86324 (Задачи на экстремум в планиметрии), страница 2

2016-07-30СтудИзба

Описание файла

Документ из архива "Задачи на экстремум в планиметрии", который расположен в категории "". Всё это находится в предмете "математика" из , которые можно найти в файловом архиве . Не смотря на прямую связь этого архива с , его также можно найти и в других разделах. Архив можно найти в разделе "курсовые/домашние работы", в предмете "математика" в общих файлах.

Онлайн просмотр документа "86324"

Текст 2 страницы из документа "86324"

в) Исследуем последнее критическое значение х3 = 1. В достаточной близости слева производная в силу (6) отрицательна. Справа от х3 = 1 имеем:

f '(х) = 1/5 (+)2 (+) (+) = + . (7)

При переходе через х = 1 производная меняет знак с минуса на плюс [функция f(х) переходит от убывания к возрастанию]. Значит, при х = 1 функция имеет минимальное значение; оно равно

f (х) = (1 - 1)2(1 + 1)3 = 0.

П р и м е р 3. Найти все экстремумы функции

Р е ш е н и е. Данная функция дифференцируема при всех положительных и отрицательных значениях х, и мы имеем:

В точке же х = 0 функция f(x) не дифференцируема (ее производная бесконечна). Поэтому (см. замечание 1) имеем два критических значения: x1 = 0 и х2 = 2/5.

При х < 0 имеем:

При 0 < х < 2/5 имеем:

При х > 2/5 имеем:

Значит, в точке х = 0 функция имеет максимальное значение f (0) = 0, а в точке x = 2/5 - минимальное значение

§ 5. Второе достаточное условие максимума и минимума

Когда знак производной вблизи критических точек (§ 4) распознается с трудом, можно пользоваться следующим достаточным условием экстремума.

Т е о р е м а 1. Пусть в точке х = а первая производная f ' (х) обращается в нуль; если при этом вторая производная f " (а) отрицательна, то функция

f (х) имеет в точке х = а максимум, если положительна, то — минимум. В случае f "(а) = 0 см. теорему 2.

Второе условие следующим образом связано с первым. Будем рассматривать f "(х) как производную от f '(х). Соотношение f "(а) < 0 означает, что f '(х) убывает в точке х = а. Атак как f '(а) = 0, то f(х) положительна при х < а и отрицательна при х > а. Значит (§ 3), f(х) имеет максимум при х = а. Аналогично для случая f " (а) > 0.

П р и м е р 1. Найти максимумы и минимумы

Рис. 12 функции f (х) = ½ х4х2 + 1

Р е ш е н и е. Решив уравнение f '(х) = 2х3 — 2х = 0,

получаем критические значения хl = —1, х2 = 0, х3 = 1.

Подставив их в выражение второй производной f "(х) = 6х2 — 2 = 2 (Зх2 — 1), находим, что f "(-1)>0, f "(0)<0, f "(1)>0. Значит при х = -1 и х = 1 имеем минимум, при х = 0 - максимум (рис. 12).

Может случиться, что вместе с первой производной обращается в нуль и вторая; может обратиться в нуль и ряд последующих производных. Тогда можно воспользоваться следующим обобщением теоремы 1.

Т е о р е м а 2. Если в точке х = а, где первая производная равна нулю, ближайшая не равная нулю производная имеет четный порядок 2k, то функция f (х) имеет при х = а максимум, когда f (2k)(а) < 0, и минимум, когда f(2k) (а) > 0. Если же ближайшая не равная нулю производная имеет нечетный порядок 2k + 1, то функция f(х) в точке а не имеет экстремума; она возрастает, когда f (2k + 1) (а) > 0, и убывает, когда f (2k + 1) (а) < 0.

З а м е ч а н и е. Теоретически не исключено, что у функции f (х) (не являющейся постоянной величиной) все производные в точке х = а будут равняться нулю. Однако практического значения этот случай не имеет.

П р и м е р 2. Найти максимумы и минимумы функции f (х) = sin Зх - 3 sin х.

Р е ш е н и е. Имеем: f '(х) = 3 cos Зх — 3 cos х. Решая уравнение 3 cos Зх — 3 cos х = 0, найдем: х = k π/2, где k— любое целое число.

