провідності 1/R від величини навантаження N у процесі навантаження і розвантаження контактного з'єднання. Також показані залежності, отримані при кінетичному індентуванні різних ділянок поверхні зразка з міді марки М1 за різними режимами навантаження (статичне – “С”; із впливом вібрації – “Д”) і для двох поверхонь: вихідної – “1” і “2” – поверхні, що зазнали стиску за межею течії. На основі регресійного аналізу встановлено, що отримані залежності апроксимуються показниковою функцією з показником степеня в інтервалі від 0,42 до 0,59. З експериментально обумовленої залежності контактної провідності від контактного навантаження може бути визначено компонент відношення збільшення контактної провідності до зміни навантаження на контактне з'єднання , обумовлений тільки збільшенням числа мікровиступів шорсткості. Ця величина визначається на основі параметрів лінійної регресії ділянок залежності до і після її перегину

і характеризує вплив профілю опорної кривої шорсткуватої поверхні на величину фактичної площини контакту (ФПК). При індентуванні поверхні, зміцненої попереднім плоским стиском, злам залежностей не спостерігається. Таке поводження можна пояснити тим, що при індентуванні не зміцненої поверхні до настання пластичного насичення на зростання ФПК істотньо впливає деформація мікровиступів шорсткості.

Після досягнення пластичного насичення ФПК росте завдяки збільшенню контурної площі. У присутності вібрації на вихідній поверхні швидкість росту ФПК і контактної провідності істотно збільшується. В умовах циклічного навантаження відбувається знеміцнення матеріалу, зумовлене підвищеною рухливістю дислокацій поблизу поверхні. При індентуванні з накладенням вібрації в контактній зоні кінетика контактних деформацій визначається, очевидно, конкуренцією процесів зміцнення і знеміцнення. У випадку ж наявності залишкових напружень на вершинах мікровиступів шорсткості на ріст ФПК переважний вплив має збільшення контурної площі на всьому протязі контактного навантаження. Нелінійний характер ФПК від навантаження в цьому випадку обумовлений зміцненням нижчих шарів. Відсутність помітного впливу вібрації на нахил залежності для зміцненої поверхні свідчить про те, що знеміцнення, яке викликане циклічним навантаженням, відбувається тільки на вершинах мікровиступів, і його кількісна характеристика залежить від величини залишкових напружень на контактуючих ділянках.

Рентгеноструктурне дослідження вихідної поверхні і після деформування стисканням, виявило наявність на них однакових стискуючих залишкових напружень σ = -180 МПа, обумовлених технологічною передісторією матеріалу зразків. Як відзначалося вище, залежності, отримані при кінетичному індентуванні, свідчать про розходження залишкових напружень у поверхневому шарі. Це протиріччя викликане тим, що додаткові напруження зосереджені, головним чином, у вершинах мікровиступів шорсткості, у той же час рентгенівську дифракцію одержано від більш товстого шару (близько 100 мкм). З приведених даних випливає, що зміна КЕО при кінетичному макроіндентуванні відчутна до величини залишкових напружень у тонкому приповерхньому шарі, а саме, до інтегральної мікротвердості шорсткуватого шару - параметру, що безпосередньо визначає кінетику контактної взаємодії. У процесі поступового зняття навантаження відбувається пружне відновлення області контактного деформування. Тому дослід розвантаження становить інтерес для визначення пружних властивостей матеріалу і легше піддається теоретичному опису. Із рішення задачі Герца для пружного зіткнення двох тіл нами був отриманий вираз для ФПК і контактної провідності, у якому ці величини пропорційні N1/2. При розгляді залежності була встановлена наявність двох лінійних ділянок. Розвантаження при кінетичному макроіндентуванні дозволяє одержувати дані про пружні характеристики деформованих мікровиступів шорсткості і більш глибокого підповерхневого шару.

