86280 (Випадковий процес в математиці), страница 2

2016-07-30СтудИзба

Описание файла

Документ из архива "Випадковий процес в математиці", который расположен в категории "". Всё это находится в предмете "математика" из , которые можно найти в файловом архиве . Не смотря на прямую связь этого архива с , его также можно найти и в других разделах. Архив можно найти в разделе "курсовые/домашние работы", в предмете "математика" в общих файлах.

Онлайн просмотр документа "86280"

Текст 2 страницы из документа "86280"

? ? ?(t)?(t')R(t, t')dtdt'

Тоді існує в середньому квадратичному інтеграл

? ?(t)X(t)dt.

Випадкові процеси:

Xi(t) = Viφi(t) (i = 1n)

Де φi(t) – задані речовинні функції

Vi - випадкові величини з характеристиками

M(VI = 0), D(VI) = DI, M(ViVj) = 0 (i ≠ j)

Називають елементарними.

Канонічним розкладанням випадкового процесу X(t) називають його подання у вигляді

X(t) = mx(t) + ∑ Viφi(t) (t € T)

Де Vi – коефіцієнти, а φi(t) – координатні функції канонічного розкладання процесу X(t). З відносин:

M(VI = 0), D(VI) = DI, M(ViVj) = 0 (i ≠ j)

X(t) = mx(t) + ∑ Viφi(t) (t € T)

Треба:

K(t, t’) = ∑ Diφi(t)φi(t’)

Цю формулу називають канонічним розкладанням кореляційної функції випадкового процесу.

У випадку рівняння

X(t) = mx(t) + ∑ Viφi(t) (t € T)

Мають місце формули:

X(t) = mx(t) + ∑ Viφ(t)

∫ x(τ)dt = ∫ mx(τ)dτ + ∑ Vi ∫ φi(t)dt.

Таким чином, якщо процес X(t) представлений його канонічним розкладанням, те похідна й інтеграл від нього також можуть бути представлені у вигляді канонічних розкладань.

2. Марковські випадкові процеси з дискретними станами

Випадковий процес, що протікає в деякій системі S з можливими станами S1, S2, S3, …, називається Марковським, або випадковим процесом без наслідку, якщо для будь-якого моменту часу t0 імовірні характеристики процесу в майбутньому (при t>t0) залежить тільки від його стану в цей момент t0 і не залежать від того, коли і як система прийшла в цей стан; тобто не залежать від її поводження в минулому (при t0).

Прикладом Марковського процесу: система S – лічильник у таксі. Стан системи в момент t характеризується числом кілометрів (десятих часток кілометрів), пройдених автомобілем до даного моменту. Нехай у момент t0 лічильник показує S0/ Імовірність того, що в момент t>t0 лічильник покаже те або інше число кілометрів (точніше, що відповідає число рублів) S1 залежить від S0, але не залежить від того, у які моменти часу змінилися показання лічильника до моменту t0.

Багато процесів можна приблизно вважати Марковськими. Наприклад, процес гри в шахи; система S – група шахових фігур. Стан системи характеризується числом фігур супротивника, що збереглися на дошці в момент t0. Імовірність того, що в момент t>t0 матеріальна перевага буде на боці одного із супротивників, залежить у першу чергу від того, у якому стані перебуває система в цей момент t0, а не від того, коли й у якій послідовності зникли фігури з дошки до моменту t0.

У ряді випадків передісторією розглянутих процесів можна просто зневажити й застосовувати для їхнього вивчення Марковські моделі.

Марковським випадковим процесом з дискретними станами й дискретним часом (або ланцюгом Маркова) називається Марковський процес, у якому його можливі стани S1, S2, S3, … можна заздалегідь перелічити, а перехід зі стану в стан відбувається миттєво (стрибком), але тільки в певні моменти часу t0, t1, t2, ..., називані кроками процесу.

Позначимо pij – імовірність переходу випадкового процесу (системи S) зі стану I у стан j. Якщо ці ймовірності не залежать від номера кроку процесу, то такий ланцюг Маркова називається однорідної.

Нехай число станів системи звичайно й дорівнює m. Тоді її можна характеризувати матрицею переходу P1, що містить всі ймовірності переходу:

p11 p12 … p1m

p21 p22 … p2m

… … … …

Pm1 pm2 … pmm

Природно, по кожному рядку ∑ pij = 1, I = 1, 2, …, m...