Так как данная функция имеет период 2π, то достаточно исследовать четыре корня: х1 = 0, х2 = π/2, х3 = π, х4 = /2

Берем вторую производную f "(х) = — 9 sin Зх + 3 sin х. Подставляя критические значения х1, х2, х3, х4, находим:

f "(0) = 0. f "( π/2) = 12,

f "(π) = 0. f "(/2) = - 12.

В точке х2 = π/2 ближайшая не равная нулю производная имеет второй (четный) порядок, причем f " (π/2) > 0. Значит, при х = π/2 имеем минимум. Аналогично заключаем, что при х = /2 имеем максимум ибо f "(/2) < 0

Экстремальные значения будут:

f (π/2) = — 1 — 3= - 4 (минимум),

f (/2) = sin /2 - 3 sin /2 = 1 - (- 3) = 4 (максимум).

Чтобы исследовать критические значения х1 = 0 и х3 = π, найдем третью производную f '" (х) = — 27 cos Зх + 3 cos х;.

Имеем: f '" (0) = - 24, f '" (π) = + 24.

В точке х = 0 ближайшая не равная нулю производная имеет третий (нечетный) порядок, причем f '"(0) < 0. Значит, при х = 0 экстремума нет. Здесь функция f(х) убывает. Аналогично заключаем, что и при х = π экстремума нет; но здесь функция f (х) возрастает [ибо f '"(π) > 0].

§ 6. Разыскание наибольших и наименьших значений функции

1. Пусть по условию вопроса аргумент непрерывной функции f(x) изменяется в бесконечном промежутке, например в промежутке (a, +∞). Тогда может случиться, что среди значений функции f (х) нет наибольшего; см. рис. 13,а), где f(x) неограниченно возрастает при х→+. Если же функция f (х) обладает наибольшим значением, то последнее непременно является одним из экстремумов функции; см, рис. 13, б), где наибольшее значение функции есть f (с).

Пусть теперь по условию вопроса аргумент х изменяется в замкнутом промежутке (а, b). Тогда f (х) непременно принимает наибольшее значение.

Однако последнее может не принадлежать к экстремумам, а достигаться на одном из концов промежутка (в точке х = b 1) на рис. 13, в)).

Аналогично для наименьшего значения.

1) Если исключить из рассмотрения конец х = b, то на оставшемся незамкнутом промежутке функция f (х) наибольшего значения не будет иметь.

2. Пусть требуется разыскать наибольшее (или наименьшее) значение геометрической или физической величины, подчиненной определенным условиям (см. ниже примеры). Тогда надо представить эту величину, как функцию какого-либо аргумента. Из условия задачи определяем промежуток изменения аргумента. Затем находим все критические значения аргумента, лежащие в этом промежутке, и вычисляем соответствующие значения функции, а также значения функции на концах промежутка. Из найденных значений выбираем наибольшее (наименьшее).

З а м е ч а н и е 1. Часто аргумент можно выбирать по-разному; удачный выбор может упростить решение. Учет особенностей задачи тоже может упростить решение.

Так, если внутри данного промежутка имеется лишь одно критическое значение аргумента и оно, на основании того или иного признака (см. §§ 3, 5) должно давать максимум (минимум), то и без сравнения с граничными значениями функции мы вправе заключить, что этот максимум (минимум) является искомым наибольшим (наименьшим) значением,

П р и м е р 1. Отрезок АВ = а делится на две

Рис. 14 части точкой С; на отрезках АС и СВ (рис. 14), как сторонах, строится прямоугольник ACBD. Определить наибольшее значение его площади S.

Р е ш е н и е. Примем за аргумент х длину АС; тогда

СВ = а — х и S = x (а — х).

Аргумент х непрерывной функции S изменяется в промежутке (0, а).

Из уравнения

dS/dx= а — 2х = 0

находим (единственное) критическое значение х = а/2. Оно принадлежит данному промежутку (0, а). Вычисляем значение S(а/2) = а/4 и граничные значения f(0) = 0, f(a) = 0. Сопоставляя эти три значения, заключаем, что искомым наибольшим значением является а/4.