Як показали проведені нами дослідження, значення максимальних змін РВЕ при контактних деформаціях і при деформуванні за схемою розтягування-стискання для тих самих металів збігаються. Розглянемо характерні закономірності змін РВЕ, що були викликані обробкою алюмінію шліфуванням. Підготовка зразків полягала в поліруванні поверхні і наступному відпалі у вакуумі при температурі (250 ± 3) 0С протягом чотирьох годин. Потім на п'ятьох ділянках зразка поверхня шліфувалася шкірками різної зернистості. Відповідні значення Ra(мкм) складали:1-1,5; 2-0,9; 3-0,45;4-0,21;5-0,075. Було виявлено, що перехід від більш грубого до більш дрібного шліфування супроводжується зменшенням РВЕ (ділянки 1,2 і 3), рис.10. Подальше зменшення параметра шорсткості поверхні приводить до зростання РВЕ (ділянки 4 і 5). Ділянка 3 відповідає змінам, що гранично досягаються РВЕ при пластичному деформуванні алюмінію. Зростання РВЕ пов'язане із зміною характеру поверхневого деформування при тонкому шліфуванні. Також було виявлено, що і релаксаційні процеси розвиваються по-різному для ділянок з різним шліфуванням. Для перших двох ділянок з відносно грубим геометричним рельєфом спостерігалось швидке відновлення вихідних параметрів енергетичного рельєфу. На ділянках 3 5 встановлювалися значно менші порівняно з вихідними значеннями РВЕ. Можна припустити, що при грубому шліфуванні енергетичний рельєф поверхні швидко відновлюється, а при тонкому шліфуванні (поліруванні) створюється новий енергетичний стан поверхні.

Послідовне шліфування металевої поверхні наждаковими шкурками різної зернистості приводить до циклічних змін в енергетичному розподілі РВЕ на поверхні. Зміни РВЕ при поверхневій обробці визначаються як величиною деформації, так і параметрами атомарній шорсткості. Підвищена густина дефектів у поверхневому шарі деформованих металів приводить до зниження рівня Фермі. В результаті вирівнювання хімічного потенціалу у всьому об`єму металу до поверхні стікаються електрони, тому у приповерхневій області створюється надлишковий від`ємний заряд. Внаслідок нерівномірності процесу деформування відбувається відповідне утворення “острівців” від`ємного заряду. Розглянута взаємодія електронної і іонної підсистем дає можливість простежити кінетику розподілу деформаційних процесів на поверхні за зміною розподілу РВЕ. Спостерігається зменшення РВЕ на самій доріжці тертя для всіх трьох розглянутих матеріалів. Ширина доріжки тертя визначається шириною спадів на кривих розподілу РВЕ, а відстані між спадами РВЕ відповідають діаметру кільцевої доріжки тертя. Виміри залежності РВЕ від часу випробування на тертя показали, що на початку РВЕ значно зменшується, а з часом після приробки перестає змінюватися. Експериментальні дані дозволяють зробити висновок, що існує відповідність між зміною величини РВЕ і параметрами структури приповерхневого шару металу, що характеризують сталий для даних умов режим тертя.

У даній роботі було також вивчено можливість експресної оцінки зносостійкості металів за розподілом РВЕ по поверхні. Зразки однакового хімічного складу зазнавали випробування на абразивне зношення і на тертя з наступним виміром розподілу РВЕ впоперек доріжки тертя. Виявлено, що більшому зношенню зразків відповідає більше зменшення РВЕ. Сплав, що містить (%) 2,0 C + 18,0 Cr + 2,0 B, показав найбільший опір абразивному зносу. Коефіцієнт кореляції між РВЕ і параметрами зносу дорівнював 0,92, що свідчить про високий ступінь відповідності між цими величинами. Використання методу виміру розподілу РВЕ впоперек доріжки тертя дає можливість проводити відносну оцінку схильності різних металів до абразивного зносу.