Позначимо pij(n) – імовірністю того, що в результаті n кроків система перейде зі стану I у стан j. При цьому при I = 1 маємо ймовірності переходу, що утворять матрицю P1, тобто pij(1) = pij

Необхідно, знаючи ймовірності переходу pij, знайти pij(n) – імовірності переходу системи зі стану I у стан j за n кроків. Із цією метою будемо розглядати проміжне (між I і j) стан r, тобто будемо вважати, що з первісного стану I за k кроків система перейде в проміжний стан r з імовірністю pir(k), після чого за що залишилися n-k кроків із проміжного стану r вона перейде в кінцевий стан j з імовірністю prj(n-k). Тоді по формулі повної ймовірності

Pij(n) = ∑ pir (k) prj (n-k) – рівність Маркова.

Переконаємося в тім, що, знаючи всі ймовірності переходу pij = pij(1), тобто матрицю P1 переходу зі стану в стан за один крок, можна знайти ймовірність pij(2), тобто матрицю P2 переходи зі стану в стан за два кроки. А знаючи матрицю P2, - знайти матрицю P3 переходи зі стану в стан за три кроки, і т.д.

Дійсно, думаючи n = 2 у формулі Pij(n) = ∑ pir (k) prj (n-k), тобто k=1 (проміжне між кроками стан), одержимо

Pij(2) = ∑ pir(1)prj (2-1) = ∑ pir prj

Отримана рівність означає, що P2 =P1P1 = P21

Думаючи n = 3, k = 2, аналогічно одержимо P3 = P1P2 = P1P12 = P13, а в загальному випадку Pn = P1n

Приклад

Сукупність родин деякого регіону можна розділити на три групи:

родини, що не мають автомобіля й не збираються його купувати;

родини, що не мають автомобіля, але які бажаютьйого придбати;

родини, що мають автомобіль.

Проведене статистичне обстеження показало, що матриця переходу за інтервал в один рік має вигляд:

0,8 0,1 0,1

0 0,7 0,3

0 0 1

(У матриці P1 елемент р31 = 1 означає ймовірність того, що родина, що має автомобіль, також буде його мати, а, наприклад, елемент р23 = 0,3 – імовірність того, що родина, що не мала автомобіля, але намагаються його придбати, здійснить свій намір у наступному році, і т.д.)

Знайти ймовірність того, що:

родина, що не мала автомобіля й не хоче його придбати, буде перебувати в такій же ситуації через два роки;

родина, що не мала автомобіля, але які бажають його придбати, буде мати автомобіль через два роки.

Рішення: знайдемо матрицю переходу Р2 через два роки:

0,8 0,1 0,1 0,8 0,1 0,1 0,64 0,15 0,21

0 0,7 0,3 0 0,7 0,3 0 0,49 0,51

0 0 1 0 0 1 0 0 1

Тобто шукані в прикладі 1) і 2) імовірності рівні відповідно

р11 =0,64, р23 =0,51

Далі розглянемо Марковський випадковий процес із дискретними станами й безперервним часом, у якому, на відміну від розглянутої вище ланцюга Маркова, моменти можливих переходів системи зі стану не фіксовані заздалегідь, а випадкові.

При аналізі випадкових процесів з дискретними станами зручно користуватися геометричною схемою – так званим графіком подій. Звичайно стану системи зображуються прямокутниками (кружками), а можливі переходи зі стану в стан - стрілками (орієнтованими дугами), що з'єднують стану.

Приклад. Побудувати граф станів наступного випадкового процесу: пристрій S складається із двох вузлів, кожний з яких у випадковий момент часу може вийти з ладу, після чого миттєво починається ремонт вузла, що триває заздалегідь невідомий випадковий час.

Рішення. Можливі стани системи: S0 – обидва вузли справні; S1 – перший вузол ремонтується, другий справний; S2 – другий вузол ремонтується, перший справний; S3 – обидва вузли ремонтуються.

Стрілка, напрямку, наприклад, з S0 в S1, означає перехід системи в момент відмова першого вузла, з S1 в S0 – перехід у момент закінчення ремонту цього вузла. На графі відсутні стрілки з S0 в S3 і з S1 в S2. Це пояснюється тим, що виходи вузлів з ладу передбачається незалежними друг від друга й, наприклад, імовірностями одночасного виходу з ладу двох вузлів (перехід з S0 в S3) або одночасне закінчення ремонтів двох вузлів (перехід з S3 в S0) можна зневажити.