В этом сопоставлении не будет необходимости, если заметить, что в единственной критической точке х = а/2 вторая производная функции S (х) отрицательна; т. е. (§ 5) функция S(х) имеет здесь максимум.

Переменный прямоугольник ACBD всегда имеет один и тот же периметр (2а). Значит, из всех прямоугольников данного периметра квадрат имеет наибольшую площадь.

П р и м е р 2. Найти наименьшую и наибольшую величины полупериметра прямоугольника с данной площадью S.

Р е ш е н и е . Обозначим стороны прямоугольника через х, у. По условию

xy = S (1)

(х и у — положительные величины). Требуется найти наименьшее и наибольшее значения величины

р = х + у. (2)

Примем за аргумент х; тогда

р = х + S/х (3)

Аргумент х изменяется в бесконечном промежутке (0, + ∞) (в него не входит конец х = 0). В этом промежутке функция р(х) непрерывна и имеет производную (4)

Из уравнения (5)

находим единственное (в данном промежутке) критическое значение

Из (4) видно, что при производная положительна. Значит (§ 3), имеем минимум. Будучи единственным, он является (см.

замечание 1) наименьшим значением полупериметра;

(6)

т. е. из всех прямоугольников с данной площадью S наименьший полупериметр имеет квадрат Наибольшего значения величина р не имеет [данный промежуток (0, +∞) — незамкнутый].

П р и м е р 3. Найти наименьшее количество жести, из которого можно изготовить цилиндрическую консервную банку вместимостью V=2π (запас на швы не учитывать).

Р е ш е н и е. Пусть поверхность банки S, радиус основания r, высота h. Требуется найти наименьшее значение величины

S = 2 πrh + 2r2 (7)

при условии, что

πr2h=V. (8)

За аргумент удобно принять r. Из (7) и (8) находим:

(9)

где аргумент изменяется в промежутке (0, ∞). По смыслу задачи ясно, что величина S достигает наименьшего значения где-то внутри этого промежутка. Поэтому достаточно рассмотреть значения функции в критических точках. Решаем уравнение (10)

Единственный его корень соответствует наименьшему значению S. Из (8) и (11) находим: , т. е. высота банки должна равняться диаметру основания. Наименьшее количество жести, потребное для изготовления банки, равно

Sнаим = 2 π(rh + г2) = 6 πr2 = 3 πrV ~ 879 см2.

П р и м е р 4. (парадокс Декарта). В 1638 г.

Рис. 15 Декарт получил (через М. Мерсенна) письмо Ферма, где последний сообщил без доказательства открытое им правило разыскания экстремума. В переводе на современный язык правило Ферма сводится к разысканию значения х, обращающего в нуль производную f '(х) исследуемой функции f(х).

В ответном письме Декарт привел нижеследующий пример, доказывающий, как он полагал, ложность правила Ферма. Пусть дана окружность

х2+у2 = r2 (12)

(рис. 15) и точка А (— а; 0), отличная от центра (т. е. а ≠ 0). Требуется найти на окружности (12) точку, ближайшую к А. Квадрат расстояния произвольной точки М (х; у) от точки А выражается так:

АМ2 = (х + а)2 + у2. (13)

Если же М лежит на окружности (12), то у2 = r2х2,

так что AM2 = (х + а)2 + r2x2.

Чтобы найти значение х, дающее минимум величине AM2, Декарт следует правилу Ферма и получает нелепое равенство 2а = 0.

Между тем геометрически ясно, что искомая точка существует и совпадает с точкой Р(—r; 0). Из этого Декарт заключает, что признак минимума неверен. На самом деле точка Р (х = - r) не обнаруживается по другой причине: соответствующее ей наименьшее значение AM2 не является минимумом. Действительно, х изменяется только в промежутке (— r, + r). Рассматриваемая функция принимает наименьшее значение на конце промежутка.

§ 7. Правило разыскания экстремума

Пусть функция f(x, у) дифференцируема в некоторой области ее задания. Чтобы найти все ее экстремумы в этой области, надо:

1) Решить систему уравнений f 'x(x,y) = 0, f 'y(x,y) = 0. (1)

Решение даст критические точки.