Одним з ефективних методів дослідження механічних властивостей приповерхневих шарів металів є індентування. На наступному етапі роботи ставилася задача дослідити закономірності розподілу КРП при індентуванні, закономірності формування енергетичного рельєфу та еволюції цього рельєфу з часом. Для усіх відбитків сферичного індентора спостерігалася характерна деформаційна зона, що відповідає ділянці поверхні контакту, рис.12. Діаметри відбитків, виміряні оптичним методом, відповідають ширині кривих розподілу КРП на рівні половини висоти. Отже, зміна КРП пов’язана з пластичною деформацією поверхні зі фактичною площею контакту. Тому, останню можна більш точно визначити за поверхневим розподілом КРП. В усіх проведених експериментах максимальна величина КРП на поверхні контактної ділянці не перевищувала 1,15 В, у той же час в процесі пластичного деформування розтягуванням для алюмінію реєструється величина КРП до 1,25 В. Це означає, що густина дислокацій, що вийшли на поверхню, при деформуванні в умовах контактуючих поверхонь менша ніж на вільній поверхні. Комплексний підхід у вивченні фізичних властивостей приповерхневих шарів металів означає вимір енергетичних, силових і структурних параметрів матеріалу. Отримані методом кінетичного індентування значення активаційного об`єму зразків дозволили пояснити структурні зміни в результаті різних поверхневих зміцнюючих обробок, таблиця 1. Глибина впровадження індентора в матеріал поверхневого шару складала ~ 0,1 мм. Це означає, що досліджувався зміцнений обробкою приповерхневий шар. Стискуючі залишкові макронапруження в приповерхневому шарі зразків обумовлені збільшенням густини дислокацій та розвитком дислокаційної структури.

Як наслідок цього спостерігається кореляція між величиною залишкових макронапружень і активаційним об`ємом. Зростанню стискуючих напружень відповідає зменшення величини активаційного об`єму. Показано, що контактні напруження з ростом деформації збільшуються, виходячи на плато, що відповідає границі плинності сплаву. Хід кривих дозволяє виявити особливості пружно-пластичної деформації матеріалу в залежності від обробки. На підставі отриманих даних, наприклад, можна рекомендувати віброамплітудне шліфування і полірування для збільшення опору контактним деформаціям.

Таблиця 1

Деякі характеристики матеріалу приповерхневого шару зразків з сплаву титана ВТ3-1 після різних видів поверхневої обробки.

№ серії

Модуль

Юнга, E, ГПа

Залишкові макронапруження, σ, МПа

Активаційний

об`єм,V*,10-8,м3

A

118

-594

4, 99

B

90

-460

6, 02

C

99

-200

8, 41

Примітка: A – віброамплітудне шліфування і полірування, 30 хв.; B – обробка сталевими кульками діаметром 1,9 мм в ультразвуковому полі, 3 хв; C – віброамплітудне зміцнення керамічними гранулами діаметром 1,9 мм.

Розділ 6. Зміни приповерхневої структури металів під впливом електроімпульсної та магнітно-абразивної обробок. У даному розділі дисертації описано результати досліджень впливу потужних імпульсів електричного струму і магнітно-абразивної обробки на механічні властивості поверхневого шару металів. Через зразки пропускався розряд конденсаторної батареї ємністю 200 мкФ. Тривалість розряду складала 50 мкс. Максимальна зареєстрована термопарою температура знаходилася в інтервалі 350520 0К. Після електроімпульсної обробки (ЕІО) зразки випробовувалися на втому, а також досліджувалися з використанням рентгеноструктурного аналізу. Визначалися такі величини: макроскопічні залишкові поверхневі напруження σ; мікроскопічні деформації ; розмір блоків мозаїки D. Результати, отримані для сплаву титана ВТ3, наведено в таблиці 2. Із таблиці 2 видно, що електроімпульсна обробка підвищує опір втоми в 1,251,50 разів. Макроскопічні напруження зменшуються по абсолютній величині, а мікронапруження зростають. Структурний стан поверхні після ЕІО стає більш однорідним. У роботі зроблений висновок, що ЕІО є способом “прицільного лікування” дефектів кристалічних ґраток і ефективним новим методом поліпшення міцності втоми сплавів.

Таблиця 2

Довговічність, залишкові напруження і параметри мікроструктури до і після ЕІО сплаву марки ВТ3-1. t – час попереднього зміцнення (УЗО).

t, с

N, 107 циклів

σ, МПа

, 10-3

D, нм

до ЕІО

до ЕІО

до ЕІО

до ЕІО

300

2,5±1,2 3,8±0,5

-466 -311

1,5 2,6

12,4 10,5

600

3,5±0,9 3,6±0,6

-594 -437

1,2 2,4

12,3 9,2

900

2,9±1,3 3,7±0,7

-648 -447

1,5 2,0

15,0 11,8

Проходження електричних імпульсів через метал супроводжується відділенням теплової енергії. Оскільки будь-які дефектні області кристалу мають більш високий опір електричному струму, теплова енергія в основному виділяється в цих областях. Ця додаткова енергія сприяє переходу дефектних зон у рівноважний стан. Таким чином, дія імпульсів електричного струму специфічна локалізацією виділення теплової енергії. Автором запропонована і розглянута фізична модель еволюції пари точкових дефектів у зоні локального розігріву кристалу. Загальна енергія системи атомів представлена у вигляді:

Свежие статьи
Популярно сейчас
Как Вы думаете, сколько людей до Вас делали точно такое же задание? 99% студентов выполняют точно такие же задания, как и их предшественники год назад. Найдите нужный учебный материал на СтудИзбе!
Ответы на популярные вопросы
Да! Наши авторы собирают и выкладывают те работы, которые сдаются в Вашем учебном заведении ежегодно и уже проверены преподавателями.
Да! У нас любой человек может выложить любую учебную работу и зарабатывать на её продажах! Но каждый учебный материал публикуется только после тщательной проверки администрацией.
Вернём деньги! А если быть более точными, то автору даётся немного времени на исправление, а если не исправит или выйдет время, то вернём деньги в полном объёме!
Да! На равне с готовыми студенческими работами у нас продаются услуги. Цены на услуги видны сразу, то есть Вам нужно только указать параметры и сразу можно оплачивать.
Отзывы студентов
Ставлю 10/10
Все нравится, очень удобный сайт, помогает в учебе. Кроме этого, можно заработать самому, выставляя готовые учебные материалы на продажу здесь. Рейтинги и отзывы на преподавателей очень помогают сориентироваться в начале нового семестра. Спасибо за такую функцию. Ставлю максимальную оценку.
Лучшая платформа для успешной сдачи сессии
Познакомился со СтудИзбой благодаря своему другу, очень нравится интерфейс, количество доступных файлов, цена, в общем, все прекрасно. Даже сам продаю какие-то свои работы.
Студизба ван лав ❤
Очень офигенный сайт для студентов. Много полезных учебных материалов. Пользуюсь студизбой с октября 2021 года. Серьёзных нареканий нет. Хотелось бы, что бы ввели подписочную модель и сделали материалы дешевле 300 рублей в рамках подписки бесплатными.
Отличный сайт
Лично меня всё устраивает - и покупка, и продажа; и цены, и возможность предпросмотра куска файла, и обилие бесплатных файлов (в подборках по авторам, читай, ВУЗам и факультетам). Есть определённые баги, но всё решаемо, да и администраторы реагируют в течение суток.
Маленький отзыв о большом помощнике!
Студизба спасает в те моменты, когда сроки горят, а работ накопилось достаточно. Довольно удобный сайт с простой навигацией и огромным количеством материалов.
Студ. Изба как крупнейший сборник работ для студентов
Тут дофига бывает всего полезного. Печально, что бывают предметы по которым даже одного бесплатного решения нет, но это скорее вопрос к студентам. В остальном всё здорово.
Спасательный островок
Если уже не успеваешь разобраться или застрял на каком-то задание поможет тебе быстро и недорого решить твою проблему.
Всё и так отлично
Всё очень удобно. Особенно круто, что есть система бонусов и можно выводить остатки денег. Очень много качественных бесплатных файлов.
Отзыв о системе "Студизба"
Отличная платформа для распространения работ, востребованных студентами. Хорошо налаженная и качественная работа сайта, огромная база заданий и аудитория.
Отличный помощник
Отличный сайт с кучей полезных файлов, позволяющий найти много методичек / учебников / отзывов о вузах и преподователях.
Отлично помогает студентам в любой момент для решения трудных и незамедлительных задач
Хотелось бы больше конкретной информации о преподавателях. А так в принципе хороший сайт, всегда им пользуюсь и ни разу не было желания прекратить. Хороший сайт для помощи студентам, удобный и приятный интерфейс. Из недостатков можно выделить только отсутствия небольшого количества файлов.
Спасибо за шикарный сайт
Великолепный сайт на котором студент за не большие деньги может найти помощь с дз, проектами курсовыми, лабораторными, а также узнать отзывы на преподавателей и бесплатно скачать пособия.
Популярные преподаватели
Добавляйте материалы
и зарабатывайте!
Продажи идут автоматически
5167
Авторов
на СтудИзбе
437
Средний доход
с одного платного файла
Обучение Подробнее