3. Стаціонарні випадкові процеси

Випадковий процес Х(t) називають стаціонарним у вузькому змісті, якщо

F(x1, …, xn; t1, …, tn) = F(x1, …, xn; t1+∆, …, tn+∆)

При довільних

n≥1, x1, …, xn, t1, …, tn; ∆; t1 € T, ti + ∆ € T...

Тут F(x1, …, xn; t1, …, tn) – n-мірна функція розподілу випадкового процесу Х(t).

Випадковий процес Х(t) називають стаціонарним у широкому змісті, якщо

m(t) = m(t + ?), K(t, t') = K(t + ?, t' + ?)

(t € T, t' € T, t + ?€ T), t' + ?€ T)

Очевидно, що зі стаціонарності у вузькому змісті треба стаціонарність у широкому змісті.

З формул:

m(t) = m(t + ?), K(t, t') = K(t + ?, t' + ?)

(t € T, t' € T, t + ?€ T), t' + ?€ T)

Треба, що для процесу, стаціонарного в широкому змісті, можна записати

m (t) = mx(0) = const;

D (t) = K(t, t) = K(0,0) = const;

K(t, t') = K(t - t', 0) = K (0, t' - t)

Таким чином, для процесу, стаціонарного в широкому змісті, математичне очікування й дисперсія не залежать від часу, а K(t, t') представляє собою функцію виду:

K(t, t') = k(?) = k(-?), ? = t' - t.

Видно, що k(?) - парна функція, при цьому

K(0) = В = σ2; |k(τ)| ≤ k(0); ∑ ∑ άi αj k(ti - tj) ≥ 0

Тут D - дисперсія стаціонарного процесу

Х(t), αi (I = 1, n) – довільні числа.

Перша рівність системи

K(0) = В = σ2; |k(τ)| ≤ k(0); ∑ ∑ άi αj k(ti - tj) ≥ 0

треба з рівняння K(t, t') = k(?) = k(-?), ? = t' - t. Перша рівність

K(0) = В = σ2; |k(τ)| ≤ k(0); ∑ ∑ άi αj k(ti - tj) ≥ 0 - простий наслідок нерівності Шварца для перетинів X(t), X(t') стаціонарного випадкового процесу X(t). Остання нерівність:

K(0) = В = σ2; |k(τ)| ≤ k(0); ∑ ∑ άi αj k(ti - tj) ≥ 0

Одержують у такий спосіб:

∑ ∑ αi αj k(ti - tj) = ∑ ∑ K(ti, tji αj = ∑ ∑ M[(αiXi)(αjXj)] = M[(∑ αiXi)2] ≥0

З огляду на формулу кореляційної функції похідній dX(t)/dt випадкового процесу, для стаціонарної випадкової функції X(t) одержимо

K1(t, t’) = M[(dX(t)/dt)*(dX(t’)/dt’)] = δ2K(t, t’) / δtδt’ = δ2k(t’ - t) / δt?t'

Оскільки

?k(t' - t) / ?t = (?k(?) / ??) * (?? / ??) = - ?k(?) / ??,

δ2k(t’ - t) / δtδt’ = - (δ2 k(τ) / δτ2) * (δτ / δt’) = - (δ2 k(τ) / δτ2)

те K1(t, t’) = k1(τ) = - (δ2 k(τ) / δτ2), τ = t' - t.

Тут K1(t, t’) і k1(τ) – кореляційна функція першій похідній стаціонарного випадкового процесу X(t).

Для n-й похідній стаціонарного випадкового процесу формула кореляційної функції має вигляд:

Kn(τ) = (-1)n * (δ2n *k(τ) / δτ2n)

Теорема. Стаціонарний випадковий процес X(t) з кореляційною функцією k(?) безперервний у середньому квадратичному у крапці t € T тоді й тільки тоді, коли

Lim k(?) = k(0)

Для доказу запишемо очевидний ланцюжок рівностей:

M [|X(t+τ)-X(T)|2] = M[|X(t)|2] – 2M[|X(t+τ)X(t)|] + M[X(t)2] =

= 2D-2k(?) = 2[k(0)-k(?)].