2) Для каждой критической точки Р0 (a; b) исследовать, остается ли неизменным знак разности

f (x, y) – f (a, b) (2)

для всех точек (х; у), достаточно близких к Р0. Если разность (2) сохраняет положительный знак, то в точке Р0 имеем минимум, если отрицательный, — то максимум. Если разность (2) не сохраняет знака, то в точке Р0 нет экстремума.

Аналогично находим экстремумы функции при большем числе аргументов.

З а м е ч а н и е. При двух аргументах исследование иногда облегчается применением достаточного условия § 8. При большем числе аргументов это условие усложняется. Поэтому на практике стараются использовать частные свойства данной функции.

П р и м е р. Найти экстремумы функции

f(x, у) = х3 + у3ху + 1.

Р е ш е н и е. 1) Приравнивая к нулю частные производные f 'х = 3х2 — 3у, f =3у2 — Зх, получаем систему уравнений

х2 - у = 0, у2х = 0. (3)

Она имеет два решения:

х1 = у1 = 0, х2 = y2 = 1. (4)

Исследуем знак разности (2) для каждой из двух критических точек Р1 (0; 0), Р2 (1; 1).

2а) Для точки Р1 (0; 0) имеем:

f(x, у)f(0, 0) = х3 + у3ху + 1. (5)

Разность (5) не сохраняет знака, т. е. в любой близости от Р1 есть точки двух типов: для одних разность (5) положительна, для других — отрицательна. Так, если точку Р (х; у) взять на прямой у = х, то разность (5) равна

2х3— Зх2 = х2 (2х — 3). Вблизи от Р1 (при х < 3/2) эта разность отрицательна. Если же точку Р (х; у) взять на прямой у = —х, то разность (5) равна Зх2, а эта величина всегда положительна.

Поскольку разность (5) не сохраняет знака, в точке P1 (0; 0) экстремума нет. Поверхность

z = х3 + у3 — Зху + 1

в точке (0; 0; 1) имеет вид седла (наподобие гиперболического параболоида).

2б) Для точки Р2 (1; 1) имеем:

f (x,y) – f (1; 1) = x3+ y3 - 3xy + l. (6)

Докажем, что эта разность в достаточной близости от точки (1; 1) сохраняет положительный знак. Положим:

х = 1 + α, у = 1+ β. (7)

Разность (6) преобразуется к виду

3(α 2 - α β + β2) + (α 3 + β3) (8)

Первый член при всех ненулевых значениях α, β положителей и притом больше чем 3/2 2 + β2). Второй член может быть и отрицательным, но при достаточной малости | α | и | β |он по абсолютному значению меньше чем α 2 + β2. Значит, разность (8) положительна.

Стало быть, в точке (1; 1) данная функция имеет минимум.


§ 8. Теорема Чевы


Теорема Чевы — это классическая теорема геометрии треугольника. Эта теорема аффинная, т. е. она может быть сформулирована используя только характеристики сохраняющиеся при аффинных преобразованиях. Теорема названа в честь итальянского математика Джованни Чевы, который доказал её в 1678 году.

Начнём с определения: Отрезок, соединяющий вершину треугольника с некоторой точкой на противоположной стороне, называется чевианой.

Три чевианы AA',BB',CC' треугольника конкурентны тогда и только тогда, когда

Если стороны BC, CA, AB треугольника ABC разделены в отношениях BP/PC = λ ≠ 0, CQ/QA = µ ≠ 0, AR/ RB = υ ≠ 0, то прямые AP, BQ, CR принадлежат одному и тому же пучку (собственному или несобственному) тогда и только тогда, когда λ, µ, υ = 1.

Эту теорему можно обобщить на случай когда точки A',B',C' лежат на продолжениях сторон BC,CA,AB. Для этого надо воспользоваться «отношением направленных отрезков», оно определено для двух направленных отрезков XY и ZT на одной прямой (или на параллельных прямых) и обозначается XY / ZT.

Пусть A',B',C' лежат на прямых BC,CA,AB треугольника . Прямые AA',BB',CC' конкурентны тогда и только тогда, когда

§9. Задачи о треугольнике наименьшего периметра, вписанного в остроугольный треугольник

Условие

Впишите в данный остроугольный треугольник ABC треугольник наименьшего периметра.

Решение

Пусть A1 — вершина искомого треугольника, принадлежащая стороне BC треугольника ABC. Рассмотрите образы точки A1 при симметриях относительно прямых AB и AC.

Пусть вершины A1, B1 и C1 треугольника A1B1C1 принадлежат сторонам соответственно BC, AC и AB треугольника ABC. Рассмотрим точки M и N, симметричные точке A1 относительно прямых AB и AC соответственно. Тогда, если P A1B1C1 — периметр треугольника A1B1C1, то

P A1B1C1 = A1C1 + C1B1 + B1A1 = MC1 + C1B1 + B1N MN,

причём равенство достигается только в случае, если прямая MN проходит через точки B1 и C1. Поскольку AM = AA1 = AN, то треугольник MAN — равнобедренный и

MAN = 2 BAA1 + 2 A1AC = 2 BAC.

Следовательно,

MN = 2AM sin BAC = 2AA1sin BAC 2h sin BAC,

где h — высота треугольника ABC, проведённая из вершины A. Равенство достигается только в случае, когда точка A1 — основание высоты.

Отсюда следует, что искомый треугольник — это треугольник с вершинами в основаниях высот данного, т.е. ортотреугольник данного треугольника. Действительно, пусть AA", BB" и CC" — высоты треугольника ABC, а точки A1, B1 и C1 расположены на сторонах соответственно BC, AC и AB. Если треугольник A1B1C1 не совпадает с треугольником A"B"C", то по ранее доказанному

P A1B1C1 P A"B1C1 P A"PQ,

где P и Q — точки пересечения прямой MN со сторонами соответственно AB и AC треугольника ABC. При этом хотя бы один из знаков неравенства — строгий. Значит, искомый треугольник минимального периметра — это треугольник A"PQ. Если бы точка P не совпадала с точкой C", то, повторив предыдущие рассуждения, построили бы треугольник, площадь которого меньше площади треугольника A"PQ, что невозможно. Аналогично для точки Q. Таким образом, точка P совпадает с C", а точка Q — с точкой B".

1. Изложенное решение основано на доказательстве Фейера (L.Fejer). Это, а также другие изящные доказательства данного утверждения (Г.А.Шварц, Л.Шрутка, Бюкнер) см. в книге Г.Радемахера и О.Теплица "Числа и фигуры" (М.,1962, с.36-46).

2. Другой способ доказательства того, что точки P и Q пересечения прямой MN со сторонами соответственно AB и AC также будут основаниями высот треугольника ABC.

Поскольку AM = AA" = AN, то точки M, A" и N лежат на окружности с центром A и радиусом AA". Тогда

A"NP = A"AP

(вписанный угол равен половине соответствующего центрального). Поэтому из точек A и N отрезок A"P виден под одним и тем же углом. Значит, точки A, P, A", N лежат на одной окружности.

С другой стороны, треугольники AA"C и ANC симметричны относительно прямой AC, поэтому они равны. Значит, из точек A" и N отрезок AC виден под прямым углом, поэтому эти точки лежат на окружности с диаметром AC. Поскольку через три точки, не лежащие на одной прямой, проходит ровно одна окружность, то все пять точек A, P, A", C и N лежат на окружности с диаметром AC. Тогда из точки P диаметр AC виден под прямым углом, т.е. CP — высота треугольника ABC. Аналогично докажем, что BQ — также высота треугольника ABC.

Заключение

В этой курсовой работе я изучила некоторые теоремы, позволяющие решать задачи на экстремумы, проиллюстрировала их применение.

В заключение этой работы, на мой взгляд, следует провести однозначную черту под бесспорным фактом целесообразности и полезности применения ряда задач элементарной геометрии на построение некоторых фигур таким образом, чтобы один из параметров получил наибольшее или наименьшее значение. Во многих случаях решение можно получить без применения методов математического анализа.

Список литературы

  1. С.И. Зетель, «Задачи на максимум и минимум», Москва

  2. С.А. Теляковский, «Алгебра», Москва, 2001г.