Звідси очевидно, що умова безперервності в середньому квадратичному процесу X(t) у крапці t € T

Lim M[|X(t+τ) – X(t)|2] = 0

Має місце тоді й тільки тоді, коли виконується Lim k(?) = k(0)

Теорема. Якщо кореляційна функція k(τ) стаціонарного випадкового процесу X(t) безперервна в середньому квадратичному у крапці τ=0, то вона безперервна в середньому квадратичному у будь-якій крапці τ € R1.

Для доказу запишемо очевидні рівності:

k(?+??)-k(?) = M[X(t+?+??)X(t)] - M[X(t+?)X(t)] =

Свежие статьи
Популярно сейчас
Зачем заказывать выполнение своего задания, если оно уже было выполнено много много раз? Его можно просто купить или даже скачать бесплатно на СтудИзбе. Найдите нужный учебный материал у нас!
Ответы на популярные вопросы
Да! Наши авторы собирают и выкладывают те работы, которые сдаются в Вашем учебном заведении ежегодно и уже проверены преподавателями.
Да! У нас любой человек может выложить любую учебную работу и зарабатывать на её продажах! Но каждый учебный материал публикуется только после тщательной проверки администрацией.
Вернём деньги! А если быть более точными, то автору даётся немного времени на исправление, а если не исправит или выйдет время, то вернём деньги в полном объёме!
Да! На равне с готовыми студенческими работами у нас продаются услуги. Цены на услуги видны сразу, то есть Вам нужно только указать параметры и сразу можно оплачивать.
Отзывы студентов
Ставлю 10/10
Все нравится, очень удобный сайт, помогает в учебе. Кроме этого, можно заработать самому, выставляя готовые учебные материалы на продажу здесь. Рейтинги и отзывы на преподавателей очень помогают сориентироваться в начале нового семестра. Спасибо за такую функцию. Ставлю максимальную оценку.
Лучшая платформа для успешной сдачи сессии
Познакомился со СтудИзбой благодаря своему другу, очень нравится интерфейс, количество доступных файлов, цена, в общем, все прекрасно. Даже сам продаю какие-то свои работы.
Студизба ван лав ❤
Очень офигенный сайт для студентов. Много полезных учебных материалов. Пользуюсь студизбой с октября 2021 года. Серьёзных нареканий нет. Хотелось бы, что бы ввели подписочную модель и сделали материалы дешевле 300 рублей в рамках подписки бесплатными.
Отличный сайт
Лично меня всё устраивает - и покупка, и продажа; и цены, и возможность предпросмотра куска файла, и обилие бесплатных файлов (в подборках по авторам, читай, ВУЗам и факультетам). Есть определённые баги, но всё решаемо, да и администраторы реагируют в течение суток.
Маленький отзыв о большом помощнике!
Студизба спасает в те моменты, когда сроки горят, а работ накопилось достаточно. Довольно удобный сайт с простой навигацией и огромным количеством материалов.
Студ. Изба как крупнейший сборник работ для студентов
Тут дофига бывает всего полезного. Печально, что бывают предметы по которым даже одного бесплатного решения нет, но это скорее вопрос к студентам. В остальном всё здорово.
Спасательный островок
Если уже не успеваешь разобраться или застрял на каком-то задание поможет тебе быстро и недорого решить твою проблему.
Всё и так отлично
Всё очень удобно. Особенно круто, что есть система бонусов и можно выводить остатки денег. Очень много качественных бесплатных файлов.
Отзыв о системе "Студизба"
Отличная платформа для распространения работ, востребованных студентами. Хорошо налаженная и качественная работа сайта, огромная база заданий и аудитория.
Отличный помощник
Отличный сайт с кучей полезных файлов, позволяющий найти много методичек / учебников / отзывов о вузах и преподователях.
Отлично помогает студентам в любой момент для решения трудных и незамедлительных задач
Хотелось бы больше конкретной информации о преподавателях. А так в принципе хороший сайт, всегда им пользуюсь и ни разу не было желания прекратить. Хороший сайт для помощи студентам, удобный и приятный интерфейс. Из недостатков можно выделить только отсутствия небольшого количества файлов.
Спасибо за шикарный сайт
Великолепный сайт на котором студент за не большие деньги может найти помощь с дз, проектами курсовыми, лабораторными, а также узнать отзывы на преподавателей и бесплатно скачать пособия.
Популярные преподаватели
Добавляйте материалы
и зарабатывайте!
Продажи идут автоматически
5184
Авторов
на СтудИзбе
436
Средний доход
с одного платного файла
Обучение Подробнее