  3. Ю.Н. Макарычев, «Математика», Москва, 1988г.

  4. Г.С.М. Коксетер, С.П. Грейтцер, «Новые встречи с геометрией», 1978г.

Свежие статьи
Популярно сейчас
А знаете ли Вы, что из года в год задания практически не меняются? Математика, преподаваемая в учебных заведениях, никак не менялась минимум 30 лет. Найдите нужный учебный материал на СтудИзбе!
Ответы на популярные вопросы
Да! Наши авторы собирают и выкладывают те работы, которые сдаются в Вашем учебном заведении ежегодно и уже проверены преподавателями.
Да! У нас любой человек может выложить любую учебную работу и зарабатывать на её продажах! Но каждый учебный материал публикуется только после тщательной проверки администрацией.
Вернём деньги! А если быть более точными, то автору даётся немного времени на исправление, а если не исправит или выйдет время, то вернём деньги в полном объёме!
Да! На равне с готовыми студенческими работами у нас продаются услуги. Цены на услуги видны сразу, то есть Вам нужно только указать параметры и сразу можно оплачивать.
Отзывы студентов
Ставлю 10/10
Все нравится, очень удобный сайт, помогает в учебе. Кроме этого, можно заработать самому, выставляя готовые учебные материалы на продажу здесь. Рейтинги и отзывы на преподавателей очень помогают сориентироваться в начале нового семестра. Спасибо за такую функцию. Ставлю максимальную оценку.
Лучшая платформа для успешной сдачи сессии
Познакомился со СтудИзбой благодаря своему другу, очень нравится интерфейс, количество доступных файлов, цена, в общем, все прекрасно. Даже сам продаю какие-то свои работы.
Студизба ван лав ❤
Очень офигенный сайт для студентов. Много полезных учебных материалов. Пользуюсь студизбой с октября 2021 года. Серьёзных нареканий нет. Хотелось бы, что бы ввели подписочную модель и сделали материалы дешевле 300 рублей в рамках подписки бесплатными.
Отличный сайт
Лично меня всё устраивает - и покупка, и продажа; и цены, и возможность предпросмотра куска файла, и обилие бесплатных файлов (в подборках по авторам, читай, ВУЗам и факультетам). Есть определённые баги, но всё решаемо, да и администраторы реагируют в течение суток.
Маленький отзыв о большом помощнике!
Студизба спасает в те моменты, когда сроки горят, а работ накопилось достаточно. Довольно удобный сайт с простой навигацией и огромным количеством материалов.
Студ. Изба как крупнейший сборник работ для студентов
Тут дофига бывает всего полезного. Печально, что бывают предметы по которым даже одного бесплатного решения нет, но это скорее вопрос к студентам. В остальном всё здорово.
Спасательный островок
Если уже не успеваешь разобраться или застрял на каком-то задание поможет тебе быстро и недорого решить твою проблему.
Всё и так отлично
Всё очень удобно. Особенно круто, что есть система бонусов и можно выводить остатки денег. Очень много качественных бесплатных файлов.
Отзыв о системе "Студизба"
Отличная платформа для распространения работ, востребованных студентами. Хорошо налаженная и качественная работа сайта, огромная база заданий и аудитория.
Отличный помощник
Отличный сайт с кучей полезных файлов, позволяющий найти много методичек / учебников / отзывов о вузах и преподователях.
Отлично помогает студентам в любой момент для решения трудных и незамедлительных задач
Хотелось бы больше конкретной информации о преподавателях. А так в принципе хороший сайт, всегда им пользуюсь и ни разу не было желания прекратить. Хороший сайт для помощи студентам, удобный и приятный интерфейс. Из недостатков можно выделить только отсутствия небольшого количества файлов.
Спасибо за шикарный сайт
Великолепный сайт на котором студент за не большие деньги может найти помощь с дз, проектами курсовыми, лабораторными, а также узнать отзывы на преподавателей и бесплатно скачать пособия.
Популярные преподаватели
Добавляйте материалы
и зарабатывайте!
Продажи идут автоматически
5224
Авторов
на СтудИзбе
427
Средний доход
с одного платного файла
Обучение Подробнее